ECE 6775
High-Level Digital Design Automation
Fall 2024

Scheduling

Announcements

» Lab 2 due tomorrow
» Lab 3 will be released soon

» Tuesday lecture (Oct 1) rescheduled to Friday,
Oct 4 at 4:30pm, Rhodes 310

> Neural network tutorial on Thursday (Oct 3) by
Jordan Dotzel

— Useful for Lab 4 and final project

LLVM: A Foundational IR for Modern Compilers

» Formerly Low Level Virtual Machine
— Brainchild of Chris Lattner and Vikram Adve back in 2000
— ACM Software System Award in 2012

-~ LLVM is widely used in industry and academia (including the HLS tool in
our class)

» The core of LLVM is the SSA-base IR

- Language independent, target independent, easy to use
— RISC-like virtual instructions, unlimited registers, exception handling, etc.

> Provides modular & reusable components for building compilers
— Components are ideally language/target independent
— Allows choice of the right component for the job

= Many high-quality libraries (components) with clean interfaces

Optimizations, analyses, modular code generator profiling, link time optimization,
ARM/X86/PPC/SPARC code generator ..

. -II_??/II\S/I l?Jlil_IIl’[from the libraries: C/C++/0ObjC compiler, modular optimizer, linker, debugger,

https://en.wikipedia.org/wiki/ACM_Software_System_Award

Example: An LLVM Loop

loop:
%$1.1 = phi i5 [0, %bb0], [%1i.2, %loop]
$AiAddr = getelementptr float* %A, 132 %i.l

for (i=0;_i<N; ++1) call void %foo(float $AiAddr, %pair* $%P)
foo (A[i], &P);) i)
$i.2 = add i5 %i.1, 1

$tmp = icmp eq i5 %i.1l, 16
br il %tmp, label %loop, label %outloop

> High-level information exposed in the code
— Explicit dataflow through SSA form
— Explicit control-flow graph
— EXxplicit language-independent type-information
— Explicit typed pointer arithmetic
* Preserve array subscript and structure indexing

source: http://llvm.org

Agenda

> Unconstrained scheduling
~ ASAP and ALAP

» Constrained scheduling
— Resource constrained scheduling (RCS)
— Exact formulations with integer linear programming (ILP)

Recap: A Typical HLS Flow

High-level Programming
Languages
(C/C++, OpenCL, SystemC, ...)

Parsing

J———— Intermediate

I Representation (IR)
Transformations - >
|
Allocation
Scheduling‘ Binding
el -
RTL
generation

if (condition) {

} élse {
t; = a + b;
t, = ¢ * d;
t; = e + f;
ty =t * oty
z =t - t3;
(")
) &
)
@
e
Control data flow graph
BB
(CDFG)

Q.
-

(59
}
¢
|
)

3 cycles

s,

_sg

\/

'

4

s3 \

4_

e

l

Finite state machines with datapath 5

Importance of Scheduling

» Scheduling is a central problem in HLS

— Introduces clock boundaries to untimed (or partially timed)
input specification

—~ Has significant impact on the quality of results
* Frequency
- Latency
» Throughput
- Area
* Power

Scheduling: Untimed to Timed

Untimed Combinational Sequential Pipelined
for Latency for Area for Throughput
inl in2 in3 ind inl in2 in3 ind inl in2 in3 in4 in
! 1|2]3]4
E> =—>» REG
1[2]3
outl outl >
Control-Data " 12
Flow Graph !
(CDFG) outl
out
outl=f (in] ,in2,in3,in4) Lo = 3%d,,, tae = oaa + dsezup N dsetup
I,=1/t, T2=1/(3*tclk) I, =1/t,
Al :3*Aadd Az =Aadd +2*Areg As :3*Aadd +6*Areg

Scheduling Input

» Control data flow graph (CDFG)
— Generated by a compiler front end
from a high-level specification

— Nodes: basic blocks & operations

- Directed edges: data & control
dependencies

> Without control flow, the basic
structure is a data flow graph
(DFG)

Xl = x+dXx;

ul = u-3*x*u*dx-3*y*dx
yl = y+u*dx

c = xlka;
x=xl;u=ul;y =yl

C

R

Scheduling Output

» Scheduling: map operations to states

» Each clock cycle corresponds to a state in the FSM
— Commonly referred to as control step (c-step)
9 vil, v2

clk

(s2) v3, 6, v10

clk

|:> @ v4, v7, v8

clk

@ v5, v9, v11

DFG State transition diagram
(STG), i.e., FSM

Unconstrained Scheduling

> Only consideration: dependence

> As soon as possible (ASAP)

