ECE 6775
High-Level Digital Design Automation
Fall 2024

More Scheduling

_UNJp
£ o y@@;
(® =\ . .
A==)7 Cornell University s
&\ -
QxS "

Announcements

> Lab 3 due Monday

» HW 2 will be released soon

— Two problems related to pipelining need next week’s
lecture content

Agenda

> |LP for time-constrained scheduling

> Heuristic algorithms for constrained scheduling

— List scheduling
—~ SDC-based scheduling

Recap: ILP Formulation for Dependence Constraints

v

Using ASAP and ALAP, the non-trivial inequalities are:
(assuming no chaining and single-cycle ops)

2x79 + 3x73 —Xgq1 — 2Xgp = 1

dxg 4 — 2%75 — 3x73 = 1

2xg + 3x93 +4x94 —Xgq — 2Xg, — 3xg3 =1
2x11,2 + 3%11,3 + 4X11,4 — X101 — 2X102 — 3X103 = 1

assume L=4
and no chaining

3

ASAP schedule ALAP schedule

Recap: ILP Formulation for Resource Constraints

> Resource constraints (assuming 2 multipliers and 1 ALU)

X11 + X21tXe1txg1 < 2
X32 + Xe2tXx72txg, <2
X73txg3 < 2

X101 =1

XgtX102FX112 <1
X437t Xg3+X193+Xx113 < 1
X54FXg4tX114 < 1

assume L=4
and no chaining

4
ASAP schedule ALAP schedule

Another Exercise: Formulating ILP

» Minimize the number of classrooms that the school must allocate for the

following courses

» Steps to formulate the ILP
(1) Create variables

(@ Each course to be scheduled to exactly one of the preferred slots
(3) Determine the number of rooms required (by creating derived variables)

(@) Set up the objective function

Course | Preferred
Slots
A (1) (2)
B (1) 3)
C (2) (3)
D (2)

(1) 8:00 — 10:00am
(2) 10:00am — 12:00pm
(3) 12:00 — 2:00pm

@ X;s: course i uses slot s

@ Xa1+Xa2=1 @ r=Xa1+Xg;

Xg1+ Xgz=1 f'o=Xao+ Xco+ Xpo
Xco+ Xcz=1 3= Xg3 + Xc3
XD,2 = 1

(@) Objective: min|max {r1, r2, r3}

l Linearize
min R
R>r,R=r,R>r;

Time-Constrained Scheduling (TCS)

> Dual problem of resource-constrained scheduling
— OQverall latency is given as a constraint (deadline)

-~ Minimize the total cost in terms of area (or resource usage),
power, etc.

> NP-hard problem
— ILP formulation is exact but is not a polynomial-time solution

— Force-directed scheduling is a well-known heuristic for TCS
(see De Micheli chapter 5.4.4)

Example: ILP Formulation for TCS

> ILP for time-constrained scheduling
minimize c'y
X114+ Xp1 +Xp 1 + Xg1 =Yy
X320+ Xgo+ X720+ Xgo < Y4

X753+ Xg3 =Yy
X54+ Xg 4+ X114 Yo

What does the y vector represent?

ASAP schedule ALAP schedule

Constrained Scheduling in HLS

» Constrained scheduling
— General case NP-hard

— Resource-constrained scheduling (RCS)
- Minimize latency given constraints on area or resources

— Time-constrained scheduling (TCS)
« Minimize resources subject to bound on latency

> Exact methods
— Integer linear programming (ILP)

— Symbolic scheduling using BDDs
— Hu’s algorithm for a very restricted problem

» Heuristics
— List scheduling
— Force-directed list scheduling
- SDC-based scheduling

Symbolic Scheduling: Representing Resource
Constraints with BDD (an example)

> Assume 2 multipliers are available and there are 4
potential multiply operations at control step k

> The following Boolean expression captures the X1,k
resource constraint at step k /’\
/ / / / / / k
X1k X2 T X1k *X3k + X1k *Xg) + . .
, ! ’ !/ !/ !/ !/ !/ I:> 2’k 2'k
X2k *X3k t X2k *X4k T X3k *Xak

/

This expression indicates that at least (4 - 2)
multiplication operations (among 4 potential operations
in step k) cannot be scheduled to the same step

—_ -
R32

\

\

\
\

Radivojevic & Brewer, Symbolic Techniques for Optimal Scheduling, SASIMI’'1993.

List Scheduling

> A widely-used heuristic algorithm for RCS
— Schedule one control step (cycle) at a time
- Maintain a list of “ready” operations considering dependence

— Assign priorities to operations; most “critical” operations (with
the highest priorities) go first

» Often refers to a family of algorithms

— Typically classified by the way priority function is calculated
- Static priority: Priorities are calculated once before scheduling
« Dynamic priority calculation: Priorities are updated during scheduling

10

Static Priority Example: Node Height

Nodes are labelled
with distance to sink
(height)

Ready operations are
colored in green

Assumptions:
— All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

11

Ready Nodes with Highest Priorities Picked First

= Assumptions:

— All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

12

Update Ready Nodes and Repeat for Each Step

RP 0 R9 ¢

| RR_F
WEE e

@ @

\/\4

= Assumptions:

— All operations have unit delay

- 2 MULTs, 1 AddSub, and 1 CMP available .

