
More Scheduling

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸Lab 3 due Monday

▸HW 2 will be released soon
– Two problems related to pipelining need next week’s

lecture content

1

Announcements

▸ ILP for time-constrained scheduling

▸Heuristic algorithms for constrained scheduling
– List scheduling
– SDC-based scheduling

2

Agenda

Recap: ILP Formulation for Dependence Constraints

▸ Using ASAP and ALAP, the non-trivial inequalities are:
(assuming no chaining and single-cycle ops)

3

assume L=4
and no chaining

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

ASAP schedule ALAP schedule

2𝑥!,# + 3𝑥!,$ − 𝑥%,& − 2𝑥%,# ≥ 1
4𝑥',(− 2𝑥!,# − 3𝑥!,$ ≥ 1

2𝑥),# + 3𝑥),$ + 4𝑥),(− 𝑥*,& − 2𝑥*,# − 3𝑥*,$ ≥ 1
2𝑥&&,# + 3𝑥&&,$ + 4𝑥&&,(− 𝑥&+,& − 2𝑥&+,# − 3𝑥&+,$ ≥ 1

Recap: ILP Formulation for Resource Constraints

▸ Resource constraints (assuming 2 multipliers and 1 ALU)

4

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

ASAP schedule ALAP schedule

𝑥&,& + 𝑥#,&+𝑥%,&+𝑥*,& ≤ 2
𝑥$,# + 𝑥%,#+𝑥!,#+𝑥*,# ≤ 2

𝑥!,$+𝑥*,$ ≤ 2

𝑥&+,& ≤ 1
𝑥),#+𝑥&+,#+𝑥&&,# ≤ 1

𝑥(,$+ 𝑥),$+𝑥&+,$+𝑥&&,$ ≤ 1
𝑥',(+𝑥),(+𝑥&&,(≤ 1

assume L=4
and no chaining

▸ Minimize the number of classrooms that the school must allocate for the
following courses

▸ Steps to formulate the ILP
1. Create variables
2. Each course to be scheduled to exactly one of the preferred slots
3. Determine the number of rooms required (by creating derived variables)
4. Set up the objective function

5

Another Exercise: Formulating ILP

Course Preferred
Slots

A (1) (2)
B (1) (3)
C (2) (3)
D (2)

(1) 8:00 – 10:00am
(2) 10:00am – 12:00pm
(3) 12:00 – 2:00pm

min R
R ≥ r1, R ≥ r2, R ≥ r3

Linearize

1
2
3
4 xi,s : course i uses slot s1

xA,1 + xA,2 = 1
xB,1 + xB,3 = 1
xC,2 + xC,3 = 1
xD,2 = 1

2

Objective: min max {r1, r2, r3}4

r1 = xA,1 + xB,1
r2 = xA,2 + xC,2 + xD,2
r3 = xB,3 + xC,3

3

▸ Dual problem of resource-constrained scheduling
– Overall latency is given as a constraint (deadline)
– Minimize the total cost in terms of area (or resource usage),

power, etc.

▸ NP-hard problem
– ILP formulation is exact but is not a polynomial-time solution
– Force-directed scheduling is a well-known heuristic for TCS

(see De Micheli chapter 5.4.4)

6

Time-Constrained Scheduling (TCS)

▸ ILP for time-constrained scheduling
 minimize cTy
 x1,1 + x2,1 +x6,1 + x8,1 £ y1

 x3,2 + x6,2 + x7,2 + x8,2 £ y1
 x7,3 + x8,3 £ y1

 x5,4 + x9,4 + x11,4 £ y2
 …

7

Example: ILP Formulation for TCS

What does the y vector represent?