— Schedule an operation to the earliest possible step

> As late as possible (ALAP)

— Schedule an operation to the earliest possible step, without
increasing the total latency

10

ASAP Schedule Assumption for simplicity:

No combinational chaining of

multiple operations in one cycle
(each operation occupies the full cycle)

Y = ((@*b)+c)+(d*e)-(f+9)

g—-—'
1 2 3 4
control step
ASAP(G(V, E)): The start time for each
V’ = Topological_Sort(G) operation is the least
foreach v;in V' : one allowed by the
// Primary inputs (PIs) to first cycle dependencies

if Vi € Pls: t = 1
// Assume no chaining & single-cycle operations
else: t = MaXepredii) {tl + 1}, // (Vj, Vi) cE

11

ALAP Schedule Assumption for simplicity:

No combinational chaining of

control step

ALAP(G(V, E), L): // L is the latency bound
V’ = Reverse_Topological_Sort(G)
foreach v, inV’ :
// Primary outputs (POs) to last cycle
if vie POs: t=L
// Assume no chaining & single-cycle operations
else: t = minkesucc(i) {tk} -1;// (Vi, Vk) =

multiple operations in one cycle
(each operation occupies the full cycle)

Y = ((@*b)+c)+(d*e)-(f+9)

The end time of each
operation is the latest
one allowed by the
dependencies and the
latency constraint

12

Constrained Scheduling in HLS

» Constrained scheduling
— General case NP-hard

— Resource-constrained scheduling (RCS)
- Minimize latency given constraints on area or resources

— Time-constrained scheduling (TCS)
« Minimize resources subject to bound on latency

» Exact methods
— Integer linear programming (ILP)
— Hu’s algorithm for a very restricted problem

> Heuristics
— List scheduling
— Force-directed scheduling
— SDC-based scheduling

13

Linear Programming

> Linear programming (LP) solves the problem of
maximizing or minimizing a linear objective function

subject to linear constraints
— Efficiently solvable both in theory and in practice

> Integer linear programming (ILP): in addition to linear
constraints and objective, the values for the variables
must be integer
- NP-Hard in general (A special case, 0-1 ILP)
— Modern ILP solvers can handle problems with nontrivial size

» Enormous number of problems can be expressed in LP
or ILP

14

Canonical Form of ILP

maximize CiXy+CoXo+...+C.X,, // objective function
subject to // linear constraints
aq1Xq+a1oXo+...+a1,X, < Dy
Qo1 X1+AooXo+. ..+ X, < Dy

Am1Xq+aoXot. .. +a Xy < Dy

Xz 0 x’s are the variables (to be solved);
X; e Z a’s, b’s, and c’s are constants

Vector form

maximize ¢'x// ¢ =(cq, Co, ..., Cr), X = (X1, Xo, ..., X)
subject to (s.t.)
Ax<b // A is a mxn matrix; b = (b4, b, ..., by)

x>0
XiEZ

15

Example: Course Selection Problem

> A student is about to finalize course selection for the
coming semester, given the following requirement

— Minimum credits per semester: 8

Schedule Credits | Est. workload
(per week)
1. Metaverse MW 2:00-3:30pm 3 8 hrs
2. How to start a start-up TT 2:00-3:00pm 2 4 hrs
3. Linear programming (LP) MW 9:00-11:00am 4 10 hrs
4. Analog circuits TT 1:00-3:00pm 4 12 hrs

Question: Which courses should this student choose to

minimize workload?

16

ILP Formulation for Course Selection

» Define decision variables
(i=1, 2,3, 4):

1 if course i is taken
X {

O otherwise

v

Total credits taken:

v

Total expected work hours:

Time CRs Work
1. Metaverse MW 2- 3 8 hrs
3:30pm
2. Start-up TT 2-3pm 2 4 hrs
3.LP MW 9- 4 10 hrs
11am
4. Analog TT 1-3pm 4 12 hrs
8X-| +4X2+1 OX3+1 2X4
3X1 +2X2+4X3+4X4

> Account for the schedule conflict: x,+x, < 1

» Complete ILP formulation (in canonical form):

minimize 8Xx;+4X,+10Xx3+12x,

s.t. 3X4+2X,+4X3+4%x, = 8

Xo+X, < 1
Xi < {Oa1}

17

Resource Constrained Scheduling (RCS)

