ECE 6775
High-Level Digital Design Automation
Fall 2024

Midterm Review
HLS Design Practice

L UMD D
R
Il [==] JJ Cornell University -
@@ 7@ E
e I

Announcements

> Lab 4 released
— Group with your teammate on CMS by Monday

> Midterm on Tue 10/22 at 11:40am
-~ In class, 75 mins
— Open book, open notes, closed Internet
— Please arrive 5 mins earlier

» Links to past quizzes are posted on Ed (thread #1)

> Another paper reading session on Tuesday 10/29

- C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks”, FPGA 2015

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

Agenda

> Midterm review
— Overview of key lecture topics
- Homework question discussion

» HLS design practice
— Lab design review
— Additional case studies

Midterm next Tuesday (20%)

» Topics covered: lectures 01~11, 13, 14
— Hardware specialization
— Algorithm basics
- FPGA
— C-based synthesis
— Control flow graph and SSA
— Scheduling
— Resource sharing
— Pipelining

Key Topics (1)

> Algorithm basics
— Time complexity, esp. big-O notation
— @Graphs
- Trees, DAGs, topological sort
- BDDs, timing analysis

> FPGAs
- LUTs and LUT mapping

> C-based synthesis
— Arbitrary precision and fixed-point types
— Key HLS optimizations to improve design performance

Key Topics (2)

> Control data flow graph
— Dominance relation
— Loops
- SSA

» Scheduling
- TCS & RCS algorithms: ILP, list scheduling, SDC
+ Operation chaining, frequency/latency/resource constraints

— Ability to devise a simple scheduling algorithm to optimize a
design metric

Key Topics (3)

> Resource sharing
— Conflict and compatibility graphs

— Ability to determine minimum resource usage in # of functional
units and/or registers, given a fixed schedule

> Pipelining
— Dependence types

— Ability to determine minimum |l given a code snippet
* Modulo scheduling concepts: MIl, RecMII, ResMII

HW1 Q5

Q5. Implement the circuit shown below using a minimum number of 3-input lookup tables
(LUTSs). Please do NOT simplify the gate-level circuit before mapping it to LUTs. Indicate your
answer by creating a table similar to Table 1. Please add a new row per LUT, and use the signal
names from the circuit to label the inputs (i.e., the associated cut) and output of each LUT. Mark
an unused LUT input with a “-”.

ERR AR LA

YIVIVIY

HW2 Q3

Q3. With the code snippet listed below, what is the minimum achievable II if we pipeline the loop?
Please (1) draw the dependence graph for the loop, and (2) calculate both ResMII and RecMII.

for (int i = 2; 1 < N; i+4) {
#pragma pipeline II=7
mem|[i] 4= (mem[i—2] >> i);

}

In this problem, we assume that all operations take a full cycle to execute and no combinational
chaining is allowed. We also assume that the ‘mem’ array will be mapped to a single-ported
memory block (i.e., one read/write port) without any write-through support (i.e., a memory read
must happen one cycle after a write).

(dy

> (dy
[2] Q
(st)

HW2 Q5

Q5. To form an integer linear programming (ILP) model for the constrained scheduling problem,
we have learned to use a binary decision variable X (i, k) to indicate if operation i starts at cycle k,
where 1 < k < L with L being the maximum schedule latency.

In this problem, we will make use of these schedule variables to test if the output value of a given
operation v is live at a specific cycle s (1 < s < L). Here we make the following assumptions:

e The output value of any operation v (other than the primary outputs that do not have
successors) is used by exactly ONE other operation, denoted as USE|v].

e We also assume that each operation takes exactly one single full cycle and no chaining is
allowed.

The definition of the liveness of a value is illustrated in the Figure 3.

Output value of V; is live at cycles 2 and 3

Output value of V; is only live at cycle 3

Figure 3: A scheduled graph with three operations.

(a) Can you introduce a derived binary variable Y (v, s) to indicate if an operation v is
scheduled before cycle s (excluding s)? Hint: Make use of the relevant X'’s.

