
More Pipelining
Resource Sharing

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ HW 2 due Friday (free extension to next Wed)

▸ Lab 4 (NN acceleration) will be posted soon
– TWO students per group
– Start looking for a teammate now

▸ Midterm on Tuesday 10/22
– In class, 75 mins
– Open notes, open book, closed Internet
– Coverage: Lectures 01~11, 13, 14 (excluding NN tutorial)

1

Announcements

2

Agenda

▸Modulo scheduling case studies

▸Systolic arrays: combining parallel processing
and pipelining
– Uniform recurrence equations
– Case study on matrix multiplication

▸Resource sharing basics
– Sub-problems: functional unit, register, and

connectivity binding problems
– Key concepts: compatibility and conflict graphs

Recap: Calculating Lower Bound of II

▸ Minimum possible II (MII)
– MII = max (ResMII, RecMII)
– A lower bound, not necessarily achievable

▸ Resource constrained MII (ResMII)
– ResMII = maxi éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence cycle ci
Distance(ci): total distance in dependence cycle ci

3

▸ Prefix sum computes a cumulative sum of a sequence of
numbers
– commonly used in many applications such as radix sort,

histogram, etc.

4

Case Study: Prefix Sum

void prefixsum (int in[N], int out[N])
out[0] = in[0];
for (int i = 1; i < N; i++) {
#pragma HLS pipeline II=?
out[i] = out[i-1] + in[i];

}
}

out[0] = in[0];
out[1] = in[0] + in[1];
out[1] = in[0] + in[1] + in[2];
out[1] = in[0] + in[1] + in[2] + in[3];
…

▸ Loop-carried dependence exists between to reads on ‘out’
– Assume chaining is not possible on memory reads (ld) and writes

(st) due to target cycle time
– RecMII = 3

5

Prefix Sum: RecMII

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2
+ st

i = 1 ld1
ld2

+ stII = 1

ld2 ld1

st

out[i-1]

out[i]

in[i]

out[0] = in[0];
for (int i = 1; i < N; i++)
out[i] = out[i-1]+ in[i];

+

ld – Load
st – Store

▸ Introduce an intermediate variable ‘tmp’ to hold the
running sum from the previous ‘in’ values
– Shorter dependence cycle leads to RecMII = 1

6

Prefix Sum: Code Optimization

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld + st
i = 1 ld + stII = 1

ld

+

st

tmp

out[i]

in[i]

ld – Load
st – Store

int tmp = in[0];
for (int i = 1; i < N; i++) {
tmp += in[i];
out[i] = tmp;

}

2D Convolution: MII

-1 -2 -1

0 0 0
1 2 1

A K by K dot product is performed
for each output pixel (K=3 here)

Input image
frame

Output image
frame

7

for (r = 1; r < R; r++)
 for (c = 1; c < C; c++) {
 #pragma HLS pipeline II=?
 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j++)
 out[r][c] += img[r+i-1][c+j-1] * f[i][j];
 }

Exercise: Pipelining 3x3 Convolution

8

▸ Inner loops, “i” & “j”, are automatically unrolled
▸ The 3x3 filter array, “f”, is partitioned into 9 registers
▸ The entire input image, “img”, is stored in an on-chip

SRAM with two read ports

for (r = 1; r < R; r++)
 for (c = 1; c < C; c++) {
 #pragma HLS pipeline II=?
 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j++)
 out[r][c] += img[r+i-1][c+j-1] * f[i][j];
 }

What about RecMII? ResMII = ?

▸ An array of processing elements (PEs) that process data in a
systolic manner using nearest-neighbor communication
– Systolic means “data flows from memory in a rhythmic fashion, passing through

many processing elements before it returns to memory” – H.T. Kung

9

Recap: Systolic Arrays

In Sparse Matrix Proceedings, 1978

PE PE PE

PE PE PE

PE PE PE

+ Simple & regular design
+ Massive parallelism
+ Short interconnection
+ Balancing compute with I/O

parallel processing + pipelining

10

Uniform Recurrence Equations (UREs)

