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▸Lab 3 due Monday 

▸HW 2 will be released soon
– Two problems related to pipelining need next week’s 

lecture content
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Announcements



▸ ILP for time-constrained scheduling 

▸Heuristic algorithms for constrained scheduling
– List scheduling
– SDC-based scheduling
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Agenda



Recap: ILP Formulation for Dependence Constraints

▸ Using ASAP and ALAP, the non-trivial inequalities are: 
(assuming no chaining and single-cycle ops)
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assume L=4 
and no chaining
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Recap: ILP Formulation for Resource Constraints

▸ Resource constraints (assuming 2 multipliers and 1 ALU)
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▸ Minimize the number of classrooms that the school must allocate for the 
following courses

▸ Steps to formulate the ILP
1. Create variables
2. Each course to be scheduled to exactly one of the preferred slots
3. Determine the number of rooms required (by creating derived variables)
4. Set up the objective function
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Another Exercise: Formulating ILP

Course Preferred 
Slots

A (1) (2)
B (1) (3)
C (2) (3) 
D (2)

(1) 8:00 – 10:00am
(2) 10:00am – 12:00pm
(3) 12:00 – 2:00pm

min R
R ≥ r1, R ≥ r2, R ≥ r3

Linearize

1
2
3
4 xi,s : course i uses slot s1

xA,1 + xA,2 = 1
xB,1 + xB,3 = 1
xC,2 + xC,3 = 1
xD,2 = 1

2

Objective: min max {r1, r2, r3}4

r1 = xA,1 + xB,1
r2 = xA,2 + xC,2 + xD,2
r3 = xB,3 + xC,3

3



▸ Dual problem of resource-constrained scheduling
– Overall latency is given as a constraint (deadline) 
– Minimize the total cost in terms of area (or resource usage), 

power, etc.

▸ NP-hard problem
– ILP formulation is exact but is not a polynomial-time solution
– Force-directed scheduling is a well-known heuristic for TCS 

(see De Micheli chapter 5.4.4)
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Time-Constrained Scheduling (TCS)



▸ ILP for time-constrained scheduling 
 minimize cTy
 x1,1 + x2,1 +x6,1 + x8,1 £ y1

 x3,2 + x6,2 + x7,2 + x8,2 £ y1 
 x7,3 + x8,3 £ y1

 x5,4 + x9,4 + x11,4 £ y2 
  …
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Example: ILP Formulation for TCS

What does the y vector represent? 
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▸ Constrained scheduling
– General case NP-hard
– Resource-constrained scheduling (RCS)

• Minimize latency given constraints on area or resources
– Time-constrained scheduling (TCS) 

• Minimize resources subject to bound on latency

▸ Exact methods
– Integer linear programming (ILP)
– Symbolic scheduling using BDDs 
– Hu’s algorithm for a very restricted problem

▸ Heuristics
– List scheduling
– Force-directed list scheduling
– SDC-based scheduling
…
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Constrained Scheduling in HLS



▸ Assume 2 multipliers are available and there are 4 
potential multiply operations at control step k

▸ The following Boolean expression captures the 
resource constraint at step k

9

Symbolic Scheduling: Representing Resource 
Constraints with BDD (an example)

Radivojevic & Brewer, Symbolic Techniques for Optimal Scheduling, SASIMI’1993.

1 0

𝑥!,# 𝑥!,#

𝑥$,#

𝑥%,# 𝑥%,#

𝑥&,#

This expression indicates that at least (4 - 2) 
multiplication operations (among 4 potential operations 
in step k) cannot be scheduled to the same step

𝑥&,,- •𝑥#,,- + 𝑥&,,′•𝑥$,,′+ 𝑥&,,′•𝑥(,,′+ 
𝑥#,,′•𝑥$,,′+ 𝑥#,,′•𝑥(,,′+ 𝑥$,,′•𝑥(,,′



▸ A widely-used heuristic algorithm for RCS 
– Schedule one control step (cycle) at a time
– Maintain a list of “ready” operations considering dependence
– Assign priorities to operations; most “critical” operations (with 

the highest priorities) go first

▸ Often refers to a family of algorithms
– Typically classified by the way priority function is calculated

• Static priority: Priorities are calculated once before scheduling
• Dynamic priority calculation: Priorities are updated during scheduling 

10

List Scheduling
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Static Priority Example: Node Height
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§ Assumptions:
– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available
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Ready Nodes with Highest Priorities Picked First 
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– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available
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– All operations have unit delay
– 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step
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Update Ready Nodes and Repeat for Each Step
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Repeat Until All Nodes Scheduled

× +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2 × +×

×

×

×

×

+

<

-

-

sink

4 4

3

22

1

3

1

1

2

2

§ Assumptions:
– All operations have unit delay
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A Special Case

▸ With the following (very) restrictive conditions:
– All operations have unit delay (i.e., single cycle)
– All operations (and resources) are of the same type
– Graph is a forest

▸ List scheduling with static height-based priorities 
guarantees optimality

▸ This is known as Hu’s algorithm
–  T. C. Hu, Parallel sequencing and assembly line problems. 

