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▸ HW 2 posted, due Friday
– NO penalty for late submissions, up to 5 days late (until Wed Oct 

16); Solution will be released on Thursday Oct 17th.
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Announcements
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Review: SDC-Based Scheduling

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si  : schedule variable for operation i

§ Dependence constraints
 <v0 , v4 > : s0 – s4 ≤ 0
 <v1 , v3 > : s1 – s3 ≤ 0
 <v2 , v3 > : s2 – s3 ≤ 0
 <v3 , v4 > : s3 – s4 ≤ 0
 <v4 , v5 > : s4 – s5 ≤ 0

§ Cycle time constraints
 v1 à v5 : s1 – s5 ≤ -1
 v2 à v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013] 
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Timing 
constraints

Operation 
chaining is 
naturally 
supported

To meet the cycle time, v2 and v5 should 
have a minimum separation of one cycle 

▸ A linear programming formulation based on system of 
integer difference constraints (SDC) 



▸ Introduction to pipelined scheduling
– Parallel processing vs. Pipelining 
– Common forms in hardware accelerators
– Throughput restrictions: resources and recurrences

▸ Modulo scheduling concepts
– Recurrence and resource MII
– Extending SDC formulation for pipelining 
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Agenda



▸ Parallel processing
– Emphasizes concurrency by replicating a hardware structure 

several times (typically homogeneous)
• High performance is attained by having all structures execute simultaneously 

on different parts of the problem to be solved

▸ Pipelining 
– Takes the approach of decomposing the function to be 

performed into smaller stages and allocating separate hardware 
to each stage (typically heterogeneous)
• Data/instructions flow through the stage of a hardware pipeline at a rate 

(often) independent of the length of the pipeline 

Parallelization Techniques

[source: Peter Kogge, The Architecture of Pipelined Computers]
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▸ Operator pipelining
– Fine-grained pipeline (e.g., functional units, memories)
– Execute a sequence of operations on a pipelined resource

▸ Loop/function pipelining (focus of this class)
– Statically scheduled
– Overlap successive loop iterations / function invocations at a 

fixed rate

▸ Task pipelining
– Coarse-grained pipeline formed by multiple concurrent 

processes (often expressed in loops or functions)
– Dynamically controlled
– Start a new task before the prior one is completed
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Common Forms of Pipelining 



▸ Pipelined multi-cycle operations
– v3 and v4 can share the same pipelined multiplier (3 stages)
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Operator Pipelining
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Loop Pipelining

▸ Pipelining is one of the most important optimizations for HLS
– Key factor: Initiation Interval (II)
– Allows a new iteration to begin processing, II cycles after the start of 

the previous iteration (II=1 means the loop is fully pipelined)
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for (i = 0; i < N; ++i)
      p[i] = x[i] * y[i];

II = 1ld
ld

ld

× ×

×

×

×

×

st
st

st

i=0
i=1
i=2

Time (cycles)

ld × × sti=3

Pipelined schedule

ld – Load (memory read) 
st – Store (memory write)

ldld

×

st

Dataflow of 
loop body

Here we assume multiplication (×) 
takes two cycles



▸ Given a 100-iteration loop, where its loop body takes 50 
cycles to execute
– With II = 1, how many cycles is needed to complete execution of 

the entire loop?

– What about II = 2?
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Exercise: Loop Pipeline Performance



▸ Function pipelining: Entire function is becomes a 
pipelined datapath
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Function Pipelining

void fir(int *x, int *y)
{
    static int shift_reg[NUM_TAPS];
    const int taps[NUM_TAPS] = 
        {1, 9, 14, 19, 26, 19, 14, 9, 1};
    int acc = 0;
    for (int i = 0; i < NUM_TAPS; ++i) 
        acc += taps[i] * shift_reg[i];
     for (int i = NUM_TAPS - 1; i > 0; --i)
        shift_reg[i] = shift_reg[i-1];
     
    shift_reg[0] = *x; 
    *y = acc; 
}

Pipeline the entire function of the FIR filter 
(with all loops unrolled and arrays completely partitioned)
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Task Pipelining
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A coarse-grained pipeline for 
the optical flow algorithm 

(called dataflow pipeline in the HLS tool)



