
Midterm Review
HLS Design Practice

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ Lab 4 released
– Group with your teammate on CMS by Monday

▸ Midterm on Tue 10/22 at 11:40am
– In class, 75 mins
– Open book, open notes, closed Internet
– Please arrive 5 mins earlier

▸ Links to past quizzes are posted on Ed (thread #1)

▸ Another paper reading session on Tuesday 10/29
– C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

“Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks”, FPGA 2015

1

Announcements

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

2

Agenda

▸Midterm review
– Overview of key lecture topics
– Homework question discussion

▸HLS design practice
– Lab design review
– Additional case studies

▸Topics covered: lectures 01~11, 13, 14
– Hardware specialization
– Algorithm basics
– FPGA
– C-based synthesis
– Control flow graph and SSA
– Scheduling
– Resource sharing
– Pipelining

3

Midterm next Tuesday (20%)

▸ Algorithm basics
– Time complexity, esp. big-O notation
– Graphs

• Trees, DAGs, topological sort
• BDDs, timing analysis

▸ FPGAs
– LUTs and LUT mapping

▸ C-based synthesis
– Arbitrary precision and fixed-point types
– Key HLS optimizations to improve design performance

4

Key Topics (1)

▸ Control data flow graph
– Dominance relation
– Loops
– SSA

▸ Scheduling
– TCS & RCS algorithms: ILP, list scheduling, SDC

• Operation chaining, frequency/latency/resource constraints
– Ability to devise a simple scheduling algorithm to optimize a

design metric

5

Key Topics (2)

▸ Resource sharing
– Conflict and compatibility graphs
– Ability to determine minimum resource usage in # of functional

units and/or registers, given a fixed schedule

▸ Pipelining
– Dependence types
– Ability to determine minimum II given a code snippet

• Modulo scheduling concepts: MII, RecMII, ResMII

6

Key Topics (3)

7

HW1 Q5 Q5. Implement the circuit shown below using a minimum number of 3-input lookup tables
(LUTs). Please do NOT simplify the gate-level circuit before mapping it to LUTs. Indicate your
answer by creating a table similar to Table 1. Please add a new row per LUT, and use the signal
names from the circuit to label the inputs (i.e., the associated cut) and output of each LUT. Mark
an unused LUT input with a “–”.

a b c d

e

f

g

h

i

j

k

l

m

n

o p

q

LUT # Input 1 Input 2 Input 3 Output
1 b c – e

Table 1: Example: using a 3-input LUT to cover the cone from b, c to e.

3

8

HW2 Q3
Q3. With the code snippet listed below, what is the minimum achievable II if we pipeline the loop?
Please (1) draw the dependence graph for the loop, and (2) calculate both ResMII and RecMII.

f o r (i n t i = 2 ; i < N; i++) {
#pragma p i p e l i n e I I=?
mem[i] += (mem[i −2] >> i) ;

}

In this problem, we assume that all operations take a full cycle to execute and no combinational
chaining is allowed. We also assume that the ‘mem’ array will be mapped to a single-ported
memory block (i.e., one read/write port) without any write-through support (i.e., a memory read
must happen one cycle after a write).

3

ld1

>> ld2

+

st

[2]

9

HW2 Q5 Q5. To form an integer linear programming (ILP) model for the constrained scheduling problem,
we have learned to use a binary decision variable X(i, k) to indicate if operation i starts at cycle k,
where 1 k L with L being the maximum schedule latency.

In this problem, we will make use of these schedule variables to test if the output value of a given
operation v is live at a specific cycle s (1 s L). Here we make the following assumptions:

• The output value of any operation v (other than the primary outputs that do not have
successors) is used by exactly ONE other operation, denoted as USE[v].

• We also assume that each operation takes exactly one single full cycle and no chaining is
allowed.

The definition of the liveness of a value is illustrated in the Figure 3.

v2

v1

v3

1

2

3

Output value of v1 is live at cycles 2 and 3
Output value of v2 is only live at cycle 3

Figure 3: A scheduled graph with three operations.