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

ASAP schedule ALAP schedule

▸ Constrained scheduling
– General case NP-hard
– Resource-constrained scheduling (RCS)

• Minimize latency given constraints on area or resources
– Time-constrained scheduling (TCS)

• Minimize resources subject to bound on latency

▸ Exact methods
– Integer linear programming (ILP)
– Symbolic scheduling using BDDs
– Hu’s algorithm for a very restricted problem

▸ Heuristics
– List scheduling
– Force-directed list scheduling
– SDC-based scheduling
…

8

Constrained Scheduling in HLS

▸ Assume 2 multipliers are available and there are 4
potential multiply operations at control step k

▸ The following Boolean expression captures the
resource constraint at step k

9

Symbolic Scheduling: Representing Resource
Constraints with BDD (an example)

Radivojevic & Brewer, Symbolic Techniques for Optimal Scheduling, SASIMI’1993.

1 0

𝑥!,# 𝑥!,#

𝑥$,#

𝑥%,# 𝑥%,#

𝑥&,#

This expression indicates that at least (4 - 2)
multiplication operations (among 4 potential operations
in step k) cannot be scheduled to the same step

𝑥&,,- •𝑥#,,- + 𝑥&,,′•𝑥$,,′+ 𝑥&,,′•𝑥(,,′+
𝑥#,,′•𝑥$,,′+ 𝑥#,,′•𝑥(,,′+ 𝑥$,,′•𝑥(,,′

▸ A widely-used heuristic algorithm for RCS
– Schedule one control step (cycle) at a time
– Maintain a list of “ready” operations considering dependence
– Assign priorities to operations; most “critical” operations (with

the highest priorities) go first

▸ Often refers to a family of algorithms
– Typically classified by the way priority function is calculated

• Static priority: Priorities are calculated once before scheduling
• Dynamic priority calculation: Priorities are updated during scheduling

10

List Scheduling

11

Static Priority Example: Node Height

× +× × ×

× × + <

-

-

sink

4 4

3 2

2

1

3

1 1

2 2

Nodes are labelled
with distance to sink
(height)

Ready operations are
colored in green

§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

12

Ready Nodes with Highest Priorities Picked First

× +× × ×

× × + <

-

-

sink

4 4

3 2

2

1

3

1 1

2 2 × +×

× ××

× + <-

-

sink

4 4

3

22

1

3

1 1

2

2

§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

13

× +×

× ××

× + <-

-

sink

4 4

3

22

1

3

1 1

2

2 × +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2

§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step

14

Update Ready Nodes and Repeat for Each Step

× +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2 × +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2

§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

15

Repeat Until All Nodes Scheduled

× +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2 × +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2

§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

A Special Case

▸ With the following (very) restrictive conditions:
– All operations have unit delay (i.e., single cycle)
– All operations (and resources) are of the same type
– Graph is a forest

▸ List scheduling with static height-based priorities
guarantees optimality

▸ This is known as Hu’s algorithm
– T. C. Hu, Parallel sequencing and assembly line problems.

Operations Research, 9(6), 841-848, 1961
– Guarantees

16

17

HLS Scheduling:
Tension between Scalability and Quality

High
scalability

(w/ greedy
decisions)

High quality
(w/ global optimization)

Low
quality

Slow
runtime

List
scheduling
(e.g., [Parker et
al., DAC’86])

ILP

Force-
directed

 [Paulin &
Knight,

TCAD’89]

① Handle rich constraints
② Perform global optimization
③ Archive fast runtime

Meta heuristics
(e.g., Ant colony [Wang
et al., TCAD’07])

?

More Realistic Scheduling Problems

▸ Operation chaining
– More compact schedule

▸ Multi-cycle operations
– Nonpipelined or pipelined
– Higher frequency

▸ Mutually exclusive operations
– Scheduled in the same step,

but with mutually exclusive execution
conditions

– Higher resource utilization
▸ Other timing constraints

– Frequency constraints, latency constraints,
relative time constraints

18

+

<<

<

×

+

×
CS0

+

<

<<

+

CS1

Multi-cycle
mult

chaining

d1 d2 d3 dN…

Question: How to place TWO registers on the chain to
achieve the minimum cycle time?

Given: A chain of n operations. Without any registers, the
cycle time equals the total combinational delay, which is D
= sum(di).

