ECE 6775
High-Level Digital Design Automation
Fall 2023

Domain-Specific Programming

L UMD D
R
Il [==] JJ Cornell University -
@@ 7@ E
e I

Announcements

> Final project
— In-depth exploration of a research topic

* (1) Designing new accelerators with HLS; OR
(2) Developing new automation algorithms/tools

— 3-4 students / team (up to 12 teams in total)
* 11 teams = 11 * 4 students
- 12 teams =4 * 3 students + 8 * 4 students

— Weekly meetings with the instructor start next week on Thu 11/2
+ A Google sheet will be created for meeting scheduling

— Abstract due Wed 11/8

Review: CNN Acceleration on FPGAs

9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcct++) {
#pragma HLS pipeline
7 for (too=to; too<min(to+To, O); too++) {
#pragma HLS unroll : : :
8 for (tii=ti; tii<(ti+Ti, I); tii++) { Parallelize across input (Ti)
#pragma HLS unroll and output (To) channels

output_fm[too][trr][tcc] +=

weights[too][tii] [ki] [kj]*input_fm][tii][S*trr+ki][S*tcc+kj];

P

L is the pipeline depth (# of pipeline stages, I1=1)

Number of cycles to execute the above loop nest
~ KXKXTrXTc + L ~ TrXxTcxK?

Agenda

> A brief intro to domain-specific languages
(DSLs)

» DSLs for accelerator design

» Systolic arrays: combining parallel processing
and pipelining
— Uniform recurrence equations
— Case study on matrix multiplication

Donald Knuth on Multicore Architectures

Q: Vendors of multicore processors have expressed frustration at the
difficulty of moving developers to this model. As a former professor, what
thoughts do you have on this transition and how to make it happen?

I might as well flame a bit about my personal unhappiness with the current
trend toward multicore architecture. To me, it looks more or less like the
hardware designers have run out of ideas, and that they’re trying to pass
the blame for the future demise of Moore’s Law to the software writers
by giving us machines that work faster only on a few key benchmarks!

I won'’t be surprised at all if the whole multithreading idea turns out to be
a flop, worse than the "Itantum" approach that was supposed to be so
terrific — until it turned out that the wished-for compilers were basically
impossible to write.

Source: http://www.informit.com/articles/article.aspx?p=1193856, 2008

http://www.informit.com/articles/article.aspx?p=1193856

Blur Filter: Original C++ Code

void blur filter 3x3(const Image &in, Image &blury) {
Image blurx(in.width(), in.height()); // allocate blurx array
for (int x = 0; x < in.width(); x++)
for (int y = 0; y < in.height(); y++)
blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int x = 0; X < in.width(); x++)

for (int y = 0; y < in.height(); y++)
blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;

The blurved face of KFC Mascot

Blur Filter: Optimized C++ Code for Multicore

void blur filter 3x3(const Image &in, Image &blury) {
__ml28i one third = mm setl epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
__ml28i a, b, c, sum, avg;
_ ml128i blurx[(256/8)*(32+2)]1; // allocate tile blurx array

for (int xTile = 0; xTile < in.width(); xTile += 256) { 11X faster on
ml28i *blurxPtr = blurx;
for (int y = -1; y < 32+1; y++) { quad core XBG

const uintlé_t *inPtr = &(in[yTile+y][xTile]); processor

for (int x = 0; x < 256; x += 8) {
a = mm loadu sil28((__ml28i*)(inPtr-1));
b = mm loadu sil28((__ml28i*)(inPtr+1l)); + T|||ng
c = mm load sil28((_ml28i*)(inPtr)); . .
sum = mm add epil6(mm add epilé6(a, b), c); + VeCtorlzatlon
avg = mm mulhi epil6(sum, one_ third); + Multithreading
~mm_store sil28(blurxPtr++, avg);

inPtr += 8;
}}
blurxPtr = blurx;
for (int y = 0; y < 32; y++) {
__ml28i *outPtr (__ml28i *)(&(blury[yTile+y][xTile]));
for (int x = 0; x < 256; x += 8) {
a = mm load sil28(blurxPtr+(2*256)/8);
b = mm load sil28(blurxPtr+256/8);

c = mm load_sil28(blurxPtr++);
sum = mm add epil6(mm add epilé6(a, b), c);
avg = mm mulhi epil6(sum, one third);

_mm_stgre_si128(outPtr++, avg) ;

P} 6

More for Less — Domain-Specific Languages (DSLs)

> Programming languages that are tailored for a specific
application domain
— More accessible and productive for domain experts

— Restricted expressiveness facilitates more automated
optimization and verification

— Examples: SQL, MATLAB, OpenGL, HTML, ...