(b) Can you introduce another derived binary variable Z(v, s) to indicate if an operation
v is scheduled at or after cycle s? Hint: Make use of Y.

(c) Finally, can you make use of the variables introduced from (a) and (b) to derive
binary variable R(v,s), which indicates if the output value of v is live at cycle s. Hint: You may
need to introduce additional linear constraint(s) between Y, Z, and/or R. You may also make use
of USEv] based on the assumptions stated. 9

HW2 Q6

Q6. Given a chain of N operations {O1, O3, ...,On} (N > 1) where each operation O; is associated
with a positive integral delay value of d; (d; < 10ns), our goal is to automatically place (or insert)
one or multiple registers into this chain to minimize the clock period of the circuit (i.e., maximize

(a)

OO 0,0,0
(b)

OO0 0
(©)

the operating frequency).

10

A (Simplified) Loopy Form of Processor Pipeline

for (pc++) {
inst = fetch(pc)
{rs, rt, rd } = decode(inst)
result = execute(reg|rs], reg|rt])
mem(result, reg|rt])
reg[rd] = writeback(result)

}

11

Case Study: CORDIC

void cordic(theta_type theta, cos_sin_type &s, cos_sin_type &c) {

double K_const = 0.6072529350088812561694;
theta_type current = 0;
cos_sin_type X = K_const; Y = 0, T;

for (int step = 0; step < 20; step++) {
if (theta > current) {
T =X~ (Y >> step);
Y = (X >> step) + Y;
X =T,
current = current + cordic_ctab[step];
} else {
T =X+ (Y >> step);
Y = (X >> step) + Y;
X =T,
current = current cordic_ctab[step];

}
s = Y;
c = X;

\

Pipeline the whole
function (loop inside
automatically unrolled)

lI=1 means one
CORDIC per cycle

Unroll or pipeline
this loop?

12

Case Study: Digit Recognition

» Use a simple machine learning algorithm to recognize
handwritten digits

— 2000 training instances per digit
- Each training/test instance is a 7x7 bitmap after downsampling

Random Sampling of MNIST

SEALDOHdB

MNIST dataset: http://yann.lecun.com/exdb/mnist/

13

K-Nearest-Neighbor (KNN) Implementation

bit4 digitrec(digit input)
{
#include "training_data.h"
// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONSTI];
// Initialize the knn set
for (int 1 =0; i < 10; ++1)
for (int k = @; k < K_CONST; ++k)
// Note that the max distance is 49
knn_set[i] [k] = 50;

Main compute loop

@; i < TRAINING_SIZE; ++i) {
=0; j <10; j++) {

L2000: for (int i =
L10: for (int j

// Read a new instance from the training set
digit training_instance = training_datal[j * TRAINING_SIZE + i];
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

Assuming 10 cycles per innermost loop (L10)
~200K cycles by default without optimizations 14

10x Speedup through Parallel Processing

bit4 digitrec(digit input)

{

#include “training_data.h"

// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONST];
// Initialize the knn set
for ((int 1 =0; i < 10; ++1)
for (int k = 0; k < K_CONST; ++k)
// Note that the max distance is 49
knn_set[i] [k] = 50;

Unroll inner loop completely
L2®®®>\for (int i = @; i < TRAINING_SIZE; ++i) { o
L10: for (int j = 0; j < 10; j++) { Partition training
set into 10 banks
// Read a new instance from the training set

digit training_instance = training_datal[j * TRAINING_SIZE + i];
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

10 instances of “update_knn” running in parallel
~20K cycles after parallelization 15

Further Speedup through Pipelining

bit4 digitrec(digit input)
{
#include “training_data.h"
// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONST];
// Initialize the knn set
for (int 1 =0; i < 10; ++i)
for (int k = 0; k < K_CONST; ++k)
// Note that the max distance is 49
knn_set[i] [k] = 50; Pipeline outer loop