Update Ready Nodes and Repeat for Each Step

= Assumptions:

— All operations have unit delay

- 2 MULTs, 1 AddSub, and 1 CMP available y

Repeat Until All Nodes Scheduled

= Assumptions:

— All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

15

A Special Case

> With the following (very) restrictive conditions:
— All operations have unit delay (i.e., single cycle)
— All operations (and resources) are of the same type
— Graph is a forest

> List scheduling with static height-based priorities
guarantees optimality

> This is known as Hu’s algorithm

— T. C. Hu, Parallel sequencing and assembly line problems.

Operations Research, 9(6), 841-848, 1961
— Guarantees

16

HLS Scheduling:
Tension between Scalability and Quality

High f
scalability

(w/ greedy ‘ List

deCISIonS SChedu"ng (D) Handle rich constraints
(e.g., [Parker et o
al., DAC’86)) e (2) Perform global optimization
(3 Archive fast runtime
Meta heuristics
(e.g., Ant colony [Wang
Force- et al., TCAD’07])
directed
[Paulin &
Knight, ‘ILP
S.IOW TCAD’89]
runtime ‘
Low High quality

quality (w/ global optimization)
17

More Realistic Scheduling Problems

> Operation chaining

— More compact schedule
> Multi-cycle operations

— Nonpipelined or pipelined

— Higher frequency
> Mutually exclusive operations
— Scheduled in the same step, cSo <<
but with mutually exclusive execution .
conditions Multi-cycle | X 1 __ _ __
e L mult
— Higher resource utilization oS +
> Other timing constraints chaining
- Frequency constraints, latency constraints, = *

relative time constraints

18

A Simple Operation Chaining Problem

Given: A chain of n operations. Without any registers, the
cycle time equals the total combinational delay, which is D

= sum(d,).

Question: How to place TWO registers on the chain to
achieve the minimum cycle time?

Example: —>@—>®

(D

19

SDC-Based Scheduling

» SDC = System of difference constraints

Operation
chaining is <Vz, Vs>

supported

s; : schedule variable for operation i

» Dependence constraints

B <V, V4>:

<Vq, V3>

naturally <V3, Vg>

<V, , Vs>

So—S4<0
S;1—S3<0
1S, —53<0
:S3—-S, <0
S4—S;<0

= Cycle time constraints

Target cycle time: 5ns

Delay estimates
— Mul (x): 3ns
— Add (+): 1ns
— Load/Store (Id/st): 1ns

Vi 2 V5 :S;—S5 < -1
B V, > V5 :S,—Sg < -1

[J. Cong & Z. Zhang, DAC’2006] [Z. Zhang & B. Liu, ICCAD’2013]

Timing
constraints

20

Exercise: Latency Constraint in SDC

How to enforce that operations vj
and v4 are not chained and at most
two cycles apart?

21

Difference Constraints

» A difference constraint is a formula in the form of

X -y <borx-y<b for numeric variables x and y, and
constant b

» With scheduling variables, we use integer difference
constraints to model a variety of scheduling constraints

- x and y must have integral values
* Thus b only needs to be an integer => form x — y < b is redundant

22

SDC Constraint Matrix

» The constraint matrix of SDC(X, C) is a totally unimodular
matrix (TUM):

— Every nonsingular square submatrix has a determinant of -1/+1.

(\ ¢ 3 [)
1000-10 So 0
010-1 0 O S 0
001-1 0 O S, 0
000 1-10 sy < | o
000 0 1 -1 . 0
001 0 O -1 4 -1

L o100 0-1) \Ss | -1

A X b

« Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular
and b is a vector of integers, every extreme point of polyhedron
{x : Ax < b} is integral.
— Solving linear programming (LP) relaxation leads to
integral solutions

23

SDC Constraint Graph

» Difference constraints can be conveniently represented
using constraint graph

-~ Each vertex represents a variable, and each weighted edge
corresponds to a different constraint

— Detect infeasibility by the presence of negative cycle (by solving
single-source shortest path)

So—S;<-1 S§p—8,<0
s;—So<0 S;—S3=<0
0<-1 S»—S3<0
S;3—S,<0
S;—S;<0

S, =84 < -1
S;—8,<-1
S;—S,<0

24

Handling Resource Constraints (NP-Hard in General)

> Resource constraints cannot be represented exactly in
integer difference form*

= Resource constraints
=>» Heuristic partial orderings

Vg =2 Vo :Sg— Sy < -1 3cycle latency

OR

Vi =2 Vg :S1— S

< -1
Vo > Vg i S, — Sy < -1 2 cycle latency

Resource constraint
— Two read ports

*A more recent SDC scheduling paper combined SAT and SDC to solve RCS

exactly [Dai et al. FPGA2018] 25

Linear Objectives

ASAP: min Xy S
ALAP: max >y S,
Minimum latency: min max;_y {S;}

Minimum average case latency
(control-intensive design)