19

A Simple Operation Chaining Problem

Example: 5 1 6 2 7

▸SDC = System of difference constraints

20

SDC-Based Scheduling

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

§ Dependence constraints
 <v0 , v4 > : s0 – s4 ≤ 0
 <v1 , v3 > : s1 – s3 ≤ 0
 <v2 , v3 > : s2 – s3 ≤ 0
 <v3 , v4 > : s3 – s4 ≤ 0
 <v4 , v5 > : s4 – s5 ≤ 0

§ Cycle time constraints
 v1 à v5 : s1 – s5 ≤ -1
 v2 à v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC’2006] [Z. Zhang & B. Liu, ICCAD’2013]

ld

+

ldld

x

v1

v3

v4

v2v0

3ns

1ns

1ns

stv5 1ns

Timing
constraints

Operation
chaining is
naturally
supported

To meet the cycle time, v2 and v5 should
have a minimum separation of one cycle

21

Exercise: Latency Constraint in SDC

How to enforce that operations v3
and v4 are not chained and at most
two cycles apart?

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

Difference Constraints

▸ A difference constraint is a formula in the form of
x – y £ b or x – y < b for numeric variables x and y, and
constant b

▸ With scheduling variables, we use integer difference
constraints to model a variety of scheduling constraints
– x and y must have integral values

• Thus b only needs to be an integer => form x – y < b is redundant

22

SDC Constraint Matrix

▸ The constraint matrix of SDC(X, C) is a totally unimodular
matrix (TUM):
– Every nonsingular square submatrix has a determinant of -1/+1.

s0
s1
s2
s3
s4
s5

0
0
0
0
0

-1
-1

£

A x b
• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular

and b is a vector of integers, every extreme point of polyhedron
{x : Ax ≤ b} is integral.
– Solving linear programming (LP) relaxation leads to

integral solutions

23

1
0
0
0
0
0
0

0
1
0
0
0
0
1

0
0
1
0
0
1
0

0
-1

 -1
1

 0
0

 0

-1
0

 0
-1
1
0
0

0
0

 0
0

-1
-1
-1

▸ Difference constraints can be conveniently represented
using constraint graph
– Each vertex represents a variable, and each weighted edge

corresponds to a different constraint
– Detect infeasibility by the presence of negative cycle (by solving

single-source shortest path)

24

SDC Constraint Graph

s0

s1

s2

s3
s4

00

0

0

-1

s0 – s4 ≤ 0
s1 – s3 ≤ 0
s2 – s3 ≤ 0
s3 – s4 ≤ 0
s4 – s5 ≤ 0
s2 – s4 ≤ -1
s1 – s4 ≤ -1
s4 – s2 ≤ 0

0
-1

s2 – s4 ≤ -1
s5

0

-1

s2 – s4 ≤ -1
s4 – s2 ≤ 0

 0 ≤ -1

▸ Resource constraints cannot be represented exactly in
integer difference form*

25

Handling Resource Constraints (NP-Hard in General)

§ Resource constraints
 è Heuristic partial orderings

 v0 à v2 : s0 – s2 ≤ -1

OR

 v1 à v0 : s1 – s0 ≤ -1
 v2 à v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint
– Two read ports

*A more recent SDC scheduling paper combined SAT and SDC to solve RCS
exactly [Dai et al. FPGA’2018]

Linear Objectives
▸ ASAP: min åiÎV si
▸ ALAP: max åiÎV si
▸ Minimum latency: min maxiÎV {si}
▸ Minimum average case latency

(control-intensive design)
▸ Many other …

min s0 + … + s5

max s0 + … + s5

26

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

ld

+

ld

ld x

v1

v3

v4

v2

v0

stv5

ALAP schedule

Clock
boundary

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

ASAP schedule

Clock
boundary

Control Flow Graphs

▸ Control dependencies can also be
honored
– If bb2 is control dependent on bb1 , the

operation nodes of bb2 are not allowed to be
scheduled before those of bb1

– Polarize each basic block bbi
with two scheduling variables (head and tail)
• "v Î bbi , sh(bbi) – sh(v) £ 0
• "v Î bbi , st(v) – st(bbi) £ 0

