ECE 6775
High-Level Digital Design Automation
Fall 2023

Resource Sharing
Pipelining

L UMD D
R
Il [==] JJ Cornell University -
@@ 7@ E
e I

Announcements

> Lab 3 is released (due Friday 10/6)
— NO penalty for late submissions, up to 6 days past the deadline
— Go through the CORDIC tutorial first

v

HW 2 will be posted soon

» Jordan Dotzel (PhD TA) will give a tutorial on deep
neural networks this Thursday

> Midterm on Thursday 10/19
-~ In class, 75 mins
— Open book, open notes, closed Internet
— Coverage: Lectures 01~11 & 13

Agenda

> Resource sharing overview

— Sub-problems: functional unit, register, and connectivity binding
problems

— Key concepts: compatibility and conflict graphs

> Introduction to pipelining
— Parallel processing vs. Pipelining
— Common forms in hardware accelerators
— Throughput restrictions: resources and recurrences

Review: SDC-Based Scheduling

> Alinear programming formulation based on system of

integer difference constraints (SDC)

» Dependence constraints

B) <Vo,Vs>:S)—S;,<0
Operation <Vi1,V3>:8;=S3< 0
chainingis <V2,V3>:18;—S3<0
naturally <vg,Vy4>:83—-5,<0
supported oy v, > 15, —ss <0

= Cycle time constraints

Target cycle time: 5ns Vi > V518 =S5 < -1
Delay estimates » Vo 2 V5 Sy — S5 < -1
— Mul (x): 3ns
— Add (+): 1ns
— Load/Store (Id/st): 1ns

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013]

s; : schedule variable for operation i

Timing
constraints

Deployment of SDC Scheduling

‘= README.md

)
ol
—

XLS: Accelerated HW Synthesis
Docs | Quick Start | Tutorials

What is XLS?

XLS implements a High Level Synthesis (HLS) toolchain which produces synthesizable designs (Verilog and
SystemVerilog) from flexible, high-level descriptions of functionality. It is fully Open Source: Apache 2 licensed and

pipeline_schedule.h
pipeline_schedule.proto
pipeline_schedule_test.cc
schedule_bounds.cc
schedule_bounds.h
schedule_bounds_test.cc

scheduling_options.h

last month

2 years ago
last month

8 months ago
12 months ago
7 months ago

2 months ago

developed via GitHub.

XLS (Accelerated HW Synthesis) aims to be the Software Development Kit (SDK) for the End of Moore's Law
(EoML) era. In this "age of specialization", software and hardware engineers must do more co-design across their
domain boundaries -- collaborate on shared artifacts, understand each other's cost models, and share

L OO0 B 00 0B OO

sdc_scheduler.cc

sdc_scheduler.h

2 months ago

2 months ago

tooling/methodology. XLS attempts to leverage automation, software engineers, and machine cycles to accelerate
this overall process.

https://github.com/google/xlIs/blob/main/xls/scheduling

Recap: A Typical HLS Flow

if (condition) {

High-level Programming } :1S_e { b:
Languages Soir g
—5 (C/C++, OpenCL, SystemC, ...) ti - e +
| e o o - > t, = t; * t,;
l z =t - t3; s \
} o ¢
Parsing © Y
J———— Intermediate
I Representation (IR) C
Transformations i >

1 . N - .- l

Control data flow graph
BB
(CDFG)

Allocation
. NI
b
Scheduling‘ Binding |
& >\ I?T) \+/

y - T T T T T TS ~ ng 52| =y
RTL -

generation 3 cycles l

Finite state machines with datapath 5

Resource Sharing and Binding

> Resource sharing enables reuse of hardware resources
to minimize cost, in resource usage/area/power
— Typically carried out by binding in HLS

— Other subtasks such allocation and scheduling greatly impact
the resource sharing opportunities

> Binding maps operations, variables, and/or data
transfers to the available resources

— After scheduling: decide resource usage and detailed
architecture (focus of this lecture)

— Before scheduling: affect both area and delay

- Simultaneous scheduling and binding: better result but more
expensive

Binding Sub-problems

> Functional unit (FU) binding
— Primary objective is to minimize the number of FUs
— Considers connection cost

> Register binding
— Primary objective is to minimize the number of registers
— Considers connection cost

» Connectivity binding
— Minimize connections by exploiting the commutative property of
some operations / FUs
— NP-hard

Sharing Conditions

> Functional units (registers) are shared by operations
(variables) of same type whose lifetimes do not overlap

> Lifetime: [birth-time, death-time)
— Operation: The whole execution time (if unpipelined)

— Variable: From the time this variable is defined to the time it is
last used

Operation Binding

a : : :

O N

C - : :

. ! Z i

R

f i : |

0 E —op5!

clock edge ‘; 2| 9;

Functional Unit | Operations Functional Unit | Operations
Mul1 op1, op3 Mul op1, op3
AddSub1 op2, op4 AddSub1 op2, op4, op6
AddSub?2 op5, op6 AddSub2 op5