Operations Research, 9(6), 841-848, 1961
– Guarantees 
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HLS Scheduling: 
Tension between Scalability and Quality 

High 
scalability

(w/ greedy 
decisions)

High quality
(w/ global optimization)

Low
quality

Slow 
runtime

List 
scheduling
(e.g., [Parker et 
al., DAC’86])

ILP

Force-
directed

 [Paulin & 
Knight, 

TCAD’89]

① Handle rich constraints
② Perform global optimization
③ Archive fast runtime

Meta heuristics
(e.g., Ant colony [Wang 
et al., TCAD’07])

?



More Realistic Scheduling Problems

▸ Operation chaining
– More compact schedule

▸ Multi-cycle operations
– Nonpipelined or pipelined
– Higher frequency

▸ Mutually exclusive operations
– Scheduled in the same step, 

but with mutually exclusive execution 
conditions

– Higher resource utilization
▸ Other timing constraints

– Frequency constraints, latency constraints, 
relative time constraints
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d1 d2 d3 dN…

Question: How to place TWO registers on the chain to 
achieve the minimum cycle time?

Given: A chain of n operations. Without any registers, the 
cycle time equals the total combinational delay, which is D 
= sum(di).

19

A Simple Operation Chaining Problem

Example: 5 1 6 2 7



▸SDC = System of difference constraints

20

SDC-Based Scheduling

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si  : schedule variable for operation i

§ Dependence constraints
 <v0 , v4 > : s0 – s4 ≤ 0
 <v1 , v3 > : s1 – s3 ≤ 0
 <v2 , v3 > : s2 – s3 ≤ 0
 <v3 , v4 > : s3 – s4 ≤ 0
 <v4 , v5 > : s4 – s5 ≤ 0

§ Cycle time constraints
 v1 à v5 : s1 – s5 ≤ -1
 v2 à v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC’2006] [Z. Zhang & B. Liu, ICCAD’2013] 

ld

+ 

ldld

x

v1

v3

v4

v2v0

3ns

1ns

1ns

stv5 1ns

Timing 
constraints

Operation 
chaining is 
naturally 
supported

To meet the cycle time, v2 and v5 should 
have a minimum separation of one cycle 
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Exercise: Latency Constraint in SDC

How to enforce that operations v3 
and v4 are not chained and at most 
two cycles apart?

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5



Difference Constraints

▸ A difference constraint is a formula in the form of 
x – y £ b or x – y < b for numeric variables x and y, and 
constant b

▸ With scheduling variables, we use integer difference 
constraints to model a variety of scheduling constraints
– x and y must have integral values

• Thus b only needs to be an integer => form x – y < b is redundant

22



SDC Constraint Matrix

▸ The constraint matrix of SDC(X, C) is a totally unimodular 
matrix (TUM): 
– Every nonsingular square submatrix has a determinant of -1/+1.

s0
s1
s2
s3
s4
s5

0
0
0
0
0

-1
-1

£

A x b
• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular 

and b is a vector of integers, every extreme point of polyhedron 
{x : Ax ≤ b} is integral.
– Solving linear programming (LP) relaxation leads to 

integral solutions

23
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▸ Difference constraints can be conveniently represented 
using constraint graph
– Each vertex represents a variable, and each weighted edge 

corresponds to a different constraint 
– Detect infeasibility by the presence of negative cycle (by solving 

single-source shortest path)

24

SDC Constraint Graph

s0

s1

s2

s3
s4

00

0

0

-1

s0 – s4 ≤ 0
s1 – s3 ≤ 0
s2 – s3 ≤ 0
s3 – s4 ≤ 0
s4 – s5 ≤ 0
s2 – s4 ≤ -1
s1 – s4 ≤ -1
s4 – s2 ≤ 0

0
-1

s2 – s4 ≤ -1
s5

0

-1

s2 – s4 ≤ -1
s4 – s2 ≤ 0

         0 ≤ -1



▸ Resource constraints cannot be represented exactly in 
integer difference form*
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Handling Resource Constraints (NP-Hard in General) 

§ Resource constraints
 è Heuristic partial orderings

 v0 à v2 : s0 – s2 ≤ -1

OR

 v1 à v0 : s1 – s0 ≤ -1
 v2 à v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint
– Two read ports

*A more recent SDC scheduling paper combined SAT and SDC to solve RCS 
exactly [Dai et al. FPGA’2018]



Linear Objectives
▸ ASAP: min åiÎV si
▸ ALAP: max åiÎV si
▸ Minimum latency: min maxiÎV {si}
▸ Minimum average case latency 