– If ec(bbi, bbj) Î Ec and ec is not a back edge
• st(bbi) – sh(bbj) £ 0

B3

B1

B2

B4

t

h

h h

t t

t

h

st(B1) – sh(B2) £ 0

27

Example: Greatest Common Divisor (GCD)

x = in1;
y = in2;
while (x != y) {
 if (x > y)
 x = x – y;
 else y = y – x;
}
*out = x;

28

x = in1
y = in2

cond1 = (x != y)

cond2 = (x > y)

x = x – y
cond3 = (x != y)

y = y – x
cond4 = (x != y)

*out = x

BB1

BB2

BB3 BB4

BB5

cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0

GCD in SSA form

x = in1;
y = in2;
while (x != y) {
 if (x > y)
 x = x – y;
 else y = y – x;
}
*out = x;

x0 = in1
y0 = in2

cond1 = (x0 != y0)

x1 = F(x0, x1, x2)
y1 = F(y0, y1, y2)
cond2 = (x1 > y1)

x2 = x1 – y1
cond3 = (x2 != y1)

y2 = y1 – x1
cond4 = (x1 != y2)

x3 = F(x0, x1, x2)
*out = x3

BB1

BB2

BB3 BB4

BB5

29

cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0

Interpreting the LP Solution of SDC Scheduling

x0 = in1
y0 = in2

cond1 = (x0 != y0)

x1 = F(x0, x1, x2)
y1 = F(y0, y1, y2)
cond2 = (x1 > y1)

x2 = x1 – y1
cond3 = (x2 != y1)

y2 = y1 – x1
cond4 = (x1 != y2)

x3 = F(x0, x1, x2)
*out = x3

BB1

BB2

BB3 BB4

BB5

0

1

▸ Scheduling is performed
across basic block
boundaries

30

cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0

Operations and Predicates

x1 = F (x0, x1, x2)
y1 = F (y0, y1, y2)
cond2 = (x1 > y1)
x2 = x1 – y1
cond3 = (x2 != y1)
y2 = y1 – x1
cond4 = (x1 != y2)
x3 = F (x0, x1, x2)
*out = x3

if (cond1) {
x1 = F (x0, x1, x2)
y1 = F (y0, y1, y2)
cond2 = (x1 > y1)
if (cond2) {

x2 = x1 – y1
cond3 = (x2 != y1)

} else {
y2 = y1 – x1

cond4 = (x1 != y2)
}
if (!cond1 || (!cond3 && !cond4)) {

x3 = F (x0, x1, x2)
*out = x3

}

x0 = in1
y0 = in2
cond1 = (x0 != y0)

x0 = in1
y0 = in2
cond1 = (x0 != y0)

31

Add predicates
for conditionally
executed
operations in
each state

0

1

Deriving State Transition Graph (STG)

Predicates for operations and
state transitions can be derived
from original control flow and
dominance analysis

x0 = in1
y0 = in2

cond1 = (x0 != y0)

32

true

if (cond1) {
x1 = F (x0, x1, x2)
y1 = F (y0, y1, y2)
cond2 = (x1 > y1)
if (cond2) {

x2 = x1 – y1
cond3 = (x2 != y1)

} else {
y2 = y1 – x1

cond4 = (x1 != y2)
}
if (!cond1 || (!cond3 && !cond4)) {

x3 = F (x0, x1, x2)
*out = x3

}

!cond1 && (cond3 || cond4)

▸ ILP
– Exact, but exponential worst-case runtime

▸Hu’s algorithm
– Optimal and polynomial
– Only works in very restricted cases

▸List scheduling
– Extension to Hu’s for general cases
– Greedy (fast) but suboptimal

▸SDC-based scheduling
– A versatile heuristic based on LP formulation with different

constraints
– Amenable to global optimization

33

Scheduling Summary

▸Pipelining

34

Next Lecture

▸These slides contain/adapt materials developed
by
– Ryan Kastner (UCSD)

35

Acknowledgements