(a) Can you introduce a derived binary variable Y (v, s) to indicate if an operation v is
scheduled before cycle s (excluding s)? Hint: Make use of the relevant X’s.

(b) Can you introduce another derived binary variable Z(v, s) to indicate if an operation
v is scheduled at or after cycle s? Hint: Make use of Y .

(c) Finally, can you make use of the variables introduced from (a) and (b) to derive
binary variable R(v, s), which indicates if the output value of v is live at cycle s. Hint: You may
need to introduce additional linear constraint(s) between Y , Z, and/or R. You may also make use
of USE[v] based on the assumptions stated.

6

Q5. To form an integer linear programming (ILP) model for the constrained scheduling problem,
we have learned to use a binary decision variable X(i, k) to indicate if operation i starts at cycle k,
where 1 k L with L being the maximum schedule latency.

In this problem, we will make use of these schedule variables to test if the output value of a given
operation v is live at a specific cycle s (1 s L). Here we make the following assumptions:

• The output value of any operation v (other than the primary outputs that do not have
successors) is used by exactly ONE other operation, denoted as USE[v].

• We also assume that each operation takes exactly one single full cycle and no chaining is
allowed.

The definition of the liveness of a value is illustrated in the Figure 3.

v2

v1

v3

1

2

3

Output value of v1 is live at cycles 2 and 3
Output value of v2 is only live at cycle 3

Figure 3: A scheduled graph with three operations.

(a) Can you introduce a derived binary variable Y (v, s) to indicate if an operation v is
scheduled before cycle s (excluding s)? Hint: Make use of the relevant X’s.

(b) Can you introduce another derived binary variable Z(v, s) to indicate if an operation
v is scheduled at or after cycle s? Hint: Make use of Y .

(c) Finally, can you make use of the variables introduced from (a) and (b) to derive
binary variable R(v, s), which indicates if the output value of v is live at cycle s. Hint: You may
need to introduce additional linear constraint(s) between Y , Z, and/or R. You may also make use
of USE[v] based on the assumptions stated.

6

Q5. To form an integer linear programming (ILP) model for the constrained scheduling problem,
we have learned to use a binary decision variable X(i, k) to indicate if operation i starts at cycle k,
where 1 k L with L being the maximum schedule latency.

In this problem, we will make use of these schedule variables to test if the output value of a given
operation v is live at a specific cycle s (1 s L). Here we make the following assumptions:

• The output value of any operation v (other than the primary outputs that do not have
successors) is used by exactly ONE other operation, denoted as USE[v].

• We also assume that each operation takes exactly one single full cycle and no chaining is
allowed.

The definition of the liveness of a value is illustrated in the Figure 3.

v2

v1

v3

1

2

3

Output value of v1 is live at cycles 2 and 3
Output value of v2 is only live at cycle 3

Figure 3: A scheduled graph with three operations.

(a) Can you introduce a derived binary variable Y (v, s) to indicate if an operation v is
scheduled before cycle s (excluding s)? Hint: Make use of the relevant X’s.

(b) Can you introduce another derived binary variable Z(v, s) to indicate if an operation
v is scheduled at or after cycle s? Hint: Make use of Y .

(c) Finally, can you make use of the variables introduced from (a) and (b) to derive
binary variable R(v, s), which indicates if the output value of v is live at cycle s. Hint: You may
need to introduce additional linear constraint(s) between Y , Z, and/or R. You may also make use
of USE[v] based on the assumptions stated.

6

Q5. To form an integer linear programming (ILP) model for the constrained scheduling problem,
we have learned to use a binary decision variable X(i, k) to indicate if operation i starts at cycle k,
where 1 k L with L being the maximum schedule latency.

In this problem, we will make use of these schedule variables to test if the output value of a given
operation v is live at a specific cycle s (1 s L). Here we make the following assumptions:

• The output value of any operation v (other than the primary outputs that do not have
successors) is used by exactly ONE other operation, denoted as USE[v].

• We also assume that each operation takes exactly one single full cycle and no chaining is
allowed.

