
Pipelining

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ HW 2 posted, due Friday
– NO penalty for late submissions, up to 5 days late (until Wed Oct

16); Solution will be released on Thursday Oct 17th.

1

Announcements

2

Review: SDC-Based Scheduling

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

§ Dependence constraints
 <v0 , v4 > : s0 – s4 ≤ 0
 <v1 , v3 > : s1 – s3 ≤ 0
 <v2 , v3 > : s2 – s3 ≤ 0
 <v3 , v4 > : s3 – s4 ≤ 0
 <v4 , v5 > : s4 – s5 ≤ 0

§ Cycle time constraints
 v1 à v5 : s1 – s5 ≤ -1
 v2 à v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013]

ld

+

ldld

x

v1

v3

v4

v2v0

3ns

1ns

1ns

stv5 1ns

Timing
constraints

Operation
chaining is
naturally
supported

To meet the cycle time, v2 and v5 should
have a minimum separation of one cycle

▸ A linear programming formulation based on system of
integer difference constraints (SDC)

▸ Introduction to pipelined scheduling
– Parallel processing vs. Pipelining
– Common forms in hardware accelerators
– Throughput restrictions: resources and recurrences

▸ Modulo scheduling concepts
– Recurrence and resource MII
– Extending SDC formulation for pipelining

3

Agenda

▸ Parallel processing
– Emphasizes concurrency by replicating a hardware structure

several times (typically homogeneous)
• High performance is attained by having all structures execute simultaneously

on different parts of the problem to be solved

▸ Pipelining
– Takes the approach of decomposing the function to be

performed into smaller stages and allocating separate hardware
to each stage (typically heterogeneous)
• Data/instructions flow through the stage of a hardware pipeline at a rate

(often) independent of the length of the pipeline

Parallelization Techniques

[source: Peter Kogge, The Architecture of Pipelined Computers]
4

▸ Operator pipelining
– Fine-grained pipeline (e.g., functional units, memories)
– Execute a sequence of operations on a pipelined resource

▸ Loop/function pipelining (focus of this class)
– Statically scheduled
– Overlap successive loop iterations / function invocations at a

fixed rate

▸ Task pipelining
– Coarse-grained pipeline formed by multiple concurrent

processes (often expressed in loops or functions)
– Dynamically controlled
– Start a new task before the prior one is completed

5

Common Forms of Pipelining

▸ Pipelined multi-cycle operations
– v3 and v4 can share the same pipelined multiplier (3 stages)

6

Operator Pipelining

+

×

×

-

+C0

C1

C2

C3

C4

C5

v1

v4

v2

v3

v5

Loop Pipelining

▸ Pipelining is one of the most important optimizations for HLS
– Key factor: Initiation Interval (II)
– Allows a new iteration to begin processing, II cycles after the start of

the previous iteration (II=1 means the loop is fully pipelined)

7

for (i = 0; i < N; ++i)
 p[i] = x[i] * y[i];

II = 1ld
ld

ld

× ×

×

×

×

×

st
st

st

i=0
i=1
i=2

Time (cycles)

ld × × sti=3

Pipelined schedule

ld – Load (memory read)
st – Store (memory write)

ldld

×

st

Dataflow of
loop body

Here we assume multiplication (×)
takes two cycles

▸ Given a 100-iteration loop, where its loop body takes 50
cycles to execute
– With II = 1, how many cycles is needed to complete execution of

the entire loop?

– What about II = 2?

8

Exercise: Loop Pipeline Performance

▸ Function pipelining: Entire function is becomes a
pipelined datapath

9

Function Pipelining

void fir(int *x, int *y)
{
 static int shift_reg[NUM_TAPS];
 const int taps[NUM_TAPS] =
 {1, 9, 14, 19, 26, 19, 14, 9, 1};
 int acc = 0;
 for (int i = 0; i < NUM_TAPS; ++i)
 acc += taps[i] * shift_reg[i];
 for (int i = NUM_TAPS - 1; i > 0; --i)
 shift_reg[i] = shift_reg[i-1];

 shift_reg[0] = *x;
 *y = acc;
}

Pipeline the entire function of the FIR filter
(with all loops unrolled and arrays completely partitioned)

×

+

×

+

×

+

×

+

×

Task Pipelining

Gradient
WeightingH

Outer
Product

Gradient
Calculation

Velocity
Calculation

Tensor
CalculationV

gx
gy
gz

wy

wx

wz

oxy
oyy
oxx

oxz
oyz

txy tyy txxtxztyz
DVI

frame_in frame_out

velX
velY

linebuffer linebuffer

linebuffer

Gradient
WeightingV

wy

wx

wz

Tensor
CalculationH

txy
tyy
txx

txz
tyz

10

A coarse-grained pipeline for
the optical flow algorithm

(called dataflow pipeline in the HLS tool)

