ECE 6775
High-Level Digital Design Automation
Fall 2024

Pipelining

Announcements

» HW 2 posted, due Friday

— NO penalty for late submissions, up to 5 days late (until Wed Oct
16); Solution will be released on Thursday Oct 17th.

Review: SDC-Based Scheduling

> Alinear programming formulation based on system of

integer difference constraints (SDC)

» Dependence constraints

B) <Vo,Vs>:S)—S;,<0
Operation <Vi1,V3>:8;=S3< 0
chainingis <V2,V3>:18;—S3<0
naturally <vg,Vy4>:83—-5,<0
supported oy v, > 15, —ss <0

= Cycle time constraints

Target cycle time: 5ns Vi > V518 =S5 < -1
Delay estimates » Vo 2 V5 Sy — S5 < -1
— Mul (x): 3ns
— Add (+): 1ns
— Load/Store (Id/st): 1ns

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013]

s; : schedule variable for operation i

Timing
constraints

Agenda

> Introduction to pipelined scheduling
— Parallel processing vs. Pipelining
— Common forms in hardware accelerators
— Throughput restrictions: resources and recurrences

> Modulo scheduling concepts
— Recurrence and resource Ml
— Extending SDC formulation for pipelining

Parallelization Techniques

» Parallel processing

— Emphasizes concurrency by replicating a hardware structure
several times (typically homogeneous)

* High performance is attained by having all structures execute simultaneously
on different parts of the problem to be solved

> Pipelining
— Takes the approach of decomposing the function to be
performed into smaller stages and allocating separate hardware

to each stage (typically heterogeneous)

 Data/instructions flow through the stage of a hardware pipeline at a rate
(often) independent of the length of the pipeline

[source: Peter Kogge, The Architecture of Pipelined Computers]

Common Forms of Pipelining

» Operator pipelining
- Fine-grained pipeline (e.g., functional units, memories)
— Execute a sequence of operations on a pipelined resource

» Loop/function pipelining (focus of this class)
— Statically scheduled

— Overlap successive loop iterations / function invocations at a
fixed rate

» Task pipelining
— Coarse-grained pipeline formed by multiple concurrent
processes (often expressed in loops or functions)
— Dynamically controlled
— Start a new task before the prior one is completed

Operator Pipelining

> Pipelined multi-cycle operations
- vz and v, can share the same pipelined multiplier (3 stages)

Loop Pipelining

> Pipelining is one of the most important optimizations for HLS
— Key factor: Initiation Interval (ll)

— Allows a new iteration to begin processing, |l cycles after the start of
the previous iteration (ll=1 means the loop is fully pipelined)

for (i=0; i< N; ++i)
pli] = x[i] * y[i];

ONO i

Pipelined schedule

=0 [1d | x |[x[st| =1
i=1 Id| X | X|st
Dataflow of 6 i—o Id!| x| % |st
loop body =3 Id | x| x| st
@ Time (cycles)
Id — Load (memory read) Here we assume multiplication (X)

st — Store (memory write) takes two cycles

Exercise: Loop Pipeline Performance

> Given a 100-iteration loop, where its loop body takes 50
cycles to execute

- With Il = 1, how many cycles is heeded to complete execution of
the entire loop?

— What about Il =27

Function Pipelining

» Function pipelining: Entire function is becomes a

pipelined datapath

void fir(int *x, int *y)
{
static int shift_reg[NUM_TAPS];
const int taps[NUM_TAPS] =
{1,9, 14,19, 26, 19, 14, 9, 1};
intacc = 0;
for (inti=0; i < NUM_TAPS; ++i)
acc += tapsli] * shift_req[il;

for (inti = NUM_TAPS - 1;i > 0; --i) p 3

shift_reg[i] = shift_reg[i-1];
shift_reg[0] = *x; X (X

*y = acc;
} [}

\ Pipeline the entire function of the FIR filter

(with all loops unrolled and arrays completely partitioned)

