
More Pipelining

ECE 6775
High-Level Digital Design Automation

Fall 2023

▸ Lab 3 due tonight (hard deadline)

▸ HW 2 due Friday, cannot be late by more than 3 days
– Solution will be released after the deadline

▸ Lab 4 (DNN acceleration) will be posted next week
– TWO students per group
– Start looking for a teammate now

1

Announcements

▸ Midterm on Thursday 10/19 at 8:30am
– In class, 75 mins
– Open book, open notes, closed Internet

▸ Topics covered: lectures 01~11 & 13
– Hardware specialization
– Algorithm basics
– FPGA
– C-based synthesis
– Control flow graph and SSA
– Scheduling
– Resource sharing
– Pipelining

2

Midterm next Thursday

Review: Meeting Assignment Problem

Meeting Schedule (am)
A 9:00~11:00
B 9:30~10:00
C 10:00~11:00
D 11:00~11:30

3

9:30 10:00 10:30 11:00 11:309:00

A
B

C
D

Gantt chart

Conflict graph
(chromatic number)

Compatibility graph
(clique cover)

4

Agenda

▸Recurrence and type of dependences

▸Modulo scheduling concepts
– Recurrence and resource MII
– Extending SDC formulation for pipelining

▸Case studies

▸ Resource limitations
– Limited compute resources
– Limited memory resources (esp. memory port limitations)
– Restricted I/O bandwidth
– Low throughput of subcomponent
…

▸ Recurrences
– Also known as feedbacks, carried dependences
– Fundamental limits of the throughput of a pipeline

5

Recap: Restrictions of Pipeline Throughput

Recurrence and Dependence

▸ Recurrence – if an operation from one iteration has
dependence on the same operation in a previous iteration
– Direct or indirect
– Data or control dependence

▸ Types of dependences
– True dependences, anti-dependences, output dependences
– Inter-iteration, intra-iteration

▸ Dependence distance – number of iterations separating
the two dependent operations
(0 = same iteration or intra-iteration)

6

▸ True dependence
– Also known as Read After Write (RAW) or flow dependence
– S1 àt S2 : S1 precedes S2 in the program execution and

computes a value that S2 uses

True Dependences

Inter-iteration true dependence on “A”
(distance = 1)

7

for (i = 0; i < N; i++)
 A[i] &= A[i-1] - 1;

Example 1

Inter-iteration true dependence on “sum”
(distance = 1)

for (i = 0; i < N; i++)
 sum += A[i];

Example 2

for (i = 1; i < N; i++) {
 A[i-1] = b – a;
 B[i] = A[i] + 1
 }

Anti-Dependences

▸ Anti-dependence
– Also known as Write After Read (WAR) dependence
– S1 àa S2 : S1 precedes S2 in the program execution and may

read from a memory location that is later updated by S2
– Renaming (e.g., SSA) can resolve many WAR dependences

8

Inter-iteration anti-dependence on “A”
(distance = 1)

Example

Inter-iteration output
dependence on “B”
(distance = 2)

Output Dependences

▸ Output dependence
– Also known as Write After Write (WAW) dependence
– S1 ào S2 : S1 precedes S2 in the program execution and may

write to a memory location that is later (over)written by S2
– Renaming (e.g., SSA) can resolve many WAW dependences

9

for (i = 0; i < N-2; i++) {
 B[i] = A[i-1] + 1
 A[i] = B[i+1] + b
 B[i+2] = b – a
 }

Example

▸ Data dependences of a loop are often
represented by a dependence graph
– Forward edges: Intra-iteration

(or loop-independent) dependences
– Back edges: Inter-iteration

(or loop-carried) dependences
– Edges are annotated with distance values:

number of iterations separating the two
dependent operations involved

▸ Recurrence manifests itself as a cycle in
the dependence graph

10

Dependence Graph

v1

v2

v4

v3

[1]

[0] [2][0]

[0]

Edges annotated
with distance values

[0]

Modulo Scheduling

▸ A regular form of loop (or function) pipelining technique
– Also applies to software pipelining in compiler optimization
– Loop iterations use the same schedule, which are initiated

at a constant rate
– Typical objective: Minimize initiation interval (II) under resource

constraints

▸ Advantages of modulo scheduling
– Cost efficient: No code or hardware replication
– Easy to analyze: Steady state determines II & resource

▸ NP-hard in general: optimal polynomial time solution
only exists without recurrences or resource constraints

11

Modulo Scheduling Example
Dependence
graph of a
loop body

Schedule of
the body II = 2

II = 2

0

12

1
2
3

× +

–

LD

ST

ST

–

LD

× +

Initiation Interval
(II)

Steady state determines both performance and resource usage

×+

LD

ST

– slot 0
slot 1

Steady state
(II cycles)

Modulo
reservation
table (MRT)

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration
1 2 30

1
0

2
3

Time
(cycle)

5
4

6
7

LD: Load
ST: Store

Heuristics for Modulo Scheduling

▸ A common, iterative scheme of heuristic algorithms
– Find a lower bound on II: MII = max (ResMII, RecMII)
– Look for a schedule with the given II
– If a feasible schedule not found, increase II and try again

13

Find MII
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes

Calculating Lower Bound of Initiation Interval

▸ Minimum possible II (MII)
– MII = max (ResMII, RecMII)
– A lower bound, not necessarily achievable

▸ Resource constrained MII (ResMII)
– ResMII = maxi éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence cycle ci
Distance(ci): total distance in dependence cycle ci