▸ Any systolic algorithm can be described by a set of UREs
– i.e., an n-dimensional loop nest where the recurrences (inter-iteration

dependences) must have constant distances

𝑍 𝑖, 𝑗, 𝑘 = 0,𝑤ℎ𝑒𝑛	𝑘 = 0
𝑍[𝑖, 𝑗, 𝑘] 	= 𝑍[𝑖, 𝑗, 𝑘 − 1] 	+ 𝐴[𝑖, 𝑘] 	 3 𝐵[𝑘, 𝑗], 𝑤ℎ𝑒𝑛	𝑘 > 0
𝐶[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗, 𝑁 − 1]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
C[i, j] = 0;
for (int k = 0; k < N; k++)
C[i, j] += A[i, k] * B[k, j]

Matrix Matrix Multiplication (MM) in UREs

𝑍 𝑖, 𝑗 = 0, 𝑤ℎ𝑒𝑛	𝑗 = 0
𝑍[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗 − 1] 	+ 𝐴[𝑖, 𝑗] 	 3 𝑥[𝑗], 𝑤ℎ𝑒𝑛	𝑗 > 0
𝑦[𝑖] 	= 𝑍[𝑖, 𝑁 − 1]

for (int i = 0; i < N; i++)
y[i] = 0;
for (int j = 0; j < N; j++)
y[i] += A[i, j] * x[j]

Matrix Vector Multiplication (MV) in UREs

𝐂 = 𝐀 ∗ 𝐁

𝐲 = 𝐀 ∗ 𝐱

11

Mapping MM to a Systolic Array
▸ Map the n-dimensional iteration space into a physical array of PEs

𝑍 𝑖, 𝑗, 𝑘 = 0,𝑤ℎ𝑒𝑛	𝑘 = 0
𝑍[𝑖, 𝑗, 𝑘] 	= 𝑍[𝑖, 𝑗, 𝑘 − 1] 	+ 𝐴[𝑖, 𝑘] 	 3 𝐵[𝑘, 𝑗], 𝑤ℎ𝑒𝑛	𝑘 > 0
𝐶[𝑖, 𝑗] 	= 𝑍[𝑖, 𝑗, 𝑁 − 1]

Z[0,0,k] Z[1,0,k] Z[7,0,k]…

Z[0,1,k] Z[1,1,k] Z[7,1,k]…

Z[0,7,k] Z[1,7,k] Z[7,7,k]…

… … …

A[0,k]

B[k,0]

B[k,1]

B[k,7]

A[1,k] A[7,k]
t=0 t=1 t=7

Time t in cycles; All PEs will be busy at the steady state

𝐂 = 𝐀 ∗ 𝐁

High-level Programming
Languages

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*–

Control data flow graph
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
 …
} else {
 t1 = a + b;
 t2 = c * d;
 t3 = e + f;
 t4 = t1 * t2;
 z = t4 – t3;
}

Scheduling Binding

Allocation

Recap: A Typical HLS Flow

12

Intermediate
Representation (IR)

Resource Sharing and Binding

▸ Resource sharing enables reuse of hardware resources
to minimize cost, in resource usage/area/power
– Typically carried out by binding in HLS
– Other subtasks such allocation and scheduling greatly impact

the resource sharing opportunities

▸ Binding maps operations, variables, and/or data
transfers to the available resources
– After scheduling: decide resource usage and detailed

architecture (focus of this lecture)
– Before scheduling: affect both area and delay
– Simultaneous scheduling and binding: better result but more

expensive

13

▸ Functional unit (FU) binding
– Primary objective is to minimize the number of FUs
– Considers connection cost

▸ Register binding
– Primary objective is to minimize the number of registers
– Considers connection cost

▸ Connectivity binding
– Minimize connections by exploiting the commutative property of

some operations / FUs
– NP-hard

14

Binding Sub-problems

Sharing Conditions

▸ Functional units (registers) are shared by operations
(variables) of same type whose lifetimes do not overlap

▸ Lifetime: [birth-time, death-time)
– Operation: The whole execution time (if unpipelined)
– Variable: From the time this variable is defined to the time it is

last used

▸ In this lecture, we assume no pipelining to simplify
discussion
– With pipelining (modulo scheduling), we use slots to determine

overlaps rather than control steps

15

16

Operation Binding

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4
AddSub2 op5, op6

clock edge

×

×

+

+ +
−

2 31

a
b

c
d
e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4, op6
AddSub2 op5

Binding 1 Binding 2

a scheduled DFG
(unpipelined)