▸ Resource limitations
– Limited compute resources 
– Limited memory resources (esp. memory port limitations)
– Restricted I/O bandwidth
– Low throughput of subcomponent
…

▸ Recurrences 
– Also known as feedbacks, carried dependences
– Fundamental limits of the throughput of a pipeline
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Restrictions of Pipeline Throughput
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Resource Limitation

▸ Memory is a common source of resource contention
– e.g., memory port limitations

Only one read port per 
SRAM à 1 load / cycle

for (i = 1; i < N; ++i) 
    B[i] = A[i-1] + A[i];

Assuming arrays A and B are 
held in two different SRAMs

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1 ld2 + st
i = 1 ld1 ld2 +II = 1

ld2

+

ld1

st

A[i-1]

B[i]

A[i]

Port conflict



cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2 
+ st

i = 1 ld1
ld2

+ st

▸ Recurrences restrict pipeline throughput
– Computation of a component depends on a previous result 

from the same component
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Recurrence Restriction

for (i = 1; i < N; ++i) 
    A[i] = A[i-1] + A[i];

II = 1

ld2

+

ld1

st

A[i-1]

A[i]

A[i]

ld – Load
st – Store

Assume operation chaining is not allowed here 
due to cycle time constraint



More on Recurrences

▸ Recurrence – if an operation from one iteration has dependence 
on the same operation in a previous iteration
– Direct or indirect
– Data or control dependence

▸ Types of dependences: true dependences, anti-dependences, 
output dependences
– Intra-iteration, also known as loop-independent dependences (Lec 09)
– Inter-iteration, also known as loop-carried dependences 

(focus of this lecture)

▸ Dependence distance – number of iterations separating the two 
dependent operations 
– Intra-iteration, distance = 0 (same iteration)
– Inter-iteration, distance > 0

14



▸ True dependence, also known as Read After Write 
(RAW) or flow dependence 

True Dependences

Inter-iteration true dependence on “A” 
(distance = 1)
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for (i = 0; i < N; i++) 
    A[i] &= A[i-1] - 1; 

Example 1

Inter-iteration true dependence on “sum” 
(distance = 1)

for (i = 0; i < N; i++) 
    sum += A[i]; 

Example 2



for (i = 1; i < N; i++) {
   A[i-1] = b – a;  
   B[i] = A[i] + 1
 }

Anti-Dependences and Output Dependences

▸ Anti-dependence, also known as Write After Read (WAR) 
dependence
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Inter-iteration anti-dependence on “A” 
(distance = 1)

Example

Inter-iteration output 
dependence on “B”
(distance = 2)

▸ Output dependence: also known as Write After Write 
(WAW) dependence 

for (i = 0; i < N-2; i++) {
   B[i] = A[i-1] + 1
   A[i] = B[i+1] + b
   B[i+2] = b – a  
 }

Example



▸ Data dependences of a loop are often 
represented by a dependence graph
– Forward edges: Intra-iteration
– Back edges: Inter-iteration 
– Edges are annotated with distance values: 

number of iterations separating the two 
dependent operations involved

▸ Recurrence manifests itself as a cycle in 
the dependence graph
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Dependence Graph
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Modulo Scheduling

▸ A regular form of loop (or function) pipelining technique
– Also applies to software pipelining in compiler optimization
– Loop iterations use the same schedule, which are initiated 

at a constant rate
– Typical objective: Minimize initiation interval (II) under resource 

constraints

▸ Advantages of modulo scheduling
– Cost efficient: No code or hardware replication
– Easy to analyze: Steady state determines II & resource

▸ NP-hard in general: optimal polynomial time solution 
only exists without recurrences or resource constraints
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Modulo Scheduling Example

II = 2

II = 2

0
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graph of a 
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the loop body



Heuristics for Modulo Scheduling

▸ A common, iterative scheme of heuristic algorithms
– Find a lower bound on II: MII = max (ResMII, RecMII)
– Look for a schedule with the given II
– If a feasible schedule not found, increase II and try again
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Find MII 
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes



Calculating Lower Bound of Initiation Interval

▸ Minimum possible II (MII)
– MII = max (ResMII, RecMII)
– A lower bound, not necessarily achievable 