The definition of the liveness of a value is illustrated in the Figure 3.

v2

v1

v3

1

2

3

Output value of v1 is live at cycles 2 and 3
Output value of v2 is only live at cycle 3

Figure 3: A scheduled graph with three operations.

(a) Can you introduce a derived binary variable Y (v, s) to indicate if an operation v is
scheduled before cycle s (excluding s)? Hint: Make use of the relevant X’s.

(b) Can you introduce another derived binary variable Z(v, s) to indicate if an operation
v is scheduled at or after cycle s? Hint: Make use of Y .

(c) Finally, can you make use of the variables introduced from (a) and (b) to derive
binary variable R(v, s), which indicates if the output value of v is live at cycle s. Hint: You may
need to introduce additional linear constraint(s) between Y , Z, and/or R. You may also make use
of USE[v] based on the assumptions stated.

6

10

HW2 Q6
Q6. Given a chain of N operations {O1, O2, ..., ON} (N > 1) where each operation Oi is associated
with a positive integral delay value of di (di 10ns), our goal is to automatically place (or insert)
one or multiple registers into this chain to minimize the clock period of the circuit (i.e., maximize
the operating frequency).

d1 d2 d3 dn…

5 4 10 1 1

5 4 10 1 1

(a)

(b)

(c)

Figure 4: Register placement in an operation chain: (a) an abstract model without registers;

(b) an optimal placement of one register; (c) an optimal placement of two registers.

Figure 4 (a) sketches the diagram of an N -operation chain. Without placing any registers between
operations, the clock period would be the total combinational delay, which is D =

P
di. A concrete

example of a 5-operation chain is shown in Figure 4 (b), where an optimal one-register placement
is also shown. In this case, the final clock period is max(5 + 4, 10 + 1 + 1) = 12ns. Figure 4 (c)
shows that we can further reduce the clock period to 10ns if we are allowed to insert two registers
into the chain.

Assumptions: (i) All operations are combinational and they cannot be pipelined to form multi-
cycle operations; (ii) We assume no resource sharing in this question.

(a) For an N-operation chain, can you devise a linear-time algorithm to insert ONE (and
only one) register into the chain to achieve the minimum clock period?

Please explain the key idea and justify the time complexity.

(b) For an N-operation chain, can you devise an e�cient algorithm (better than O(N2))
to place TWO registers on the chain to achieve the minimum clock period?

Please explain the key idea and justify the time complexity of your algorithm. If it helps, you can
provide pseudocode.

7

11

A (Simplified) Loopy Form of Processor Pipeline

for (pc++) {
 inst = fetch(pc)
 { rs, rt, rd } = decode(inst)
 result = execute(reg[rs], reg[rt])
 mem(result, reg[rt])
 reg[rd] = writeback(result)
}

12

Case Study: CORDIC

Unroll or pipeline
this loop?

Pipeline the whole
function (loop inside
automatically unrolled)
II=1 means one
CORDIC per cycle

13

Case Study: Digit Recognition

MNIST dataset: http://yann.lecun.com/exdb/mnist/

▸ Use a simple machine learning algorithm to recognize
handwritten digits
– 2000 training instances per digit
– Each training/test instance is a 7x7 bitmap after downsampling

14

K-Nearest-Neighbor (KNN) Implementation

Main compute loop

Assuming 10 cycles per innermost loop (L10)
~200K cycles by default without optimizations

15

10x Speedup through Parallel Processing

Unroll inner loop completely

Partition training
set into 10 banks

10 instances of “update_knn” running in parallel
~20K cycles after parallelization

16

Further Speedup through Pipelining

Outer loop (L2000) pipelined to II=1
~2K cycles after pipelining

Pipeline outer loop

17

Array Partitioning Caveats

for (int i = 0; i < N; ++i)
 for (int k = 0; k < 8; ++k)
 sum += A[k][i];

switch (k) {
 case 0: sum += A_0[i]
 case 1: sum += A_1[i]
 ...
 case 7: sum += A_7[i]
}

partition “A” to 8 sub-arrays on dimension “k”
without unrolling the inner loop

Original
code

Transformed
loop body

Inefficient design
The switch-case statement will
be synthesized into (large)
multiplexers in RTL

