ECE 6775 High-Level Digital Design Automation Fall 2024

Introduction to Neural Networks

Jordan Dotzel, Ritchie Zhao, Zhiru Zhang School of Electrical and Computer Engineering

Cornell University

Announcements

- Lecture tomorrow 4:30pm at Rhodes 310
- No Friday TA OH this week
- TA OH today 5pm ~ 6pm
 - In-person at Rhodes 312
- No instructor OH today
- Lab 3 due next Monday

Rise of Deep Neural Networks (DNNs)

- DNNs have revolutionized information technology
 - computer vision, e-commerce, finance, game AI, healthcare, machine transcription & translation, robots, web search, and many more (to come)

A Brief History

- 1940's 1950's: First artificial neural networks proposed based on biological structures in the human visual cortex
- 1980's 2000's: Neural networks (NNs) considered inferior to other simpler algorithms (e.g., SVM)
- Mid 2000's: NN research considered "dead", machine learning conferences outright reject most NN papers
- 2010 2012: DNNs begin winning large-scale image and document classification contests
- 2012 Now: DNNs prove themselves in many industrial applications (web search, translation, image analysis)

Neural Network (NN) in a Nutshell

- Depends on a large volume of data & mostly supervised
- Learns a function that encodes a hierarchy of abstract features
 - Consists of a stack of connected *layers*, such as convolutional, pooling, full connected, attention

NN Training and Inference

- Training refers to the process of building an NN model to accomplish a specific AI task by "learning" from a predetermined dataset
- Inference refers to the use of a trained NN model to make a prediction (or decision) on unseen data

Part 1

CLASSIFICATION WITH THE PERCEPTRON

Classification Problems

We'll discuss neural networks for solving supervised classification problems

- Given a training set consisting of labeled inputs
- Learn a function which maps inputs to labels
- This function is used to predict the labels of new inputs

Predict New Data

Artificial Neuron

The simplest possible neural network contains only one "neuron", which is described by the following equation:

$$y = \sigma(\sum_{i=1}^{n} w_i x_i + b)$$

$$w_i = \text{weights}$$

$$b = \text{bias}$$

$$\sigma = \text{activation function}$$

- When σ is the unit step (or sign) function, we have a perceptron*
 - Invented in 1957 by Frank Rosenblatt
 - * Perceptron is often used as a synonym for artificial neuron, where σ could be any activation function

Activation Function

• The activation function σ is non-linear

Used in the initial perceptrons

neural nets

Makes deep networks easier to train

0.5

Used in modern deep nets

Breaking Down the "Neuron"

Breaking Down the "Neuron"

A 2-input, 1-output neuron

A real-life analogue

A Real-life Classification Problem

- Inputs: Pairs of numbers (x_1, x_2)
- Labels: 0 or 1 (binary decision problem)
- Real-life analogue:
 - Label = Raining or Not Raining
 - x_1 = Relative humidity
 - x_2 = Cloud coverage

x ₁	X 2	Label
-0.7	-0.6	0
-0.6	0.4	0
-0.5	0.7	1
-0.5	-0.2	0
-0.1	0.7	1
0.1	-0.2	0
0.3	0.5	1
0.4	0.1	1
0.4	-0.7	0
0.7	0.2	1

Training set

Visualizing the Data

X 1	<i>X</i> ₂	Label	
-0.7	-0.6	0	
-0.6	0.4	0	
-0.5	0.7	1	
-0.5	-0.2	0	
-0.1	0.7	1	
0.1	-0.2	0	
0.3	0.5	1	
0.4	0.1	1	
0.4	-0.7	0	
0.7	0.2	1	
Training set			

13

Decision Boundary

In this case, the data points can be classified with a **linear decision boundary** produced by a perceptron

<i>x</i> ₁	X 2	Label
-0.7	-0.6	0
-0.6	0.4	0
-0.5	0.7	1
-0.5	-0.2	0
-0.1	0.7	1
0.1	-0.2	0
0.3	0.5	1
0.4	0.1	1
0.4	-0.7	0
0.7	0.2	1

Training set

Finding the Parameters

- The right parameters (weights and bias) will create any linear decision boundary we want
- Training = process of finding the parameters to solve our classification problem
 - Basic idea: iteratively modify the parameters to reduce the training loss
 - Training loss: measure of difference between predictions and labels on the training set

Gradient Descent

Loss function

Measure of difference between predictions and true labels

$$L = \sum_{\substack{i=0 \\ \uparrow}}^{N} (y^{(i)} - t^{(i)})^2$$

Sum over training samples

$$y^{(i)}$$
 = Prediction
 $t^{(i)}$ = True label

Over dia set diversions

Gradient Descent:

$$w_{k+1} = w_k - \eta \frac{\partial L}{\partial w_k} \leftarrow \begin{array}{c} \text{Gradient = direction} \\ \text{of steepest descent} \\ \text{in } L \end{array}$$

k = training step η = learning rate or step size

Training a Neural Network

- At each step k:
 - 1. Classify each sample to get each $y^{(i)}$
 - 2. Compute the **loss** *L*
 - 3. Compute the gradient $\frac{\partial L}{\partial w_k}$
 - 4. Update the parameters using **gradient descent** $w_{k+1} = w_k - \eta \frac{\partial L}{\partial w_k}$