» Embedded DSLs (eDSLs)

— A DSL built on a host, typically general-purpose language

— Examples: Halide (in C++), PyTorch (in Python), TVM (in
Python), Chisel (in Scala), ...

Case Study: Halide, an eDSL for Image Processing

Main Idea: Separate algorithm (what to compute) from
schedule (how to compute it)

// Algorithm of Blur Filter Algorithm

blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3; « Write and test once
blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3; * Portable across platforms
// Schedule SChedUIIE o .
blurx.compute_at(blur_y, y).unroll(x); * Specify optlml_zatlpns
blury.tile(x, y, xi, yi, 256, 32); * Explore combinations

« Target different back-ends

Scheduling functions encode common program transformations
tile: loop tiling

unroll: loop unrolling

compute_at: change order of computation

[1] J. Ragan-Kelley et al. Halide: a Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines. PLDI’2013.

[2] hitps://halide-lang.org 8

What about Accelerator-Rich Architectures?

> Modern computer systems
embrace specialization to improve
performance and energy efficiency

» Both hardware and software are
Increasingly customized for
dedicated application domains

GPUCore0

GPU Core2

GPUCorel

GPUCore3

ISP

I Depth Engine I

CC Fabric

Tempest | Tempest
CPU CPU

Tempest | Tempest
CPU CPU

L2

NPU

ortexVortex
CPU | CPU

|_Sys Cache |
I

I Control MCU I

Audio
Subsys

Display

Secure Enclave
(SEP)

Always
MC

Storage

— Contioller

IMC Engine

Apple 12 (iPhone X)

Even more challenging to design and program!

Essential Techniques for Hardware Specialization

Compute customization
« parallel processing,

pipelining ...

Essential Techniques for Hardware Specialization

Compute customization

» parallel processing, PE PE PE
pipelining ... @ EI

Data type customization PE PE PE

 low-bitwidth integer, zl gl ?,;' ?{'
fixed point ...

B
ES

Em
28}
[5gm

Essential Techniques for Hardware Specialization

lll
*

Compute customization
« parallel processing, - Loader

e »
pipelining ... ol : o
S :
[
Data type customization ¥
L ~
* low-bitwidth integer, >
fixed point ... o
S
v
= Unloader

Memory customization
« banking, data reuse,
streaming ...

B Scratchpad =) Data movement

A Roofline View of Customization Techniques

Compute customization
« parallel processing,

pipelining ...

Data type customization
« low-bitwidth integer,
fixed point ...

Memory customization
« banking, data reuse,
streaming ...

Throughput (#ops/sec)

>

Compute Roof
w/ Custom Precision

Memory-Bound

Compute-Bound

>

Operational Intensity (#ops/byte)

13

Building Accelerator with HLS C/C++

Example: Convolution
for (inty =0;y <N; y++)
for (int x = 0; X < N; X++)
for(intr=0;r<3; r++)
for (intc=0; ¢ < 3; c++)
out[x, y] += image[x+t, y+c] * kernel[r, c]

Algorithm#1 N

Compute Customization Entangled hardware
customization & algorithm

Algorithm#2 . Less portable

Data Type Customization | < Less maintainable

Memory Customization | * Less productive

Algorithm#3

#pragma HLS array_partition variable=filter dim=0
his::LineBuffer<3, N, ap_fixed<8,4> > buf;
his::Window<3, 3, ap_fixed<8,4> > window;
for(inty=0; y <N; y++) {

for(int xo = 0; xo < N/M; xo++) {
#pragma HLS pipeline l1=1 Custom compute
for(int xi = 0; xi < M; xi++) { (Loop tiling)
int x =xo0*M + xi;
ap_fixed<8,4>acc=0; Custom data type
ap_fixed<8,4> in = image[y][x]; (Quantization)
buf.shift_up(x);
buf.insert_top(in, x);
window.shift_left();
for(intr=0;r<2; r++)
window.insert(buf.getval(r,x), i, 2);
window.insert(in, 2, 2);
if(y>=2&&x>=2){
for(intr=0; r<3; r++) {
for(intc=0; c<3; c++) {
acc += window.getval(r,c) * kernel[r][c];
1
out[y-2][x-2] = acc;
i 14

