
Introduction to Neural Networks

Jordan Dotzel, Ritchie Zhao, Zhiru Zhang
School of Electrical and Computer Engineering

ECE 6775
High-Level Digital Design Automation

Fall 2023

▸ DNNs have revolutionized information technology
– computer vision, e-commerce, finance, game AI, healthcare,

machine transcription & translation, robots, web search, and
many more (to come)

1

Rise of Deep Neural Networks (DNNs)

▸ 1940’s – 1950’s: First artificial neural networks proposed
based on biological structures in the human visual cortex

▸ 1980’s – 2000’s: Neural networks (NNs) considered
inferior to other simpler algorithms (e.g., SVM)

▸ Mid 2000’s: NN research considered “dead”, machine
learning conferences outright reject most NN papers

▸ 2010 – 2012: DNNs begin winning large-scale image
and document classification contests

▸ 2012 – Now: DNNs prove themselves in many industrial
applications (web search, translation, image analysis)

2

A Brief History

3

▸ Depends on a large volume of data & mostly supervised
▸ Learns a function that encodes a hierarchy of abstract
features
– Consists of a stack of connected layers, such as convolutional,

pooling, full connected, attention

Neural Network (NN) in a Nutshell

4

▸ Training refers to the process of building an NN model
to accomplish a specific AI task by “learning” from a
predetermined dataset

▸ Inference refers to the use of a trained NN model to
make a prediction (or decision) on unseen data

NN Training and Inference

CLASSIFICATION WITH
THE PERCEPTRON

Part 1

▸We’ll discuss neural networks for solving
supervised classification problems

6

Classification Problems

???

Inputs Predictions

Predict New Data

• Given a training set consisting
of labeled inputs

• Learn a function which maps
inputs to labels

• This function is used to predict
the labels of new inputs

Cat

Bird

Human

Inputs Labels

Training Set

▸ The simplest possible neural network contains only one
“neuron”, which is described by the following equation:

 ! = #(∑!"#$ &!'! +))

▸ When #	is the unit step (or sign) function, we have a
perceptron*
– Invented in 1957 by Frank Rosenblatt

7

Artificial Neuron

%! = weights
& = bias
'	= activation function

* Perceptron is often used as a synonym for artificial neuron, where " could be any activation function

▸The activation function σ is non-linear

8

Activation Function

Unit Step Sigmoid ReLU

Hard Yes/No
decision

Used in the initial
perceptrons

Soft probability

Used in early
neural nets

Makes deep networks
easier to train

Used in modern deep nets

1
1 + %!" max(0, ,)

9

Breaking Down the “Neuron”

Linear function of ! = #!
#"

$#! + &

Activation function

Output
prediction

%.
'

%/
+

).

)/
*

&

A 2-input, 1-output neuron

A 2-input, 1-output neuron

10

Breaking Down the “Neuron”

%.
'

%/
+

).

)/
*

&

Humidity

Raining?
Cloud cover

Yes
(1)

No
(0)

A real-life analogue

▸ Inputs: Pairs of numbers (,+, ,,)
▸ Labels: 0 or 1 (binary decision problem)

▸ Real-life analogue:
– Label = Raining or Not Raining
– -0 = Relative humidity
– -1 = Cloud coverage

11

A Real-life Classification Problem

x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training set

12

Visualizing the Data

x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training setPlot of the data points
!$

!%

13

Decision Boundary

x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training set
!$

!%

In this case, the data points can be classified
with a linear decision boundary produced by
a perceptron

▸ The right parameters (weights and bias) will create any
linear decision boundary we want

▸ Training = process of finding the parameters to solve
our classification problem
– Basic idea: iteratively modify the parameters to reduce the

training loss
– Training loss: measure of difference between predictions and

labels on the training set

14

Finding the Parameters

▸ Loss function
– Measure of difference between predictions and true labels

" =$
&'(

)
(& & − (&)"

▸ Gradient Descent:

!*+, = !* 	− 	η
&'
&!*

.	= training step
η = learning rate or step size

15

Gradient Descent

Sum over training samples

* ! 	= Prediction

Gradient = direction
of steepest descent

in 0

1 ! 	= True label

▸At each step k:
1. Classify each sample to get each ! !

2. Compute the loss .

3. Compute the gradient 23
24!

4. Update the parameters using gradient descent

&56# = &5 	− 	η
1.
1&5

16

Training a Neural Network

▸Perceptron training demo
– No bias (bias = 0)
– No test set (training samples only)

17

Demo

18

Another Example

&#'# +&7'7 +) < 0

&#'# +&7'7 +) < 0
&#'# +&7'7 +) ≥ 0

'7 '# 56
0 0 0
0 1 1
1 0 1
1 1 1

&#'# +&7'7 +) ≥ 0

) < 0

&7 ≥ −)
&# ≥ −)

&# +&7 ≥ −)

(1,1)

(1,0)(0,0)

(0,1) One solution:
&# = 1;	&7 = 1;) = −1

19

Yet Another Example (The XOR Problem)