Binding 1 Binding 2

Register Binding

Lifetimes crossing at least one clock edge

=> register(s) inferred

T O O T O + O

clock edge

10

Variable Lifetime Analysis

Variables v1, v2, and v3 can
share the same register

() mmmmm e e N mm e T
DI A

S e e I . Y
I\D___________ -_—— - -—— = =

clock edge

vi [1, 2)
V2 [2, 3)
v3 [3! 4)

Variable lifetimes [birth-time, death-time)

Compatibility and Conflict Graphs

> Operation/variables compatibility

— Same type, non-overlapping lifetimes
> Compatibility graph

— \Vertices: operations/variables

— Edges: compatibility relation

> Conflict graph: Complement of compatibility graph

A scheduled DFG
(operations have the

same type) Compatibility graph Conflict graph

12

Clique Cover Number and Chromatic Number

» Compatibility graph
— Partition the graph into a minimum number of cliques

- Clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge

» Conflict graph

— Color the vertices by a minimum number of colors (chromatic
number), where adjacent vertices cannot use the same color

Operations have same type

A scheduled DFG Clique partitioning on Coloring on

compatibility graph conflict graph 13

Perfect Graphs

» Clique partitioning and graph coloring problems are
NP-hard on general graphs, with the exception of
perfect graphs

> Definition of perfect graphs

-~ For every induced subgraph, the size of the maximum (largest)
cligue equals the chromatic number of the subgraph

- Examples: bipartite graphs, chordal graphs, etc.

-+ Chordal graphs: every cycle of four or more vertices has a chord,
i.e., an edge between two vertices that are not consecutive in the
cycle.

14

Interval Graph

> Intersection graphs of a (multi)set of intervals on a line
— Vertices correspond to intervals
— Edges correspond to interval intersection
— A special class of chordal graphs

[Figure source: en.wikipedia.org/wiki/Interval_graph]

15

Left Edge Algorithm

» Problem statement

— Given: Input is a group of intervals with starting and ending time

— Goal: Minimize the number of colors of the corresponding
interval graph

Repeat
create a new color group c
Repeat
assign leftmost feasible interval to c
until no more feasible interval
until no more interval

Interval are sorted according to their left endpoints

Greedy algorithm, O(nlogn) time

16

Left Edge Demonstration

17

<
&
| -
o §,
dt
o c 2
—_ Y=
E 5 5
S) RS
5hnn.V SO
N ——] ™ 7)) QO
5 73
O] - -2 3
© @)
O-——————— -——- ©
=
N N [e =
- -4 | - =
e
N~ P D
['}
- g
A el [) o= To)
£ ~Jfol
ot J =
Q o©- -
| 0
5| — —_

Assign colors (or tracks)
using left edge algorithm

a

; Binding Impact on Multiplexer Network

a : : :

o501 | : i

C 1 : 1

d—s : i

e ; : !

I I I AddSub1
f : : :
AddSub2 9 ! : :
1 I 2 I 3 I 4
clock cycle

Functional Unit | Operations Functional Unit | Operations
Mul1 op1, op3 Mul1 op1, op3
AddSub1 op2, op4 AddSub1 op2, op4, opb6
AddSub2 op5, op6 AddSub?2 op5

Binding 1 Binding 2

18

Binding Summary

> Resource sharing directly impacts the complexity of
the resulting datapath

— # of functional units and registers, multiplexer networks, etc.

> Binding for resource usage minimization

— Left edge algorithm: greedy but optimal for DFGs

— NP-hard problem with the general form of CDFG

* Polynomial-time algorithm exists for SSA-based register
binding, although more registers are required

» Connectivity binding problem (e.g., multiplexer
minimization) is NP-Hard

19

Parallelization Techniques

» Parallel processing

— Emphasizes concurrency by replicating a hardware structure
several times (typically homogeneous)

* High performance is attained by having all structures execute simultaneously
on different parts of the problem to be solved

> Pipelining
— Takes the approach of decomposing the function to be
performed into smaller stages and allocating separate hardware

to each stage (typically heterogeneous)

 Data/instructions flow through the stage of a hardware pipeline at a rate
(often) independent of the length of the pipeline

[source: Peter Kogge, The Architecture of Pipelined Computers]
20

Common Forms of Pipelining

> Operator pipelining
- Fine-grained pipeline (e.g., functional units, memories)
— Execute a sequence of operations on a pipelined resource

» Loop/function pipelining (focus of this class)
— Statically scheduled

— Overlap successive loop iterations / function invocations at a
fixed rate

» Task pipelining
— Coarse-grained pipeline formed by multiple concurrent
processes (often expressed in loops or functions)
— Dynamically controlled

— Start a new task before the prior one is completed
21

Operator Pipelining

> Pipelined multi-cycle operations
- vz and v, can share the same pipelined multiplier (3 stages)