Custom memory
(Reuse buffers)

HeteroCL: A Multi-Paradigm Programming Infrastructure
for Software-Defined Reconfigurable Computing

Yi-Hsiang Lail, Yuze Chi2, Yuwei Hu', Jie Wang?, Cody Hao Yu2, Yuan Zhou?,
Jason Cong?, Zhiru Zhang'

1Cornell University, 2UCLA

FPGA2019 (Best Paper Award)

15

HeteroCL Overview

» A Python-based embedded DSL and compilation framework for
productive hardware specialization

— Portable: Clean decoupling of algorithm & hardware customizations
- Flexible: Mixed declarative & imperative programming
— Efficient: Mapping to high-performance spatial architecture templates

HLS C/C++ HeteroCL
Algorithm#1 LN N
Compute Customization Algorithm#1-3
Algorithm#2 VS.
Data Type Customization Compute Customization
Memory Customization Data Type Customization
Algorithm#3 Memory Customization
Entangled algorithm and Fully decoupled
customization schemes customization schemes

() https://github.com/comell-zhang/heterod

https://github.com/cornell-zhang/heterocl

Decoupled Compute Customization

> The tensor DSL (built on TVM) separates algorithm

from scheduling via declarative programming

HeteroCL code Corresponding HLS code in C

r = hcl.reduce_axis(0, 3) Declarative

E c = hel.reduce_axis(0, 3) programming (IZL%/;:O’O?/><<<NI,\I?/;I)+)

%5 out = hcl.compute(N, N), (intr=0:r<3; r++)

K=y Yy, X (intc=0;c<3;c++)

< hcl.sum(image[x+r, y+c]*kernel[r, c], out[x, y] += image[x+r, y+c] * kernell, c]
axis=[r, cJ))

(int xi = 0; xi < M; Xi++)
(int xo = 0; xo < N/M; xo++)
(inty=0;y < N; y++)

s = hcl.create_schedule() (ntr=0;r<3;r++)
X0, Xi = s.split(out.x, factor=M) (intc= *0; C < 3; C++)
s.reorder(xi, xo, out.y) out[xi+xo*M, y] +=

Decoupled
customization

Reorder

image[xi+xo*M+r, y+c] * kernellr, C]

Decoupled Data Type Customization

» HeteroCL further enables decoupled algorithm spec and

data quantization schemes

— Provides bit-accurate data type support (e.g., Int(15), Fixed(7,4))

r = hcl.reduce_axis(0, 3)
¢ = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambday, x:
hcl.sum(image[x+r, y+c]*kernel[r, c],
axis=[r, cJ))

for i in range(2, 8):
s = hcl.create_scheme()
s.quantize(out, Fixed(i, i-2))

32-bit Floating-point

[Sign [Exponent
1b 8b 23b

16-bit Brain Floating-point (bfloat)

| Sign | Exponent
1b 8b 7b

8-bit Fixed-point Fixed(s, 6) :

Quantize/
2b 6b downsize
-bit Integer int2)

2b

18

Decoupled Memory Customization

> Inferring custom on-chip storage with .reuse_at()

r = hcl.reduce_axis(0, 3) for (inty = 0; y < N; y++)
¢ = hcl.reduce_axis(0, 3) for (int x = 0; x < N; x++)
out = hcl.compute(N, N), for (intr=0;r<3; r++)
lambday, X: for (intc =0; ¢ < 3; C++)
hcl.sum(image[x+r, y+c]*kernellr, c], out[x, y] += image[x+r, y+c] * kernellr, C]
axis=[r, cJ))
linebuffer
—
s = hcl.create_schedule() i _ X
linebuf = s[image].reuse_at(out, out.y) 1 - y
winbuf = s[linebuf].reuse_at(out, out.x)
z

- ¢ e
image

window buffer kernel out

19

Customization Primitives in HeteroCL (a subset)

Compute customization

Memory customization

.split(i, v)

Split loop 1 of operation C into a two-level nest
loop with v as the factor of the inner loop.