\

@; i < TRAINING_SIZE; ++i) {
=0; j <10; j++) {

L2000: [for (int i =
L10: for (int j

// Read a new instance from the training set

digit training_instance = training_datal[j * TRAINING_SIZE + i];
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

Outer loop (L2000) pipelined to li1=1
~2K cycles after pipelining 16

Array Partitioning Caveats
Example: Array partitioning through constant indices (after unrolling)
Original for (inti=0; i< N; ++i)

code for (int k = 0; k < 8; ++Kk)
sum += A[K][i];

partition “A” to 8 sub-arrays on dimension “k”
without unrolling the inner loop

Transformed | switch (k) { Inefficient design
loop body case 0: sum += A_0Ji] The switch-case statement will
case 1: sum += A_1]i] be synthesized into (large)

multiplexers in RTL
case 7: sum += A_7]i]

}

17

Array Partitioning Caveats
Example: Array partitioning through constant indices (after unrolling)
Original for (inti=0; i< N; ++i)

code for (int k = 0; k < 8; ++Kk)
sum += A[K][i];

partition & unroll

Transformed for (inti=0;i<N; ++i){ Efficient design

code sum += A_O[i]; After unrolling inner loop, the
sum += A_1]i]; resulting indices on the “k” dimension
become constant, which simplify the
sum += A_7]i]; logic after array partitioning

}

18

Case Study: Revisiting 3x3 Convolution

for (r=1;r<H;r++)
for(c=1;c<W,; c++){
#pragma HLS pipeline [I=?
for (i=0;1 <3; i++)
for (j=0;]<3; j++)
out += img|r+i-1][c+j-1] * f[i][j];
out[r][c] = out;

}

> Inner loops “I" & | are automatically unrolled

» The 3x3 filter array “f” is automatically partitioned into 9
reqgisters after unrolling

> The entire input image “img” is stored in an on-chip
buffer with two read ports

19

ResMIl =7 RecMIl =7

Achieving lI=1 for 3x3 Convolution using
a Line Buffer and Shift Registers

Pixels in line buffer

]
9|A

.

P — 8 (stores 2 lines using on-chip SRAMs)
gs 0% F
gy 5"
L] e 1. Push 3 pixels into 4 9 n\/)
L] e shift regi S gh (e
T gisters — 0
g - mﬁ‘g 1 new pixel + ot nt$
PV 2 from line buffer ®00n eid
. jite
New pixel read from 2. Update line buffer f
frame buffer in main by removing the oldest ﬁ/
memory (DRAM) pixel and shifting in the jE/E Output
new one ;/:/ pixe|
/:/: produced
g’ by conv
Line Buffer + Shift Registers: %/F;arﬂe
U

a custom “cache” + a custom “register file”

QS

<
—ie
e

20

Resulting Specialized Memory Hierarchy

» Memory architecture customized for convolution

—| Input pixel stream

Processing window A

Line buffers \

Frame buffers

Off-chip
DDR

Output pixel stream

Frame n-2

Frame n-1

A

Frame n

21

HLS Code Snippet

1 LineBuffer<2,C,pixel_t> linebuf;

2 Window<3,3,pixel_t> window;

3 for (int r = 1; r < R+1; r++) {

4 for (int ¢ = 1; ¢ < C+1; c++) {
5 #pragma HLS pipeline II=1

6 pixel_t new_pixel = img[r] [c];
7 // Update shift window

8 window.shift_left();

9 if (r <R && c < C) {

10 for (int 1 = 0; 1 < 2; i++)
11 window. insert (buf [i] [c]);
12 }

13 else { // zero padding

14 for (int 1 = 0; i < 2; i++)
15 window.insert (0) ;

16 }

17 window.insert (new_pixel);

18 // Update line buffer

19 linebuf.shift_up(c);

20 if (r <R && c < C)

21 linebuf[1].insert(c, new_pixel);
22 else // Zero padding

23 linebuf[1] .insert(c, 0);

24 // Perform 3x3 convolution

25 out [r-1] [c-1] = convolve(window, weights);
26 }

Next Class

» Midterm exam

23