▸ Resource limitations
– Limited compute resources
– Limited memory resources (esp. memory port limitations)
– Restricted I/O bandwidth
– Low throughput of subcomponent
…

▸ Recurrences
– Also known as feedbacks, carried dependences
– Fundamental limits of the throughput of a pipeline

11

Restrictions of Pipeline Throughput

12

Resource Limitation

▸ Memory is a common source of resource contention
– e.g., memory port limitations

Only one read port per
SRAM à 1 load / cycle

for (i = 1; i < N; ++i)
 B[i] = A[i-1] + A[i];

Assuming arrays A and B are
held in two different SRAMs

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1 ld2 + st
i = 1 ld1 ld2 +II = 1

ld2

+

ld1

st

A[i-1]

B[i]

A[i]

Port conflict

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2
+ st

i = 1 ld1
ld2

+ st

▸ Recurrences restrict pipeline throughput
– Computation of a component depends on a previous result

from the same component

13

Recurrence Restriction

for (i = 1; i < N; ++i)
 A[i] = A[i-1] + A[i];

II = 1

ld2

+

ld1

st

A[i-1]

A[i]

A[i]

ld – Load
st – Store

Assume operation chaining is not allowed here
due to cycle time constraint

More on Recurrences

▸ Recurrence – if an operation from one iteration has dependence
on the same operation in a previous iteration
– Direct or indirect
– Data or control dependence

▸ Types of dependences: true dependences, anti-dependences,
output dependences
– Intra-iteration, also known as loop-independent dependences (Lec 09)
– Inter-iteration, also known as loop-carried dependences

(focus of this lecture)

▸ Dependence distance – number of iterations separating the two
dependent operations
– Intra-iteration, distance = 0 (same iteration)
– Inter-iteration, distance > 0

14

▸ True dependence, also known as Read After Write
(RAW) or flow dependence

True Dependences

Inter-iteration true dependence on “A”
(distance = 1)

15

for (i = 0; i < N; i++)
 A[i] &= A[i-1] - 1;

Example 1

Inter-iteration true dependence on “sum”
(distance = 1)

for (i = 0; i < N; i++)
 sum += A[i];

Example 2

for (i = 1; i < N; i++) {
 A[i-1] = b – a;
 B[i] = A[i] + 1
 }

Anti-Dependences and Output Dependences

▸ Anti-dependence, also known as Write After Read (WAR)
dependence

16

Inter-iteration anti-dependence on “A”
(distance = 1)

Example

Inter-iteration output
dependence on “B”
(distance = 2)

▸ Output dependence: also known as Write After Write
(WAW) dependence

for (i = 0; i < N-2; i++) {
 B[i] = A[i-1] + 1
 A[i] = B[i+1] + b
 B[i+2] = b – a
 }

Example

▸ Data dependences of a loop are often
represented by a dependence graph
– Forward edges: Intra-iteration
– Back edges: Inter-iteration
– Edges are annotated with distance values:

number of iterations separating the two
dependent operations involved

▸ Recurrence manifests itself as a cycle in
the dependence graph

17

Dependence Graph

v1

v2

v4

v3

[1]

[0] [2][0]

[0]

Edges annotated
with distance values

[0]

Modulo Scheduling

▸ A regular form of loop (or function) pipelining technique
– Also applies to software pipelining in compiler optimization
– Loop iterations use the same schedule, which are initiated

at a constant rate
– Typical objective: Minimize initiation interval (II) under resource

constraints

▸ Advantages of modulo scheduling
– Cost efficient: No code or hardware replication
– Easy to analyze: Steady state determines II & resource

▸ NP-hard in general: optimal polynomial time solution
only exists without recurrences or resource constraints

18

Modulo Scheduling Example

II = 2

II = 2

0

19

1
2
3

× +

–

LD

ST

ST

–

LD

× +

Initiation Interval
(II)

Steady state determines both performance and resource usage

×+

LD

ST

– slot 0
slot 1

Steady state
(II cycles)

Modulo
reservation
table (MRT)

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration
1 2 30

1
0

2
3

Time
(cycle)