Example: Array partitioning through constant indices (after unrolling)

18

Array Partitioning Caveats

for (int i = 0; i < N; ++i)
 for (int k = 0; k < 8; ++k)
 sum += A[k][i];

for (int i = 0; i < N; ++i) {
 sum += A_0[i];
 sum += A_1[i];
 ...
 sum += A_7[i];
}

Example: Array partitioning through constant indices (after unrolling)

partition & unroll

Efficient design
After unrolling inner loop, the
resulting indices on the “k” dimension
become constant, which simplify the
logic after array partitioning

Original
code

Transformed
code

Case Study: Revisiting 3x3 Convolution

19

▸ Inner loops “i" & j are automatically unrolled
▸ The 3x3 filter array “f” is automatically partitioned into 9

registers after unrolling
▸ The entire input image “img” is stored in an on-chip

buffer with two read ports

ResMII = ? RecMII = ?

for (r = 1; r < H; r++)
 for (c = 1; c < W; c++) {
 #pragma HLS pipeline II=?
 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j++)
 out += img[r+i-1][c+j-1] * f[i][j];
 out[r][c] = out;
 }

Achieving II=1 for 3x3 Convolution using
a Line Buffer and Shift Registers

Pixels in line buffer
(stores 2 lines using on-chip SRAMs)

New pixel read from
frame buffer in main
memory (DRAM)

1. Push 3 pixels into
shift registers –
1 new pixel +
2 from line buffer

2. Update line buffer
by removing the oldest
pixel and shifting in the
new one

20

Output
pixel
produced
by conv

Line Buffer + Shift Registers:
a custom “cache” + a custom “register file”

On-chip
SRAMs

Flip-
Flops

Input pixel stream
Convolve

Off-chip
DDR

Resulting Specialized Memory Hierarchy

Processing window

Line buffers

Frame buffers
Frame n

Frame n-1
Frame n-2

Output pixel stream

21

▸ Memory architecture customized for convolution

22

HLS Code Snippet
1 LineBuffer<2,C,pixel_t> linebuf;
2 Window<3,3,pixel_t> window;
3 for (int r = 1; r < R+1; r++) {
4 for (int c = 1; c < C+1; c++) {
5 #pragma HLS pipeline II=1
6 pixel_t new_pixel = img[r][c];
7 // Update shift window
8 window.shift_left();
9 if (r < R && c < C) {

10 for (int i = 0; i < 2; i++)
11 window.insert(buf[i][c]);
12 }
13 else { // zero padding
14 for (int i = 0; i < 2; i++)
15 window.insert(0);
16 }
17 window.insert(new_pixel);
18 // Update line buffer
19 linebuf.shift_up(c);
20 if (r < R && c < C)
21 linebuf[1].insert(c, new_pixel);
22 else // Zero padding
23 linebuf[1].insert(c, 0);
24 // Perform 3x3 convolution
25 out[r-1][c-1] = convolve(window, weights);
26 }
27 }

Figure 6: A loop kernel combining two 1D stencil opera-
tions.

1 #ifdef OFF_CHIP_OPT
2 void optical_flow(frames_t frames[MAX_HEIGHT * MAX_WIDTH],
3 velocity_t outputs[MAX_HEIGHT * MAX_WIDTH])
4 #else
5 void optical_flow(pixel_t frame1[MAX_HEIGHT * MAX_WIDTH],
6 pixel_t frame2[MAX_HEIGHT * MAX_WIDTH],
7 pixel_t frame3[MAX_HEIGHT * MAX_WIDTH],
8 pixel_t frame4[MAX_HEIGHT * MAX_WIDTH],
9 pixel_t frame5[MAX_HEIGHT * MAX_WIDTH],

10 velocity_t outputs[MAX_HEIGHT * MAX_WIDTH])
11 #endif

Figure 7: O↵-chip memory access optimization for Optical
Flow.

