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▸ HW 2 due Friday (free extension to next Wed)

▸ Lab 4 (NN acceleration) will be posted soon
– TWO students per group
– Start looking for a teammate now

▸ Midterm on Tuesday 10/22
– In class, 75 mins 
– Open notes, open book, closed Internet
– Coverage: Lectures 01~11, 13, 14 (excluding NN tutorial)
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Announcements
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Agenda

▸Modulo scheduling case studies

▸Systolic arrays: combining parallel processing 
and pipelining
– Uniform recurrence equations
– Case study on matrix multiplication

▸Resource sharing basics
– Sub-problems: functional unit, register, and 

connectivity binding problems
– Key concepts: compatibility and conflict graphs



Recap: Calculating Lower Bound of II

▸ Minimum possible II (MII)
– MII = max (ResMII, RecMII)
– A lower bound, not necessarily achievable 

▸ Resource constrained MII (ResMII)
– ResMII = maxi  éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi  éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence cycle ci
Distance(ci): total distance in dependence cycle ci

3



▸ Prefix sum computes a cumulative sum of a sequence of 
numbers
– commonly used in many applications such as radix sort, 

histogram, etc.
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Case Study: Prefix Sum

void prefixsum ( int in[N], int out[N] )
out[0] = in[0];  
for ( int i = 1; i < N; i++ ) { 
#pragma HLS pipeline II=?
out[i] = out[i-1] + in[i]; 

}
}

out[0] = in[0];
out[1] = in[0] + in[1]; 
out[1] = in[0] + in[1] + in[2]; 
out[1] = in[0] + in[1] + in[2] + in[3]; 
…



▸ Loop-carried dependence exists between to reads on ‘out’
– Assume chaining is not possible on memory reads (ld) and writes 

(st) due to target cycle time
– RecMII = 3
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Prefix Sum: RecMII

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2 
+ st

i = 1 ld1
ld2

+ stII = 1

ld2 ld1

st

out[i-1]

out[i]

in[i]

out[0] = in[0];
for ( int i = 1; i < N; i++ )  
out[i] = out[i-1]+ in[i]; 

+

ld – Load
st – Store



▸ Introduce an intermediate variable ‘tmp’ to hold the 
running sum from the previous ‘in’ values
– Shorter dependence cycle leads to RecMII = 1
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Prefix Sum: Code Optimization

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld + st
i = 1 ld + stII = 1

ld

+

st

tmp

out[i]

in[i]

ld – Load
st – Store

int tmp = in[0];
for ( int i = 1; i < N; i++ )  {
tmp += in[i];
out[i] = tmp; 

}



2D Convolution: MII

-1 -2 -1

0 0 0
1 2 1

A K by K dot product is performed 
for each output pixel (K=3 here)

Input image 
frame

Output image 
frame
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for (r = 1; r < R; r++) 
    for (c = 1; c < C; c++) {
      #pragma HLS pipeline II=?
      for (i = 0; i  < 3; i++) 
        for (j = 0; j < 3; j++) 
          out[r][c] += img[r+i-1][c+j-1] * f[i][j];
     }



Exercise: Pipelining 3x3 Convolution
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▸ Inner loops, “i” & “j”, are automatically unrolled
▸ The 3x3 filter array, “f”, is partitioned into 9 registers
▸ The entire input image, “img”, is stored in an on-chip 

SRAM with two read ports

for (r = 1; r < R; r++) 
    for (c = 1; c < C; c++) {
      #pragma HLS pipeline II=?
      for (i = 0; i  < 3; i++) 
        for (j = 0; j < 3; j++) 
          out[r][c] += img[r+i-1][c+j-1] * f[i][j];
     }

What about RecMII?  ResMII = ?  