&#'# +&7'7 +) < 0

&#'# +&7'7 +) < 0
&#'# +&7'7 +) ≥ 0

'7 '# 956
0 0 0
0 1 1
1 0 1
1 1 0

&#'# +&7'7 +) ≥ 0

) < 0

&7 ≥ −)
&# ≥ −)

&# +&7 < −)

(1,1)

(1,0)(0,0)

(0,1)
Not linearly separable

DEEP NEURAL NETWORKS
Part 2

▸A single neuron can only make a simple decision

▸Feeding neurons into each other allows a neural
network to learn complex decision boundaries

Combining Neurons

Source: http://www.opennn.net/

Simple
Decisions

Complex
Decisions

21

Complex Decision Boundaries

Source: https://www.carl-olsson.com/fall-semester-2013/

2 units 3 units 4 units

5 units 10 units 20 units

22

23

▸ MLP is a fully connected class of feedforward artificial
neural network (ANN)
– An MLP model consists of multiple layers of neurons
– Often referred to as “vanilla” ANNs, especially with a single

hidden layer

Multi-Layer Perceptron (MLP)

).

)/

ℎ.

ℎ/

*

A neuron

9:-
;<

A vectorized (tensorized) view of MLP

Input
layer

Hidde
n
layer

Output
layer

▸ MLPs are neural networks with at least three layers,
while DNNs typically have even more (hidden) layers

Deep Neural Network (DNN)

Image credit: http://www.opennn.net/

Input Layer Hidden
Layers

Output
Layer

24

▸ Gradient Descent:

!*+, = !* 	− 	η
&'
&!*

25

Learning a Deep Neural Network

.

How to get *+*,!
	for

this neuron?

▸ Backpropagation: use the chain rule from calculus to
propagate the gradients backwards through the network

26

Backpropagation

:

'

!
:(', !)
12
13

12
14 =

12
13
13
14

12
1& =

12
13
13
1&

Inspired by course slides from L. Fei-Fei, J. Johnson, S. Yeung, CS231n at Stanford University

; ;(:, ℎ)

ℎ

▸ Remember Gradient Descent?

!*+, = !* 	− 	η
&'
&!*

▸ . must be computed over the entire training set, which
can be millions of samples!

▸ Stochastic Gradient Descent:
– At each set, only compute " for a minibatch (a few samples

randomly taken from the training set)
– SGD is faster and more accurate than GD for DNNs!

27

Stochastic Gradient Descent

CONVOLUTIONAL
NEURAL NETWORKS

Part 3

▸ So far, we’ve seen neural networks built
from fully-connected layers

▸ Do we really need all the edges for
learning an image?
– Important patterns are typically much smaller

than the whole image
– Images are also shift-invariant (e.g., a bird is a

bird even when shifted)

Neural Networks for Images

Detect patterns in a small region
with fewer parameters

beak detector

29

▸ Front: convolutional layers learn visual features
▸ Feature maps get downsampled through the network
▸ Back: fully-connected layers perform classification using

the visual features

30

Convolutional Neural Network (CNN)

Convolutional layers Fully-connected layers

Image credit: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

A Convolutional (conv) Layer

Filters
(or weights
 or kernels)

Beak detector

▸ A CNN stacks multiple conv layers (and some other layers)
▸ A conv layer has a set of learnable filters that perform

convolution operation

31

32

The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
 Image

Output
Feature map

▸ Each neuron learns a weight filter and convolves the
filter over the image

▸ Each neuron outputs a 2D feature map
(basically an image of features)

33

The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
 Image

Output
Feature map

▸ Each point in the feature map encodes both a decision
and its spatial location

▸ Detects the pattern anywhere in the image!

▸= input and > output feature maps
▸ Each output map uses =	filters, 1 per input map
▸=×> total filters

34

The Convolutional Layer: A Closer Look

Filters

Output Feature MapsInput Feature Maps

! "

∗

35

The Convolutional Layer: A Closer Look

Filters

Output Feature MapsInput Feature Maps

! "

∗

1 for(row=0; row<R; row++) {
2 for(col=0; col<C; col++) {
3 for(to=0; to<N; to++) {
4 for(ti=0; ti<M; ti++) {
5 for(i=0; i<K; i++) {
6 for(j=0; j<K; j++) {
 output_fm[to][row][col] +=
 weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j];
}}}}}}

"

#

Huge amount of
parallelism!

▸ Deep CNNs combine simple features into complex patterns
– Early conv layers = edges, textures, ridges
– Later conv layers = eyes, noses, mouths

36

Learning Complex Features with CNNs

Image credit: https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/; H. Lee, R. Grosse, R.
Ranganath, and A. Y. Ng, “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks”, CACM Oct 2011

▸ The lecture slides contain/adapt materials from
– Dr. Ritchie Zhao (Microsoft)
– ECE 5545 by Prof. Mohamed Abdelfattah (Cornell Tech)
– CS898 by Prof. Ming Li (University of Waterloo)
– System for AI Education Resource by Microsoft Research

37

Acknowledgements