Spam Filtering, this optimization is applied to overlap di↵er-
ent stages of the image processing pipeline. For the dataflow
optimization to work, each intermediate variable can be only
produced and consumed once per iteration. Therefore, since
the 2D triangle array is needed by both rasterization stages,
we create two separate arrays triangle_2ds and trian-
gle_2ds_same to avoid using the same array twice in the
pipeline. The rasterization1 stage copies the content of
triangle_2ds into triangle_2ds_same.

In Spam Filtering and 3D Rendering, we use dataflow
optimization inside a loop rather than in a function. This
”dataflow in loop” feature is available only in recent versions
of Xilinx SDSoC and SDAccel. For 3D Rendering, this new
choice of optimization greatly improves the throughput of
the design. The user can turn on/o↵ this optimization to
analyze its e↵ectiveness. Comparison of these two design
points is provided in Section 5.4.

4.5 Optical Flow
The Optical Flow application captures the motion pattern

of objects between consecutive image frames. It is an impor-
tant step for object detection, and is integrated into several

image/video processing toolsets including OpenCV and the
Computer Vision toolbox of Matlab. Our implementation
operates on five consecutive image frames with resolution of
436x1024. The output is a 2D vector field of the same size,
where each vector in the vector field shows the movement of
the pixel in the input image frames. Currently, the input,
output as well as all intermediate results are represented
with 32-bit floating point numbers. The hardware function
is implemented using C++.
Similar to the 3D rendering application, the Optical Flow

application also contains an image processing pipeline. The
pipeline stages are common compute-intensive kernels in im-
age processing:

• 1D Convolution: 1D convolution is the major work-
load in many pipeline stages of the application, includ-
ing computing and averaging the gradients in three di-
mensions. Figure 6 shows a kernel which computes
the gradient in horizontal and vertical directions. The
variable frame is the input image frame while gradi-
ent_x and gradient_y are variables for output gra-
dients. Line 32-43 shows the 1D convolutions in two
dimensions. Several other pipeline stages perform 1D
convolutions with filters of di↵erent sizes. The code
structure and optimization techniques for those stages
are similar to what we present in Figure 6.

• Outer Product: This kernel takes in a 2D gradient
vector field, and computes the outer product of the
same gradient vector at each pixel location.

The major compute optimization for Optical Flow is the
streaming dataflow optimization. Similar with 3D Render-
ing (Section 4.4), we also use dataflow optimization to con-
struct channels between di↵erent stages of the image pro-
cessing pipeline. However, since all pipeline stages in Opti-
cal Flow read and write data in strict streaming order, we
can declare the intermediate variables as ”STREAM” vari-
ables so that they are implemented as fixed-depth FIFOs.
In this case, the whole accelerator can be considered as a
very deep, fine-grained pipeline, and the execution time of
di↵erent stages can be perfectly overlapped.
Intensive memory optimizations are also necessary for the

Optical Flow design to achieve high throughput. Careful
readers must have noticed that the gradient_xy_calc ker-
nel shown in Figure 6 maintains a local line bu↵er and a
window bu↵er to support concurrent data access at line 32-
43 and exploit the data locality of the stencil pattern. The
line bu↵er stores pixels in recently visited rows to minimize
memory accesses to the frame bu↵er. The window bu↵er
is usually completely partitioned into registers for parallel
data access, and it consistently reads from the line bu↵er
to get new data. This on-chip memory optimization is not
only used in many pipeline stages of this application, but
also a common optimization technique for applications with
shifting access windows.
Another memory optimization, shown in Figure 7, opti-

mizes for o↵-chip memory accesses. Figure 7 shows the func-
tion signature of the top-level hardware function with and
without the optimization. Lines 2-3 show the function sig-
nature with o↵-chip memory access optimization, where the
five image frames are packed into a single variable and each
element in the structure array frames contains one pixel
from each frame. Lines 5-10 shows the unoptimized ver-

6

▸Midterm exam

23

Next Class