▸ An array of processing elements (PEs) that process data in a 
systolic manner using nearest-neighbor communication
– Systolic means “data flows from memory in a rhythmic fashion, passing through 

many processing elements before it returns to memory” – H.T. Kung
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Recap: Systolic Arrays

In Sparse Matrix Proceedings, 1978

PE PE PE

PE PE PE

PE PE PE

+ Simple & regular design
+ Massive parallelism 
+ Short interconnection
+ Balancing compute with I/O

parallel processing + pipelining
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Uniform Recurrence Equations (UREs)

▸ Any systolic algorithm can be described by a set of UREs
– i.e., an n-dimensional loop nest where the recurrences (inter-iteration 

dependences) must have constant distances

𝑍 𝑖, 𝑗, 𝑘 = 0,𝑤ℎ𝑒𝑛	𝑘 = 0
𝑍[𝑖, 𝑗, 𝑘] 	= 𝑍[𝑖, 𝑗, 𝑘 − 1] 	+ 𝐴[𝑖, 𝑘] 	 3 𝐵[𝑘, 𝑗], 𝑤ℎ𝑒𝑛	𝑘 > 0
𝐶[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗, 𝑁 − 1]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
C[i, j] = 0;
for (int k = 0; k < N; k++)
C[i, j] += A[i, k] * B[k, j]

Matrix Matrix Multiplication (MM) in UREs

𝑍 𝑖, 𝑗 = 0, 𝑤ℎ𝑒𝑛	𝑗 = 0
𝑍[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗 − 1] 	+ 𝐴[𝑖, 𝑗] 	 3 𝑥[𝑗], 𝑤ℎ𝑒𝑛	𝑗 > 0
𝑦[𝑖] 	= 𝑍[𝑖, 𝑁 − 1]

for (int i = 0; i < N; i++)
y[i] = 0;
for (int j = 0; j < N; j++)
y[i] += A[i, j] * x[j]

Matrix Vector Multiplication (MV) in UREs

𝐂 = 𝐀 ∗ 𝐁

𝐲 = 𝐀 ∗ 𝐱
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Mapping MM to a Systolic Array
▸ Map the n-dimensional iteration space into a physical array of PEs

𝑍 𝑖, 𝑗, 𝑘 = 0,𝑤ℎ𝑒𝑛	𝑘 = 0
𝑍[𝑖, 𝑗, 𝑘] 	= 𝑍[𝑖, 𝑗, 𝑘 − 1] 	+ 𝐴[𝑖, 𝑘] 	 3 𝐵[𝑘, 𝑗], 𝑤ℎ𝑒𝑛	𝑘 > 0
𝐶[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗, 𝑁 − 1]

Z[0,0,k] Z[1,0,k] Z[7,0,k]…

Z[0,1,k] Z[1,1,k] Z[7,1,k]…

Z[0,7,k] Z[1,7,k] Z[7,7,k]…

… … …

A[0,k]

B[k,0]

B[k,1]

B[k,7]

A[1,k] A[7,k]
t=0 t=1 t=7

Time t in cycles; All PEs will be busy at the steady state

𝐂 = 𝐀 ∗ 𝐁



High-level Programming 
Languages 

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*– 

Control data flow graph 
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
  …
} else {
  t1 = a + b;
  t2 = c * d;
  t3 = e + f;
  t4 = t1 * t2;
  z = t4 – t3;
}

Scheduling Binding

Allocation

Recap: A Typical HLS Flow
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Intermediate 
Representation (IR)



Resource Sharing and Binding  

▸ Resource sharing enables reuse of hardware resources 
to minimize cost, in resource usage/area/power
– Typically carried out by binding in HLS
– Other subtasks such allocation and scheduling greatly impact 

the resource sharing opportunities

▸ Binding maps operations, variables, and/or data 
transfers to the available resources
– After scheduling: decide resource usage and detailed 

architecture (focus of this lecture)
– Before scheduling: affect both area and delay 
– Simultaneous scheduling and binding: better result but more 

expensive 
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▸ Functional unit (FU) binding
– Primary objective is to minimize the number of FUs
– Considers connection cost 

▸ Register binding
– Primary objective is to minimize the number of registers
– Considers connection cost

▸ Connectivity binding
– Minimize connections by exploiting the commutative property of 

some operations / FUs
– NP-hard
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Binding Sub-problems



Sharing Conditions

▸ Functional units (registers) are shared by operations 
(variables) of same type whose lifetimes do not overlap 

▸ Lifetime: [birth-time, death-time) 
– Operation: The whole execution time (if unpipelined)
– Variable: From the time this variable is defined to the time it is 

last used

▸ In this lecture, we assume no pipelining to simplify 
discussion
– With pipelining (modulo scheduling), we use slots to determine 

overlaps rather than control steps
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Operation Binding