X

>0 00—

X/

X

Task Pipelining

linebuffer linebuffer
Ox Wy
bVl Gradient |% | Gradient |w | Gradient Tensor
Calculation |9: | WeightingH | w, | WeightingV CalculationH
T T 1T
frame_in 1 lframe_out RIEIEIEIEY
[B
232 //\) .
233 void gradientWeightingH(unsigned short width, unsigned short height, I I I I I
234 short gradientOrigin[HEIGHT*WIDTH][3], txx vV Vv vV vV V
235 short interGradientWeighting[HEIGHT*WIDTH][3] 4_1:_
236) Yy
37 zg:é Velocity ty Tensor
238 static unsigned int inIdx = 0; H = :
239 static unsigned int outIdx = 0; - Calculation = CaICUIatlonv
240 unsigned int k, m, i, j; y_
241 short gradientWeightingRowWindow[3] [WeightSize];
242 short tmpOutput[3];
243 short tmpInput[3];
. linebuffer
245 for (1 = 0; 1 < height; ++1) { // loop over rows
246 for (j = 0; j < width + WeightRadius; ++j) { // loop over columns
247 for (m=0; m< 3; ++m) . . .
ettt = 0 A coarse-grained pipeline for
3:? if (§ < width) { // make sure it read heightwidth tines the Opt|Ca| ﬂOW a|gor|thm
2 for (m=0; m< 3; ++m)
752 tapInput(n] = gradientOrigin{inldx] nl; (called dataflow pipeline in the HLS tool)
253 ++1inldx;
254 }
255
256 if (j < width & i >= WeightRadius && i < height - WeightRadius) {
257 for (m=0; m< 3; +m) {
258 for (k = 0; k < WeightSize-1; ++k)
259 gradientWeightingRowWindow[m] [k] = gradientWeightingRowWindow[m] [k+1];
260 gradientWeightingRowWindow[m] [WeightSize-1] = tmpInput[m];
261 }

10

Restrictions of Pipeline Throughput

> Resource limitations
— Limited compute resources
— Limited memory resources (esp. memory port limitations)
— Restricted I/O bandwidth
— Low throughput of subcomponent

» Recurrences

— Also known as feedbacks, carried dependences
- Fundamental limits of the throughput of a pipeline

11

Resource Limitation

> Memory is a common source of resource contention

— e.g., memory port limitations

for(i=1;i<N; ++i)
Bli] = A[i-1] + AJi];

Assuming arrays A and B are
held in two different SRAMs

Only one read port per
SRAM - 1 load / cycle

Port conflict

cycle1 | cycle2 | cycle 3 | cycle 4
i=0 |d; Id, + st
i =1 @ Id; Id» +

12

Recurrence Restriction

> Recurrences restrict pipeline throughput

— Computation of a component depends on a previous result
from the same component

(8 (e
Alil e
(s

All]

Id - Load
st — Store

for(i=1;i<N; ++i)
A[i] = Afi-1] + Ali];

cycle 1 | cycle2 | cycle 3 | cycle 4
=0
' d + st
|d> __
= @ ld: 4 + st
o

Assume operation chaining is not allowed here
due to cycle time constraint

13

More on Recurrences

> Recurrence — if an operation from one iteration has dependence
on the same operation in a previous iteration
— Direct or indirect
— Data or control dependence

> Types of dependences: true dependences, anti-dependences,
output dependences
— Intra-iteration, also known as loop-independent dependences (Lec 09)

— Inter-iteration, also known as loop-carried dependences
(focus of this lecture)

> Dependence distance — number of iterations separating the two
dependent operations
— Intra-iteration, distance = 0 (same iteration)
— Inter-iteration, distance > 0

14

True Dependences

> True dependence, also known as Read After Write
(RAW) or flow dependence

Example1 for(i=0;i<N;i++)
Ali] &= Ali-1] - 1;
Inter-iteration true dependence on “A”
(distance = 1)

Example 2 for(i=0;i<N; i++)
sum += Ali];
" Inter-iteration true dependence on “sum”
(distance = 1)

15

Anti-Dependences and Output Dependences

> Anti-dependence, also known as Write After Read (WAR)
dependence

Example for(i=1;i<N;i++){
Ali-1] = b - a; ‘> Inter-iteration anti-dependence on “A”
} BIi] = Ali] + 1 (distance = 1)

» Qutput dependence: also known as Write After Write
(WAW) dependence

Example for (i = 0; i < N-2; i++) {

_ _ Bli] = Ali-1] + 1
Inter-iteration output (Ali] = B[i+1] + b
dependence on “B” Bli+2] =b-a
(distance = 2))

16

Dependence Graph

» Data dependences of a loop are often
represented by a dependence graph
- Forward edges: Intra-iteration
— Back edges: Inter-iteration @
[1 @
(W

- Edges are annotated with distance values:
number of iterations separating the two

dependent operations involved I e

[0

> Recurrence manifests itself as a cycle in
the dependence graph

(V)
[0
(Vo)

Edges annotated
with distance values

17

Modulo Scheduling

> A regular form of loop (or function) pipelining technique
— Also applies to software pipelining in compiler optimization

-~ Loop iterations use the same schedule, which are initiated
at a constant rate

— Typical objective: Minimize initiation interval (ll) under resource
constraints

» Advantages of modulo scheduling
— Cost efficient: No code or hardware replication
- Easy to analyze: Steady state determines Il & resource

> NP-hard in general: optimal polynomial time solution
only exists without recurrences or resource constraints

18

Modulo Scheduling Example

Dependence
graph of a
loop body

LD: Load
ST: Store

lteration

0

Time o

(cycle)