Demo

Perceptron training demo

- No bias (bias = 0)
- No test set (training samples only)

Another Example

<i>x</i> ₂	<i>x</i> ₁	OR		
0	0	0	$w_1 x_1 + w_2 x_2 + b < 0$	$\Rightarrow b < 0$
0	1	1	$w_1 x_1 + w_2 x_2 + b \ge 0$	$\implies w_1 \ge -b$
1	0	1	$w_1 x_1 + w_2 x_2 + b \ge 0$	$\implies w_2 \ge -b$
1	1	1	$w_1 x_1 + w_2 x_2 + b < 0$	$\implies w_1 + w_2 \ge -b$

One solution:

$$w_1 = 1; w_2 = 1; b = -1$$

19

Yet Another Example (The XOR Problem)

<i>x</i> ₂	x_1	XOR		
0	0	<mark>0</mark> W	$_1x_1 + w_2x_2 + b < 0$	$\Rightarrow b < 0$
0	1	1 W	$_{1}x_{1} + w_{2}x_{2} + b \ge 0$	$\implies w_1 \ge -b$
1	0	1 W	$_1x_1 + w_2x_2 + b \ge 0$	$\implies w_2 \ge -b$
1	1	<mark>0</mark> W	$_{1}x_{1} + w_{2}x_{2} + b < 0$	$\implies w_1 + w_2 < -b$

Part 2 DEEP NEURAL NETWORKS

Combining Neurons

- A single neuron can only make a simple decision
- Feeding neurons into each other allows a neural network to learn complex decision boundaries

Source: http://www.opennn.net/

Complex Decision Boundaries

Source: https://www.carl-olsson.com/fall-semester-2013/

Multi-Layer Perceptron (MLP)

- MLP is a fully connected class of feedforward artificial neural network (ANN)
 - An MLP model consists of multiple layers of neurons
 - Often referred to as "vanilla" ANNs, especially with a single hidden layer

A vectorized (tensorized) view of MLP

Deep Neural Network (DNN)

MLPs are neural networks with at least three layers, while DNNs typically have even more (hidden) layers

Image credit: http://www.opennn.net/

Learning a Deep Neural Network

Gradient Descent:

$$w_{k+1} = w_k - \eta \frac{\partial L}{\partial w_k}$$

Backpropagation

Backpropagation: use the chain rule from calculus to propagate the gradients backwards through the network

Stochastic Gradient Descent

Remember Gradient Descent? ∂L $w_{k+1} = w_k - \eta \overline{\partial w_k}$

ich can be millions of samples!

Stochastic Gradient Descent:

- At each set, only compute *L* for a **minibatch** (a few samples randomly taken from the training set)
- SGD is faster and more accurate than GD for DNNs!

Part 3 CONVOLUTIONAL NEURAL NETWORKS

Neural Networks for Images

- So far, we've seen neural networks built from fully-connected layers
- Do we really need all the edges for learning an image?
 - Important patterns are typically much smaller than the whole image
 - Images are also shift-invariant (e.g., a bird is a bird even when shifted)

input layer a hidden layer 1 hidden layer 2 hidden layer 3

Convolutional Neural Network (CNN)

- Front: convolutional layers learn visual features
- Feature maps get downsampled through the network
- Back: fully-connected layers perform classification using the visual features

A Convolutional (conv) Layer

- A CNN stacks multiple conv layers (and some other layers)
- A conv layer has a set of learnable filters that perform convolution operation

The Convolutional Filter

- Each neuron learns a weight filter and convolves the filter over the image
- Each neuron outputs a 2D feature map (basically an image of features)

The Convolutional Filter

- Each point in the feature map encodes both a decision and its spatial location
- Detects the pattern anywhere in the image!

The Convolutional Layer: A Closer Look

- M input and N output feature maps
- Each output map uses *M* filters, 1 per input map
- ► *M*×*N* total filters

The Convolutional Layer: A Closer Look

Learning Complex Features with CNNs

Deep CNNs combine simple features into complex patterns

- Early conv layers = edges, textures, ridges
- Later conv layers = eyes, noses, mouths

Image credit: https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/; H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks", CACM Oct 2011

Part 4
TRANSFORMERS

Attention: Local to Global

- Local pixel relationships make convolutions natural for images
 - Text requires global relationships
 - Attention computes global pairwise relationships

- Efficiency important since global requires O(L²) in the input length L
 - Opportunities for domainspecific acceleration
 - Many emerging accelerators for transformers

Attention Mechanism

- The attention mechanism finds pair relationships between all inputs
 - Compute queries, keys, values for each input word
 - Query: "what each word is looking for"
 - Key: "what each word provides"

https://jalammar.github.io/illustrated-transformer/

Transformers

- Combines attention and MLP layers
 - Attention between words
 - MLP within words
- Repeat structure many times in deep network

- Auto-regressive sampling
 - Sample one, send back to network, sample again
 - Based on output probabilities
 - Continue until "end" word

Acknowledgements

- The lecture slides contain/adapt materials from
 - Dr. Ritchie Zhao (NVIDIA)
 - ECE 5545 by Prof. Mohamed Abdelfattah (Cornell Tech)
 - CS898 by Prof. Ming Li (University of Waterloo)
 - System for AI Education Resource by Microsoft Research