(control-intensive design)
▸ Many other …

min s0 + … + s5

max s0 + … + s5
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+ 

ldld
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v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns
• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

ld

+ 

ld

ld x

v1

v3

v4

v2

v0

stv5

ALAP schedule

Clock 
boundary

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

ASAP schedule

Clock 
boundary



Control Flow Graphs

▸ Control dependencies can also be 
honored
– If bb2 is control dependent on bb1 , the 

operation nodes of bb2 are not allowed to be 
scheduled before those of bb1

– Polarize each basic block bbi
with two scheduling variables (head and tail)
• "v Î bbi , sh(bbi) – sh(v) £ 0
• "v Î bbi ,  st(v) – st(bbi) £ 0

– If ec(bbi, bbj) Î Ec  and ec is not a back edge
• st(bbi) – sh(bbj) £ 0

B3

B1

B2

B4

t

h

h h

t t

t

h

st(B1)  – sh(B2) £ 0
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Example: Greatest Common Divisor (GCD)

x = in1;
y = in2;
while (x != y) {
     if ( x > y ) 
         x = x – y;
     else y = y – x;
}
*out = x;

28

x = in1
y = in2

cond1 = (x != y)

cond2 = (x > y)

x = x – y
cond3 = (x != y)

y = y – x
cond4 = (x != y)

*out = x

BB1

BB2

BB3 BB4

BB5

cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0



GCD in SSA form

x = in1;
y = in2;
while (x != y) {
     if ( x > y ) 
         x = x – y;
     else y = y – x;
}
*out = x;

x0 = in1
y0 = in2

cond1 = (x0 != y0)

x1 = F(x0, x1, x2)
y1 = F(y0, y1, y2) 
cond2 = (x1 > y1)

x2 = x1 – y1
cond3 = (x2 != y1)

y2 = y1 – x1
cond4 = (x1 != y2)

x3 = F(x0, x1, x2) 
*out = x3

BB1

BB2

BB3 BB4

BB5
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cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0



Interpreting the LP Solution of SDC Scheduling

x0 = in1
y0 = in2

cond1 = (x0 != y0)

x1 = F(x0, x1, x2)
y1 = F(y0, y1, y2)
cond2 = (x1 > y1)

x2 = x1 – y1
cond3 = (x2 != y1)

y2 = y1 – x1
cond4 = (x1 != y2)

x3 = F(x0, x1, x2)
*out = x3

BB1

BB2

BB3 BB4

BB5

0

1

▸ Scheduling is performed 
across basic block 
boundaries 
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cond1=1

cond2=1

cond3=1 cond4=1

when cond1=0

cond2=0

cond4=0cond3=0



Operations and Predicates

x1 = F (x0, x1, x2) 
y1 = F (y0, y1, y2)
cond2 = (x1 > y1)
x2 = x1 – y1
cond3 = (x2 != y1) 
y2 = y1 – x1
cond4 = (x1 != y2)
x3 = F (x0, x1, x2)
*out = x3

if (cond1) {
x1 = F (x0, x1, x2) 
y1 = F (y0, y1, y2) 
cond2 = (x1 > y1)
if (cond2) {

x2 = x1 – y1
cond3 = (x2 != y1) 

} else {
y2 = y1 – x1

cond4 = (x1 != y2) 
}
if (!cond1 || (!cond3 && !cond4)) {

x3 = F (x0, x1, x2)
*out = x3

}

x0 = in1
y0 = in2
cond1 = (x0 != y0)

x0 = in1
y0 = in2
cond1 = (x0 != y0)

31

Add predicates 
for conditionally 
executed 
operations in 
each state

0

1



Deriving State Transition Graph (STG)

Predicates for operations and 
state transitions can be derived 
from original control flow and 
dominance analysis

x0 = in1
y0 = in2

cond1 = (x0 != y0)

32

true

if (cond1) {
x1 = F (x0, x1, x2) 
y1 = F (y0, y1, y2) 
cond2 = (x1 > y1)
if (cond2) {

x2 = x1 – y1
cond3 = (x2 != y1) 

} else {
y2 = y1 – x1

cond4 = (x1 != y2)  
}
if (!cond1 || (!cond3 && !cond4)) {

x3 = F (x0, x1, x2)
*out = x3

}

!cond1 && (cond3 || cond4)



▸ ILP
– Exact, but exponential worst-case runtime 

▸Hu’s algorithm
– Optimal and polynomial 
– Only works in very restricted cases 

▸List scheduling 
– Extension to Hu’s for general cases 
– Greedy (fast) but suboptimal 

▸SDC-based scheduling 
– A versatile heuristic based on LP formulation with different 

constraints 
– Amenable to global optimization
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Scheduling Summary



▸Pipelining
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Next Lecture



▸These slides contain/adapt materials developed 
by
– Ryan Kastner (UCSD)
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