.partition(i,v) Partition dim i of tensor C with a factor v.

fuse(i, j)

Fuse two sub-loops 1 and j of operation C in the
same nest loop into one.

.reshape(i,v)

Pack dim 1 of tensor C into words with a factor v.

.reorder(i, j)

Switch the order of sub-loops 1 and j of operation
C in the same nest loop.

buffer_at(C,i) Create an intermediate buffer at dim i of operation C

to store the results of tensor P.

.compute_at(C,i)

Merge loop 1 of the operation P to the
corresponding loop level in operation C.

.reuse_at(C,i)

Create a reuse buffer storing the values of tensor P,
where the values are reused at dim i of operation C.

to(t, d, m)

Move a list of tensors t to destination d with mode m.

.unroll(i, v) Unroll loop i of operation C by factor v.
.parallel(i) Schedule loop i of operation C in parallel.
pipeline(i, v) Schedule loop i of operation C in pipeline manner

with a target initiation interval v.

Data type customization

.downsize(t, d)

Downsize a list of tensors t to type d.

.quantize(t, d)

Quantize a list of tensors t to type d.

¥

_>®

\

Macros for spatial architecture templates

Specify operation C to be implemented with stencil

C.stencil() with dataflow architectures using the SODA
framework.
C.systolic() Specify operation C to be implemented with systolic

arrays using the AutoSA framework.

20

outer loop i (M)

Case Study: Matrix Multiplication (MM)

> Avanilla MM implementation performs inner product to produce
one output element

- Floating-point accumulation introduces carried dependency,
slowing down the pipeline (lI>1)

MatMul via inner product

inner loop k (K) middle loop j (N) middle loop j (N) fOI’ (Int I - 0, | < M, i++)

for(intj=0;]<N; j++
JAVATAA N/ VA J J J
T 111 TTT17171 s TT17171 C[I j]=0

. B I O S A int k = 0 .

ChbiT x SpRHES - ESERiET RN

L1] [[L1000 2 Liriaol #pragma pipeline 1l="27

CITIa00 TI1°0 2™ CrITaon Cli,] += Ali, K] * B[k, j]

A B C

21

outer loop i (M)

Case Study: Optimized MM to Achieve lI=1

> The row-wise product approach performs a sequence of scalar-vector
products to produce one output row
— An additional buffer is added to store the intermediate results (i.e., c_vec)

for (inti=0;i<M;i++){
float C_vec|N];

MatMul via row-wise product for (intj = 0; j < N; j++)

middle loop k (K) inner loop j (N) inner loop j (N) o .
AV - C_vec(j] = 0.0;

TT17171 T T T 1 = T T T 1

B i e B I I - LI I .
4+~ ——| 4+~ ——| 2 Q F+++-4——| for (intk =0; k < K; k++)
Frdddd—] X <k++dd4d] = 8 S F+4+4d4-| L) :
Ll Ll LLL Ll R Y A R for (intj=0;j<N;jj++)
O I = I . .
NN NN 2™ L1 #pragma pipeline l1=1

A B C C_vec[j] += A, K] * BIk, jl;
C[l,i]=ZA[l;k]'B[kﬁ] for (intj=0;j < N; j++

k Cli, jl = C_vecli];
}

22

Case Study: Optimized MM in HeteroCL

> Optimizations via decoupled primitives
— .buffer_at() creates an intermediate buffer at a given axis
— .reorder() swaps the order of the k and j loops
— Algorithm code stays unchanged

def MM_v2(M=1024, N=1024, K=512):
hcl.init(hcl.Float())

A = hcl.placeholder((M, K), name="A")