X +

Schedule of
the loop body

0
1
2
3

1 Initiation Interval

ST

N O o~ 0N =+ O

\4

ST

96

© O
)

@

(1)

©O

slot 0

®OE

slot 1

Modulo

reservation
table (MRT)

|

=2

=2

Steady state
(Il cycles)

Steady state determines both performance and resource usage |,

Heuristics for Modulo Scheduling

> A common, iterative scheme of heuristic algorithms
-~ Find a lower bound on Il: MIl = max (ResMII, RecMll)
— Look for a schedule with the given Il
- If a feasible schedule not found, increase Il and try again

Find Mil
and set Il = MIl

|

Look for a schedule .\

No
w Increase Il

Yes

Calculating Lower Bound of Initiation Interval

> Minimum possible Il (MII)
— MIl = max (ResMll, RecMIll)
— Alower bound, not necessarily achievable

» Resource constrained MIl (ResMIl)

~ ResMIl = max, [OPs(r;) / Limit(r))|
OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

» Recurrence constrained MIl (RecMIl)

— RecMIl = max; [Latency(c,) / Distance(c))|
Latency(c,): total latency in dependence cycle c;
Distance(c;): total distance in dependence cycle c;

21

Minimum Il due to Resource Limits (ResMil)

» Compute ResMIl: Max among all types of resources
_ .. OPs(r): # of operations that use resource r
ResMIl = max; I_OPs(ri) / le't(ri)-l Limit(r): # of available resources of type r

Take the max ratio among all resource types

Resource Allocation & Binding

Dependence
time (in cycles)
012345
+ a0l io[i1]i2] i3] i4] i5 N
a1 ioli1lielialial 01,23, 4,5 .tlme_ (cycles)
- 4 adders 5 a0, a1, a2, a3 : available adders
+ (a0~a3) a - i0, i1, i2, ... : loop iterations
a3
time (in cycles) due to limited resources,

2 adders a? 0]10]11]i1]i2)12] i3] i3 cannot initiate iterations
a less than 2 cycles apart

(a0,al)
22

Minimum Il due to Recurrences (RecMil)
» Compute recurrence MIl (RecMIll)

Take the max ratio among all dependence cycles

RecMIl = max; [Latency(c;) / Distance(c)) |

Latency(c): sum of operation latencies along cycle ¢
Distance(c): sum of dependence distances along cycle ¢

Dependence RecMIl =2/1 =2 Dependence RecMIl = 2/2 = 1
@\ 7
[0] [1] bi= [O] 2 b= gi=2

T~ =2
6 al @ $ai3
bi=2

[2] dependence bHi=3
distance = 2 an lI=1 schedule

[1] dependence
distance = 1 an |lI=2 schedule

23
above examples assume single-cycle operations and no chaining

What’s the ResMIi

[1]

= 3 AddSub units available
= 2 Multipliers available

Analyze the ResMIl for pipelining the above DFG

24

What’s the RecMIi

[1]

= Single-cycle operations
= No chaining

Analyze the RecMIl for pipelining the above DFG

25

SDC-Based Modulo Scheduling

» The SDC formulation can be
extended to support modulo
scheduling

— Unifies intra-iteration and inter-

iteration scheduling constraints in
a single SDC

— Iterative algorithm with efficient
incremental SDC update

ll Loop

Find Minimum I

!

Model intra-iteration
scheduling constraints

l

Model inter-iteration
scheduling constraints

SDC No
feasible? —>] Increase ||

Yes .
v Fail
Incremental

scheduling
v Schedule

[Z. Zhang & B. Liu, ICCAD 2013] 26

Modeling Loop-Carried Dependence with SDC

» Loop-carried dependence u - v with Distance(u, v) = K

for (i=0; i < N-2; i++)
{
Bli] = Ali] * C[i];
Ali+2] = BJi] + CIi;
}

27

Modeling Loop-Carried Dependence with SDC

» Loop-carried dependence u - v with Distance(u, v) = K
s, + Latency,<s, + K’ll

for (i=0;i<N-2; i++)
{
B[i] = Ali] * C[i[;
Ali+2] = BJi] + CIi];
}

S5 < sy + 2% sit Vs (%) Va

Summary

> Pipelining is one of the most commonly-used techniques

in HLS to boost the performance

— Recurrences and resource restrictions limit the pipeline
throughput

> Modulo scheduling
— Aregular form of software pipeline technique
* Also applies to loop pipelining for hardware synthesis
* NP-hard problem in general

-~ SDC-based approach provides an efficient heuristic which
supports both nonpipelined and pipelined scheduling

29

Next Lecture

> More Pipelining
» Resource Sharing

30

Acknowledgements

> These slides contain/adapt materials developed

by
— Prof. Scott Mahlke (UMich)

31