14

Minimum II due to Resource Limits (ResMII)

15

▸ Compute ResMII: Max among all types of resources

ResMII = maxi éOPs(ri) / Limit(ri)ù

+

+

i0 i1 i2 i3
i0 i1 i2

i0 i1
i0

a0
a1
a2
a3

0 1 2

i0 i0 i1 i1
i0 i0

i2 i2 i3 i3
i1 i1 i2 i2

0, 1, 2, 3, 4, 5 : time (cycles)
a0, a1, a2, a3 : available adders
i0, i1, i2, … : loop iterations

due to limited resources,
cannot initiate iterations
less than 2 cycles apart

a0
a1

time (in cycles)

4 adders
(a0~a3)

+

+

i3
i2
i1

i3
i2

Dependence Resource Allocation & Binding

i4 i5
i4

2 adders
(a0,a1)

time (in cycles)

3 4 5

OPs(r): # of operations that use resource r
Limit(r): # of available resources of type r

Take the max ratio among all resource types

Minimum II due to Recurrences (RecMII)

16

a

b

[1][0]

[1] dependence
 distance = 1

Dependence

a

b
[2][0]

Dependence

[3] dependence
 distance = 2

above example assumes single-cycle operations and no chaining

Schedule (II=2)

ai=1

bi=1

ai=2

bi=2

Schedule (II=1)
ai=1

bi=1 ai=2

bi=2 ai=3

bi=3

▸ Compute recurrence MII (RecMII)

RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(c): sum of operation latencies along cycle c
Distance(c): sum of dependence distances along cycle c

Take the max ratio among all dependence cycles

17

What’s the ResMII

§ 3 AddSub units available
§ 2 Multipliers available

× +× × ×

× × +

-

-

[1]

Analyze the MII for pipelining the above DFG

18

What’s the RecMII

§ Single-cycle operations
§ No chaining

× +× × ×

× × +

-

-

[1]

Analyze the MII for pipelining the above DFG

SDC-Based Modulo Scheduling

Model intra-iteration
scheduling constraints

Model inter-iteration
scheduling constraints

Find Minimum II

Incremental
scheduling

SDC
feasible?

Loop

Increase II

Schedule

Yes

No

Fail

▸ The SDC formulation can be
extended to support modulo
scheduling
– Unifies intra-iteration and inter-

iteration scheduling constraints in
a single SDC

– Iterative algorithm with efficient
incremental SDC update

19[Z. Zhang & B. Liu, ICCAD 2013]

Modeling Loop-Carried Dependence with SDC

▸ Loop-carried dependence u à v with Distance(u, v) = K

for (i = 0; i < N-2; i++)
{
 B[i] = A[i] * C[i];
 A[i+2] = B[i] + C[i];
}

K = Dist(v5, v1) = 2

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]

20

Modeling Loop-Carried Dependence with SDC

s5 £ s1 + 2*II

for (i = 0; i < N-2; i++)
{
 B[i] = A[i] * C[i];
 A[i+2] = B[i] + C[i];
}

×

+

v1 v2

v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]
×

+

v2

v3

v5st

ld

v4

v1
ld

×

v1 v2

v3

ld ld

…

II

21

II

▸ Loop-carried dependence u à v with Distance(u, v) = K
su + Latencyu £ sv + K*II

▸ Prefix sum computes a cumulative sum of a sequence of
numbers
– commonly used in many applications such as radix sort,

histogram, etc.

22

Case Study: Prefix Sum

void prefixsum (int in[N], int out[N])
out[0] = in[0];
for (int i = 1; i < N; i++) {

#pragma HLS pipeline II=?
out[i] = out[i-1]+ in[i];

}

}

out[0] = in[0];
out[1] = in[0] + in[1];
out[1] = in[0] + in[1] + in[2];
out[1] = in[0] + in[1] + in[2] + in[3];
…

▸ Loop-carried dependence exists between to reads on ‘out’
– Assume chaining is not possible on memory reads (ld) and writes

(st) due to target cycle time
– RecMII = 3

23

Prefix Sum: RecMII

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2
+ st

i = 1 ld1
ld2

+ stII = 1

ld2 ld1

st

out[i-1]

out[i]

in[i]

out[0] = in[0];
for (int i = 1; i < N; i++)

out[i] = out[i-1]+ in[i];

+

ld – Load
st – Store

▸ Introduce an intermediate variable ‘tmp’ to hold the
running sum from the previous ‘in’ values
– Shorter dependence cycle leads to RecMII = 1

24

Prefix Sum: Code Optimization

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld + st
i = 1 ld + stII = 1

ld

+

st

tmp

out[i]

in[i]

ld – Load
st – Store

int tmp = in[0];
for (int i = 1; i < N; i++) {

tmp += in[i];
out[i] = tmp;

}

▸ Pipelining is one of the most commonly-used techniques
in HLS to boost the performance
– Recurrences and resource restrictions limit the pipeline

throughput

▸ Modulo scheduling
– A regular form of software pipeline technique

• Also applies to loop pipelining for hardware synthesis
• NP-hard problem in general

– SDC-based approach provides an efficient heuristic

25

Summary

▸These slides contain/adapt materials developed
by
– Prof. Ryan Kastner (UCSD)
– Prof. Scott Mahlke (UMich)
– Dr. Stephen Neuendorffer (AMD Xilinx)

26

Acknowledgements