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4
AddSub2 op5, op6

clock edge

×

×

+

+ +
−

2 31

a
b

c
d
e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4, op6
AddSub2 op5

Binding 1 Binding 2

a scheduled DFG 
(unpipelined )
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Register Binding
Lifetimes crossing at least one clock edge

=> register(s) inferred

clock edge

×

×

+

+ +
−

2 3 41

a
b

c
d
e
f
g

v1
v2

v3
a scheduled DFG 
(unpipelined )
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Variable Lifetime Analysis

v1 [1, 2)
v2 [2, 3)
v3 [3, 4)

Variables v1, v2, and v3 can 
share the same register

Variable lifetimes [birth-time, death-time) 

clock edge

×

×

+

+ +
−

2 3 41

a
b

c
d
e
f
g

v1
v2

v3
a scheduled DFG 
(unpipelined )



▸ Operation/variables compatibility
– Same type, non-overlapping lifetimes

▸ Compatibility graph 
– Vertices: operations/variables
– Edges: compatibility relation 

▸ Conflict graph: Complement of compatibility graph
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Compatibility and Conflict Graphs

a b

c

d

a b

c

d

Compatibility graph

a b

c

d

Conflict graph

A scheduled DFG
(unpipelined; operations 
have the same type)



Clique Cover Number and Chromatic Number

▸ Compatibility graph
– Partition the graph into a minimum number of cliques

• Clique in an undirected graph is a subset of its vertices such that 
every two vertices in the subset are connected by an edge

▸ Conflict graph
– Color the vertices by a minimum number of colors (chromatic 

number), where adjacent vertices cannot use the same color
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a b

c

d

a b

c

d

A scheduled DFG Clique partitioning on 
compatibility graph

a b

c

d

Coloring on 
conflict graph

Operations have same type



▸ Clique partitioning and graph coloring problems are 
NP-hard on general graphs, with the exception of 
perfect graphs

▸ Definition of perfect graphs
– For every induced subgraph, the size of the maximum (largest) 

clique equals the chromatic number of the subgraph
– Examples: bipartite graphs, chordal graphs, etc.

• Chordal graphs: every cycle of four or more vertices has a chord; 
a chord is an edge between two vertices that are not consecutive 
in the cycle
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Perfect Graphs



▸ Intersection graphs of a (multi)set of intervals on a line 
– Vertices correspond to intervals
– Edges correspond to interval intersection
– A special class of chordal graphs

22

Interval Graph

[Figure source: en.wikipedia.org/wiki/Interval_graph]



▸ Problem statement
– Given: Input is a group of intervals with starting and ending time
– Goal: Minimize the number of colors of the corresponding 

interval graph
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Left Edge Algorithm

Repeat
create a new color group c
Repeat

assign leftmost feasible interval to c
until no more feasible interval

until no more interval

Interval are sorted according to their left endpoints

Greedy algorithm, O(nlogn) time



Left Edge Demonstration

Lifetime intervals with a given schedule

Assign colors (or tracks) 
using left edge algorithm

0 1 2 3 4 5 6 7

1
6

4
7

8

2

3
5

8

6

7 4

2

1

3

5

Corresponding 
colored conflict graph
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0 1 2 3 4 5 6 7 8

24

1 2 3

6 7 5

4

8
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Binding Impact on Multiplexer Network

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4
AddSub2 op5, op6

clock cycle

×

×

+

+ +
−

2 3 41

a

b

c
d

e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4, op6
AddSub2 op5

Binding 1 Binding 2

+

×

+

a

Mul1

AddSub1

AddSub2

d b e

c

f g
+

×

a

Mul1

AddSub1

d b e

c

+
AddSub2

f g



▸ Resource sharing directly impacts the complexity of 
the resulting datapath 
– # of functional units and registers, multiplexer networks, etc.

▸ Binding for resource usage minimization
– Left edge algorithm: greedy but optimal for DFGs
– NP-hard problem with the general form of CDFG 

• Polynomial-time algorithm exists for SSA-based register 
binding, although more registers are required

▸ Connectivity binding problem (e.g., multiplexer  
minimization) is NP-Hard
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Binding Summary



▸These slides contain/adapt materials developed 
by
– Prof. Jason Cong (UCLA)
– Prof. Ryan Kastner (UCSD)
– Dr. Stephen Neuendorffer (AMD Xilinx)
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