B = hcl.placeholder((K, N), name="B") Il Latency Speedup
k = hcl.reduce_axis(0, K, name="k") (cycles)
C = hcl.compute((M, N), lambda i, j : Vanilla MM | 8 4295M 1X
hcl.sum(A[i, k] * Bk, j], axis=k), "C") Optimized
— Pamized | 4 1 s39M| 7.97x
customizations MM

s = hcl.create_schedule([A, B])
s.reorder(k, j)

s.buffer_at(C, i)

s.pipeline(j)

23

SuSy: A Programming Model for Productive
Construction of High-Performance Systolic Arrays
on FPGAs

Yi-Hsiang Lai', Hongbo Rong?, Size Zheng3, Weihao Zhang?,

Xiuping Cuid, Yunshan Jia3, Jie Wang®, Brendan Sullivan', Zhiru Zhang?,
Yun Liang?, Youhui Zhang*, Jason Cong®, Nithin George?, Jose Alvarez?,
Christopher Hughes?, Pradeep Dubey?

1Cornell University, 2Intel, 3Peking University, 4Tsinghua University, SUCLA

ICCAD’2020

24

Systolic Arrays

> An array of processing elements (PEs) that process data in a
systolic manner using nearest-neighbor communication

— Systolic means “data flows from memory in a rhythmic fashion, passing through
many processing elements before it returns to memory” — H.T. Kung

Systolic Arrays (for VLSI)

H. T. Kungt and Charles E. Leisersont

And now I see with eye serene
The very pulse of the machine.
==William Wordsworth

Abslract

A syslolic system is a nelwork of processors which rhythmically compute and pass
data through the system. Physiologists use the word "systole” to refer to the
rhythmically recurrent coniraction of the hearl and arleries which pulses blood
through the body. In a syslolic compuling system, the funclion of a processor is
analogous 1o thal of the hearl. Every processor regularly pumps data in and oul,
each lime performing some shorl compulation, so that a regular flow of data is kept
up in the network,

Many basic maltrix computations can be pipelined elegantly and efficiently on
systolic nelworks having an array slruclure. As an example, hexagonally connected
processors can oplimally perform malrix multiplication. Surprisingly, a similar
syslolic array can compule the LU-decomposition of a matrix. These syslolic arrays
enjoy simple and regular communicalion paths, and almos! all processors used in the

networks are identical. As a resull, special purpose hardware devices based on ara"el roceSSin + i elinin

syslolic arrays can be buill inexpensively using the VLSI technology.

1. Introduction + Simple & regular design
Developments in microelecironics have revolutionized compuler design. Integrated + MaSSiVG para”elism

circuit technology has increased the number and complexily of components that can

fit on a chip or a printed circuit board. Component densily has been doubling every + Short interconnection

-lo- s« and alr a mulliplier can fit on a very large scale integrated

In Sparse Matrix Proceedings, 1978 + BalanCing ComDUte Wlth I/O

25

Uniform Recurrence Equations (UREs)

> Any systolic algorithm can be described by a set of UREs

- i.e., an n-dimensional loop nest where the recurrences (inter-iteration
dependences) must have constant distances

y = A * X
(inti=0;i<N;ji++)
ylil = 0;
(intj=0;j<N;j++)
ylil += Ali, j] * x[]]

C=Ax«B

(inti=0;i<N;ji++)
(intj=0;j<N;j++)
C[i, j1 = 0;
(int kK =0; kK < N; k++)
C[i, jl += Ali, K] * B[k,]

Matrix Vector Multiplication (MV) in UREs

Z|i,j] = 0,whenj =20
Z[i,j] =Z[i,j — 1] + A[i,j] - x[j],whenj >0
y[i] = Z[i,N — 1]

Matrix Matrix Multiplication (MM) in UREs

Z|i,j,k] =0,whenk =0
Zli,j, k] =Z[i,j, k—1] + A[i, k] - Blk,j],whenk >0
Cli,j] = Z[i,j,N — 1]

26

Mapping MM to a Systolic Array

> Map the n-dimensional iteration space into a physical array of PEs

Z|i,j,k] =0,whenk =0
C=Ax«xB Z[i,j, k] =Z[i,j,k—1] + Al[i, k] - B[k,j], whenk > 0

Cli,j] =Z[i,j,N — 1] i:i::‘;/il(;)s
lA[O’k] S lA[1,k] v lA[7,k] e

BK, - L7 -
_BIk0l | Z[0,0K] 20,0,k

l | l

27

Blk,1]