5
4

6
7

LD: Load
ST: Store

Dependence
graph of a
loop body

Schedule of
the loop body

Heuristics for Modulo Scheduling

▸ A common, iterative scheme of heuristic algorithms
– Find a lower bound on II: MII = max (ResMII, RecMII)
– Look for a schedule with the given II
– If a feasible schedule not found, increase II and try again

20

Find MII
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes

Calculating Lower Bound of Initiation Interval

▸ Minimum possible II (MII)
– MII = max (ResMII, RecMII)
– A lower bound, not necessarily achievable

▸ Resource constrained MII (ResMII)
– ResMII = maxi éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence cycle ci
Distance(ci): total distance in dependence cycle ci

21

Minimum II due to Resource Limits (ResMII)

22

▸ Compute ResMII: Max among all types of resources

ResMII = maxi éOPs(ri) / Limit(ri)ù

+

+

i0 i1 i2 i3
i0 i1 i2

i0 i1
i0

a0
a1
a2
a3

0 1 2

i0 i0 i1 i1
i0 i0

i2 i2 i3 i3
i1 i1 i2 i2

0, 1, 2, 3, 4, 5 : time (cycles)
a0, a1, a2, a3 : available adders
i0, i1, i2, … : loop iterations

due to limited resources,
cannot initiate iterations
less than 2 cycles apart

a0
a1

time (in cycles)

4 adders
(a0~a3)

+

+

i3
i2
i1

i3
i2

Dependence Resource Allocation & Binding

i4 i5
i4

2 adders
(a0,a1)

time (in cycles)

3 4 5

OPs(r): # of operations that use resource r
Limit(r): # of available resources of type r

Take the max ratio among all resource types

Minimum II due to Recurrences (RecMII)

23

a

b

[1][0]

[1] dependence
 distance = 1

Dependence

a

b
[2][0]

Dependence

[2] dependence
 distance = 2

above examples assume single-cycle operations and no chaining

RecMII = 2/1 = 2

ai=1

bi=1

ai=2

bi=2

RecMII = 2/2 = 1
ai=1

bi=1 ai=2

bi=2 ai=3

bi=3

▸ Compute recurrence MII (RecMII)

RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(c): sum of operation latencies along cycle c
Distance(c): sum of dependence distances along cycle c

Take the max ratio among all dependence cycles

an II=2 schedule an II=1 schedule

24

What’s the ResMII

§ 3 AddSub units available
§ 2 Multipliers available

× +× × ×

× × +

-

-

[1]

Analyze the ResMII for pipelining the above DFG

25

What’s the RecMII

§ Single-cycle operations
§ No chaining

× +× × ×

× × +

-

-

[1]

Analyze the RecMII for pipelining the above DFG

SDC-Based Modulo Scheduling

Model intra-iteration
scheduling constraints

Model inter-iteration
scheduling constraints

Find Minimum II

Incremental
scheduling

SDC
feasible?

Loop

Increase II

Schedule

Yes

No

Fail

▸ The SDC formulation can be
extended to support modulo
scheduling
– Unifies intra-iteration and inter-

iteration scheduling constraints in
a single SDC

– Iterative algorithm with efficient
incremental SDC update

26[Z. Zhang & B. Liu, ICCAD 2013]

Modeling Loop-Carried Dependence with SDC

▸ Loop-carried dependence u à v with Distance(u, v) = K

for (i = 0; i < N-2; i++)
{
 B[i] = A[i] * C[i];
 A[i+2] = B[i] + C[i];
}

K = Dist(v5, v1) = 2

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]

27

Modeling Loop-Carried Dependence with SDC

s5 £ s1 + 2*II

for (i = 0; i < N-2; i++)
{
 B[i] = A[i] * C[i];
 A[i+2] = B[i] + C[i];
}

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]
×

+

v2

v3

v5st

ld

v4

v1
ld

×

v1 v2

v3

ld ld

…

II

28

II

▸ Loop-carried dependence u à v with Distance(u, v) = K
su + Latencyu £ sv + K*II

▸ Pipelining is one of the most commonly-used techniques
in HLS to boost the performance
– Recurrences and resource restrictions limit the pipeline

throughput

▸ Modulo scheduling
– A regular form of software pipeline technique

• Also applies to loop pipelining for hardware synthesis
• NP-hard problem in general

– SDC-based approach provides an efficient heuristic which
supports both nonpipelined and pipelined scheduling

29

Summary

▸More Pipelining
▸Resource Sharing

30

Next Lecture

▸These slides contain/adapt materials developed
by
– Prof. Scott Mahlke (UMich)

31

Acknowledgements