17

Register Binding
Lifetimes crossing at least one clock edge

=> register(s) inferred

clock edge

×

×

+

+ +
−

2 3 41

a
b

c
d
e
f
g

v1
v2

v3
a scheduled DFG
(unpipelined)

18

Variable Lifetime Analysis

v1 [1, 2)
v2 [2, 3)
v3 [3, 4)

Variables v1, v2, and v3 can
share the same register

Variable lifetimes [birth-time, death-time)

clock edge

×

×

+

+ +
−

2 3 41

a
b

c
d
e
f
g

v1
v2

v3
a scheduled DFG
(unpipelined)

▸ Operation/variables compatibility
– Same type, non-overlapping lifetimes

▸ Compatibility graph
– Vertices: operations/variables
– Edges: compatibility relation

▸ Conflict graph: Complement of compatibility graph

19

Compatibility and Conflict Graphs

a b

c

d

a b

c

d

Compatibility graph

a b

c

d

Conflict graph

A scheduled DFG
(unpipelined; operations
have the same type)

Clique Cover Number and Chromatic Number

▸ Compatibility graph
– Partition the graph into a minimum number of cliques

• Clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge

▸ Conflict graph
– Color the vertices by a minimum number of colors (chromatic

number), where adjacent vertices cannot use the same color

20

a b

c

d

a b

c

d

A scheduled DFG Clique partitioning on
compatibility graph

a b

c

d

Coloring on
conflict graph

Operations have same type

▸ Clique partitioning and graph coloring problems are
NP-hard on general graphs, with the exception of
perfect graphs

▸ Definition of perfect graphs
– For every induced subgraph, the size of the maximum (largest)

clique equals the chromatic number of the subgraph
– Examples: bipartite graphs, chordal graphs, etc.

• Chordal graphs: every cycle of four or more vertices has a chord;
a chord is an edge between two vertices that are not consecutive
in the cycle

21

Perfect Graphs

▸ Intersection graphs of a (multi)set of intervals on a line
– Vertices correspond to intervals
– Edges correspond to interval intersection
– A special class of chordal graphs

22

Interval Graph

[Figure source: en.wikipedia.org/wiki/Interval_graph]

▸ Problem statement
– Given: Input is a group of intervals with starting and ending time
– Goal: Minimize the number of colors of the corresponding

interval graph

23

Left Edge Algorithm

Repeat
create a new color group c
Repeat

assign leftmost feasible interval to c
until no more feasible interval

until no more interval

Interval are sorted according to their left endpoints

Greedy algorithm, O(nlogn) time

Left Edge Demonstration

Lifetime intervals with a given schedule

Assign colors (or tracks)
using left edge algorithm

0 1 2 3 4 5 6 7

1
6

4
7

8

2

3
5

8

6

7 4

2

1

3

5

Corresponding
colored conflict graph

8

0 1 2 3 4 5 6 7 8

24

1 2 3

6 7 5

4

8

25

Binding Impact on Multiplexer Network

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4
AddSub2 op5, op6

clock cycle

×

×

+

+ +
−

2 3 41

a

b

c
d

e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4, op6
AddSub2 op5

Binding 1 Binding 2

+

×

+

a

Mul1

AddSub1

AddSub2

d b e

c

f g
+

×

a

Mul1

AddSub1

d b e

c

+
AddSub2

f g

▸ Resource sharing directly impacts the complexity of
the resulting datapath
– # of functional units and registers, multiplexer networks, etc.

▸ Binding for resource usage minimization
– Left edge algorithm: greedy but optimal for DFGs
– NP-hard problem with the general form of CDFG

• Polynomial-time algorithm exists for SSA-based register
binding, although more registers are required

▸ Connectivity binding problem (e.g., multiplexer
minimization) is NP-Hard

26

Binding Summary

▸These slides contain/adapt materials developed
by
– Prof. Jason Cong (UCLA)
– Prof. Ryan Kastner (UCSD)
– Dr. Stephen Neuendorffer (AMD Xilinx)

27

Acknowledgements