22

Loop Pipelining

> Pipelining is one of the most important optimizations for HLS
— Key factor: Initiation Interval (ll)

— Allows a new iteration to begin processing, |l cycles after the start of
the previous iteration (ll=1 means the loop is fully pipelined)

for (i=0; i< N; ++i)
pli] = x[i] * y[i];

ONO i

Pipelined schedule

=0 [1d | x |[x[st| =1
i=1 Id| X | X|st
Dataflow of 6 i—o Id!| x| % |st
loop body =3 Id | x| x| st
@ Time (cycles)
Id — Load (memory read) Here we assume multiplication (X)

st — Store (memory write) takes two cycles
23

Example: Pipeline Performance

> Given a 100-iteration loop, where its loop body takes 50
cycles to execute

- With Il = 1, how many cycles is heeded to complete execution of
the entire loop?

— What about Il =27

24

Function Pipelining

» Function pipelining: Entire function is becomes a
pipelined datapath

void fir(int *x, int *y)
{
static int shift_reg[NUM_TAPS];
const int taps[NUM_TAPS] =
{1,9, 14,19, 26, 19, 14, 9, 1};
int acc = 0;
for (inti=0;i < NUM_TAPS; ++i)
acc += tapsli] * shift_req[il;
for (inti = NUM_TAPS - 1; i > 0; --i) p p >eee— >
shift_reg[i] = shift_reg][i-1];

shift_reg[0] = *x; X (X

*y =_acc;
}

\ Pipeline the entire function of the FIR filter

(with all loops unrolled and arrays completely partitioned)
25

Task Pipelining

linebuffer linebuffer
Ox Wx |
DV Gradient |% | Gradient |w | Gradient Tensor
Calculation |9: | WeightingH | w, | WeightingV CalculationH
T T 1T
. — — o o~
frame_in I frame_out IFT&ET £ %
v [I I |
232 //\)
233 void gradientWeightingH(unsigned short width, unsigned short height, I I I I I
234 short gradientOrigin[HEIGHT*WIDTH][3], txx L 2 / vV VvV
235 short interGradientWeighting[HEIGHT*WIDTH][3] 4_1:_
236) Yy
237 { 32:\); Velocity ty Tensor
238 static unsigned int inIdx = 0; i 1%z H
239 static unsigned int outIdx = 0; <+ Calculatlon _z CaICUIatIonV
240 unsigned int k, m, i, j; y_
241 short gradientWeightingRowWindow[3] [WeightSize];
242 short tmpOutput([3];
243 short tmpInput[3];
RA4 linebuffer
245 for (1 =0; 1 < height; ++i) { // loop over rows
246 for (j = 0; j < width + WeightRadius; ++j) { // loop over columns
247 for (m=0; m< 3; ++m)
248 tmpOutput([m] = 0; 1 1 1
i POUEpUtA] A coarse-grained pipeline for
250 if (j < width) { // make sure it read height*width times H H
51 for (a= 0 m<3; s the optical flow algorithm
252 tmpInput[m] = gradientOrigin[inIdx][m];
253 ++inIdx;
254 }
255
256 if (j < width & 1 >= WeightRadius && i < height - WeightRadius) {
257 for (m=0; m< 3; ++m) {
258 for (k = 0; k < WeightSize-1; ++k)
259 gradientWeightingRowWindow[m] [k] = gradientWeightingRowWindow[m] [k+1]; 2
260 gradientWeightingRowWindow[m] [WeightSize-1] = tmpInput[m]; 6
261 }

Restrictions of Pipeline Throughput

> Resource limitations
— Limited compute resources
— Limited memory resources (esp. memory port limitations)
— Restricted I/O bandwidth
— Low throughput of subcomponent

» Recurrences

— Also known as feedbacks, carried dependences
- Fundamental limits of the throughput of a pipeline

27

Resource Limitation

> Memory is a common source of resource contention

- e.g. memory port limitations

for(i=1;i<N; ++i)
Bli] = A[i-1] + AJi];

Assuming arrays A and B are
held in two different SRAMs

Only one read port per
SRAM - 1 load / cycle

Port conflict

cycle1 | cycle2 | cycle 3 | cycle 4
i=0 |d; Id, + st
i =1 @ Id; Id» +

28

Recurrence Restriction

> Recurrences restrict pipeline throughput

— Computation of a component depends on a previous result
from the same component

(8 (e
Alil e
(s

All]

Id - Load
st — Store

for(i=1;i<N; ++i)
A[i] = Afi-1] + Ali];

cycle 1 | cycle2 | cycle 3 | cycle 4
=0
' d + st
|d> __
=1 ld, d + st
W=D\ g,

Assume operation chaining is not allowed here
due to cycle time constraint

29

Next Lecture

> Tutorial on Deep Learning

30

Acknowledgements

> These slides contain/adapt materials developed
by
— Prof. Jason Cong (UCLA)
— Prof. Deming Chen (UIUC)
— Prof. Scott Mahlke (UMich)

31