MM Running on a Systolic Array

> An array of processing elements that process data in a
systolic manner

Computation |

Finished

B(21[2} B[1][2]: B[0][2]
t < | 1

A[2][2]
t=20
C=A=xB
. To be | :B[Z][O]:B[l][O]:B[O][O]:
computed : : : : :
Being :B[Z][l]:B[l][l]:B[O][l]: : ClO][1] G C[1][1] md C[2][1]
Computed : : : : :

An eDSL for Constructing Systolic Arrays

Decoupled algorithm definition and spatial optimizations
Explicitly represent optimizations such as space-time transformation

Concisely describe a systolic algorithm with uniform recurrence
equations (URESs)

A programming model for accelerating systolic algorithms

SuSy

Algorithm Definition Processors + Accelerators
(with UREs)

Spatial Optimizations
» Space-Time Transformation
* 1/O Isolation

« Vectorization ... CPUs FPGAs

1S
HH
il
il

29

Algorithm Specification with UREs

> Any systolic algorithm can be described by a set of UREs

- i.e., an n-dimensional loop nest where the recurrences (inter-iteration
dependences) must have constant distances

C=Ax+B Matrix Matrix Multiplication (MM) in UREs
(inti=0;i<N;i++) Z|i,j,k] =0,whenk =0
C[(lﬁifl =00; J<N; j+4) Z[i,j, k] =Z[i,j,k — 1] + A[i, k] - B[k,j],whenk >0
I,]| = U,

(ntke0Ok<N:kes) CloJl =2[Lj,N—1]
Cli,] += Ali, K] * BIK,]

Algorithm Definition in SuSy

// lteration space _ |
Vari, j, k; Declarative Programming

// UREs (builds on Halide)

Z(i, j, k) = select(k==0, 0, Z(i, j, k-1)) + A(, j, K) * B(i, j, K);
C(i, j) = select(k == N-1, Z(i, j, K));

30

Space-Time Transformation

1 1 1/ T Time schedule X (i, j, k)T =i+j+k
Transformation Matrix

(1 O O) [1 Space dimensions II x (i,j, k)" = (i,))

= t=k+1 =k+
lA[O K lA[1 K lA[7 K
BIk0], z;oo K Z[ho’k] :
!
Blk1], |
!
!
!
!
[7,7,k] 1

31

Supported Spatial Optimizations

Optimizations for custom I/O

F.merge_ures(U,;, U,, ..., U,)

Define the set of UREs F, Uy, U,, ..., U, to optimize.

F.space_time_transform(space,
tau)

Specify the space-time transformation that will be applied to F, where space is the set of space
loops, and tau is the scheduling vector.

F.vectorize(var)

Vectorize the specified loop variable var of F.

F.reorder(var,, var,, ..., var,)

Reorder the loop nest for F according to the specified order, starting from the innermost level.

F.isolate_producer({E,, E,, ...}, P)

Isolate a list of expressions {E4, E,, ...} (usually inputs) in F to a separate producer kernel P.

F.isolate_consumer(E, C)

Isolate an expression E (usually an output) in F to a separate consumer kernel C.

F.remove(var)

Remove loop var of F.

F.buffer(E, v, mode)

Insert a reuse buffer at loop v for expression E with mode (either Buffer::Single or
Buffer::Double).

F.scatter(E, var)

Reduce data communication overhead (i.e., data broadcast) by scattering the expression E to
the consumer along loop var.

F.gather(E, var)

Reduce data communication overhead (i.e., data broadcast) by gathering the expression E from
the producer along loop var.

() nitps:/github.com/Intell abs/t2sp 3

https://github.com/IntelLabs/t2sp

Acknowledgements

» This lecture contains/adapts materials developed by
— Yi-Hsiang Lai (Cornell ECE PhD, now AWS Al)

— Authors of the following papers

+ HeteroCL: A Multi-Paradigm Programming Infrastructure for
Sofware-Defined Reconfigurable Computing (FPGA’19)

« SuSy: A Programming Model for Productive Construction of High-
Performance Systolic Arrays on FPGAs (ICCAD’20)

33