▸ Resource constrained MII (ResMII)
– ResMII = maxi  éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi  éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence cycle ci
Distance(ci): total distance in dependence cycle ci
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Minimum II due to Resource Limits (ResMII)
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▸ Compute ResMII: Max among all types of resources 

ResMII = maxi  éOPs(ri) / Limit(ri)ù

+

+

i0 i1 i2 i3
i0 i1 i2

i0 i1
i0

a0
a1
a2
a3

0 1 2

i0 i0 i1 i1
i0 i0

i2 i2 i3 i3
i1 i1 i2 i2

0, 1, 2, 3, 4, 5 : time (cycles)
a0, a1, a2, a3 : available adders
i0, i1, i2, … : loop iterations 

due to limited resources, 
cannot initiate iterations 
less than 2 cycles apart

a0
a1

time (in cycles)

4 adders
(a0~a3)

+

+

i3
i2
i1

i3
i2

Dependence        Resource Allocation & Binding 

i4 i5
i4

2 adders
(a0,a1)

time (in cycles)

3 4 5

OPs(r): # of operations that use resource r
Limit(r): # of available resources of type r

Take the max ratio among all resource types



Minimum II due to Recurrences (RecMII)
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a

b

[1][0]

[1] dependence 
      distance = 1

Dependence

a

b
[2][0]

Dependence 

[2] dependence 
      distance = 2

above examples assume single-cycle operations and no chaining

RecMII = 2/1 = 2

ai=1

bi=1

ai=2

bi=2

RecMII = 2/2 = 1
ai=1

bi=1 ai=2

bi=2 ai=3

bi=3

▸ Compute recurrence MII (RecMII)

RecMII = maxi  éLatency(ci) / Distance(ci)ù

Latency(c): sum of operation latencies along cycle c
Distance(c): sum of dependence distances along cycle c

Take the max ratio among all dependence cycles

an II=2 schedule an II=1 schedule
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What’s the ResMII

§ 3 AddSub units available
§ 2 Multipliers available

× +× × ×

× × +

-

-

[1]

Analyze the ResMII for pipelining the above DFG
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What’s the RecMII

§ Single-cycle operations
§ No chaining

× +× × ×

× × +

-

-

[1]

Analyze the RecMII for pipelining the above DFG



SDC-Based Modulo Scheduling

Model intra-iteration 
scheduling constraints

Model inter-iteration
scheduling constraints

Find Minimum II

Incremental 
scheduling

SDC 
feasible?

Loop

Increase II

Schedule

Yes

No

Fail

▸ The SDC formulation can be 
extended to support modulo 
scheduling
– Unifies intra-iteration and inter-

iteration scheduling constraints in 
a single SDC

– Iterative algorithm with efficient 
incremental SDC update

26[Z. Zhang & B. Liu, ICCAD 2013] 



Modeling Loop-Carried Dependence with SDC

▸ Loop-carried dependence u à v with Distance(u, v) = K

for (i = 0; i < N-2; i++)
{
    B[i] = A[i] * C[i];
    A[i+2] = B[i] + C[i];
}

K = Dist(v5, v1) = 2

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]
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Modeling Loop-Carried Dependence with SDC

s5 £ s1 + 2*II

for (i = 0; i < N-2; i++)
{
    B[i] = A[i] * C[i];
    A[i+2] = B[i] + C[i];
}

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]
×

+

v2

v3

v5st

ld

v4

v1
ld

×

v1 v2

v3

ld ld

…

II 
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II

▸ Loop-carried dependence u à v with Distance(u, v) = K
su + Latencyu £ sv + K*II



▸ Pipelining is one of the most commonly-used techniques 
in HLS to boost the performance
– Recurrences and resource restrictions limit the pipeline 

throughput 

▸ Modulo scheduling
– A regular form of software pipeline technique

• Also applies to loop pipelining for hardware synthesis
• NP-hard problem in general

– SDC-based approach provides an efficient heuristic which 
supports both nonpipelined and pipelined scheduling
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Summary



▸More Pipelining
▸Resource Sharing

30

Next Lecture



▸These slides contain/adapt materials developed 
by
– Prof. Scott Mahlke (UMich)
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