Many other ...
ASAP schedule

min Sy + ... + S

Target cycle time: 5ns

Delay estimates
— Mul (x): 3ns
— Add (+): 1ns
— Load/Store (Id/st): 1ns

ALAP schedule

26

Control Flow Graphs

» Control dependencies can also be
honored

— If bb, is control dependent on bb,, the
operation nodes of bb, are not allowed to be

scheduled before those of bb,

— Polarize each basic block bb;
with two scheduling variables (head and tail)

* VYV e bb,’, Sh(bb,) - Sh(V) <0
° VV c bb,’, St(V) - St(bbl) S O

- If e,(bb, bb) € E; and e, is not a back edge
* Sbb)) —s,(bb) <0

N

siB1) —sn(B2)) <0

27

Example: Greatest Common Divisor (GCD)

X =in1;

y =1in2;

while (x I=y) {
if(xX>y)

X=X-Y,

elsey =y -x;

}

*out = X;

X= !n1 when cond1=0
BB1 y =in2
condl = (x!=y)
lcond1:1
BB2

cond2 = (x > y)

cond2=1 cond2=0
BB3 BB4

X=X-Y
cond3 = (x !=

y) cond4 = (x =)

cond3=1

y=Yy-X

cond4=1

*out = X

28

GCD in SSA form

X =in1;

y =1in2;

while (x I=y) {
if(xX>y)

X=X-Y,

elsey =y -x;

}

*out = X;

Xo = !n1 when cond1=0
BB1 Yo = in2
cond1 = (Xg != yo)
lcond1:1
X1 = O(Xg, X1, X)
BB2

Y1 = (D(yOs Y1, y2)
cond2 = (X4 > Y1)

cond2=1 cond2=0
BB3 BB4

X2 = X1 = Y4
cond3 = (X5 !=y4)

cond3=1

Yo =Y1—=X4
cond4 = (x4 !=y»)

X3 = (D(XO, X1, X2)
*out = Xs

cond4=1

29

Interpreting the LP Solution of SDC Scheduling

» Scheduling is performed

across basic block
boundaries

0 .
XO'_!n1 when cond1=0
BB1 Yo = in2
cond1 = (Xq !=Yo)
lcond1:1
1
X1 = (X, X1, Xo)
BB2 y1 - cD(yO! Y1, y2)
cond2 = (X1 > V4)
cond2=1 cond2=0
BB3 BB4
Xo = X1~ Y4 Yo =Y1—=X4
cond3 = (X, != y4) cond4 = (x4 !=y»)
cond3=1 cond4=1

X3 = CD(X(), X1, X2)
*out = X3

30

Operations and Predicates

0 x,=in

Yo = in2 d >
cond1 = (X != Vo)

Add predicates
for conditionally

executed if (cond1) {
operations in X1 = @ (Xo, X1, X2)
each state Y1= (Yo, Y1, Y2)
cond2 = (x4 > y4)

X1 =D (Xg, X1, Xo) if (cond?2) {

Y1 =@ (Yo, Y1, Y2 X5 = X1 — Vs

cond2 = (x4 > y4) cond3 = (x, 1= V)

X2 = X1 = VY1 } else {

cond3 = (x, = yy) |:> Vo = Vs — X,

Y2 =Y1 =X cond4 = (x4 = yy)

cond4 = (x4 1=y,)
X3 = @ (Xg, X1, Xp)
*out = X3

}
if (lcond1 || (lcond3 && !cond4)) {

X3 = @ (Xg, X1, Xp)
*out = X3

31

Deriving State Transition Graph (STG)

If (cond1) {
Xy = D (Xg, X1, Xp)
Y1 = (Yo, Y1, Vo)
cond2 = (X4 > Vy4)
if (cond?2) {
Xo=X1= Y1
cond3 = (X, !=y4)
} else {
Yo =Y1— X4
cond4 = (x4 !=y»)
}
if \cond1 || ({cond3 && !cond4)) {
X3 = @ (Xg, X1, Xp)
*out = X3

true

Predicates for operations and
state transitions can be derived
from original control flow and
dominance analysis

Icond1 && (cond3 || cond4)

32

Scheduling Summary

> ILP

- Exact, but exponential worst-case runtime

> Hu’s algorithm
— Optimal and polynomial
— Only works in very restricted cases

» List scheduling
— Extension to Hu’s for general cases
— QGreedy (fast) but suboptimal

» SDC-based scheduling

— A versatile heuristic based on LP formulation with different
constraints

-~ Amenable to global optimization

33

Next Lecture

> Pipelining

34

Acknowledgements

> These slides contain/adapt materials developed

by
— Ryan Kastner (UCSD)

35