» When functional units are limited

— Each functional unit can only perform one operation at each
clock cycle

* e.g., if there are only K adders, no more than K additions can
be executed in the same c-step

> A typical resource-constrained scheduling problem
for DFG

— Given the number of functional units of each type, minimize
latency (in cycles)

— NP-hard

18

ILP Formulation of RCS: Binary Variables

> Binary decision variables x;
- x;, = 1if operation i starts at step k, otherwise =0
*1<i<N,1<Zk<L
* N is the total number of operations
* L is the given upper bound on latency

19

ILP Formulation of RCS: Derived Variables

> Binary decision variables x;
- x;, = 1if operation i starts at step k, otherwise =0
*1<i<N,1<Zk<L
* N is the total number of operations
* L is the given upper bound on latency

> Derived integer variables t;

L
ti = 2 k - xl-’k
k=1

t; indicates the actual start time of operation i

20

ILP Formulation of RCS: Constraints (1)

> Unique start times: an operation must start at one and
only one of the available steps

Vi € [1,N] :2 Xk = 1
k

> Dependence must be satisfied (assuming no chaining)

Vi,j)EE:t;=t; +d; —>z k-xjj = z k-xip+d;

Operation j must not start before i completes if j depends on i

d; : latency of operation i
- d; =1 means a single-cycle operation
- d; > 1 indicates a multi-cycle operation

21

Start Time vs. Active Time(s)

» When d; = 1, the following are the same

— Does operation i start at step k?
— |s operation i actively running at step k?
— Same equality check: if x;; is 1

> When di > 1, the following questions are different

— Does operation i start at step k? Simply check if x;; is 1
— |Is operation i active at step k? Check if the following holds

k ?
I=k—d;+1

22

Is Operation i Still Active at Step k ?

> |s operation 9 active (running) at step 67 assuming d, = 3

6 ?
if and only if Xg ¢ + X9 5 + Xg 4 €quals 1 |:> 2 Xg; =1
[=6—-3+1

> Notes
— Only one (if any) of the above three cases can happen

— To meet resource constraints, we must check the same equality
for ALL steps, and ALL operations of that type

23

ILP Formulation of RCS: Constraints (2)

> Physical resource limits

— R denotes the total number of different resource types (RT)
— RT(i) € [1,R] is the resource type of operation i

— a, is the number of physically available resources of type r

At any step k, the total number of active operations of the same

type r must not exceed a,., the number of physically available
resources for type r

K
vk € |1,L],vr € |[1,R] : z lz Xi1|< Ay
i:RT (i) =1 lmd =k —dl; +1

Sum over operations If operation i is active
of resource r at step k

The above summation counts the number of
operations active at step k that use resource r

24

ILP Formulation of RCS: Putting It Together

> Unique start times
Vi € [1,N] :2 Xk = 1
K

> Dependence must be satisfied (assuming no chaining)

V(i,j)EEithti-Fdi —>z k'Xj,kzz k'xi’k+di
k k

> Physical resource limits

k
vk € [1,L],vr € [LR] : z z X1 < Gy
i:RT(i)=r &=dl=k—d;+1

25

ILP Formulation of RCS: Objective Function

» For simplicity, we introduce a pseudo node v, to serve
as a unique sink of the DFG
— This node depends on all the original primary output nodes

> To minimize the overall latency, we simply minimize the
start time of the sink node

26

Use of ASAP and ALAP

> In general, the following helps the ILP solver run faster
— Minimize # of variables and constraints
— Simplify the constraints

> We can write the ILP without ASAP/ALAP, but using
ASAP and ALAP can simplify the constraints

ASAP schedule ALAP schedule

27

ILP Formulation: Unique Start Time Constraints

x,=0 for 1<t and >t

(t5 = ASAP(v), t" = ALAP(v.))

> Without using ASAP and ALAP > Using ASAP and ALAP
X11 F+ X12tX131tX14 = 1 x11 =1
X214+ X2 2t Xp3+x74 =1 X21 =1
X1+ Xe2tX63tX64 =1 Xe1 + X62 =1
X931 + Xg2tXg3txg, =1 Xg2FX93tXg 4 = 1

assume L=4

28

ASAP schedule ALAP schedule

ILP Formulation: Dependence Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:
(assuming no chaining and single-cycle ops)

2x79 + 3x73 —Xgq1 — 2Xgp = 1

dxg 4 — 2%75 — 3x73 = 1

2xg + 3x93 +4x94 —Xgq — 2Xg, — 3xg3 =1
2x11,2 + 3%11,3 + 4X11,4 — X101 — 2X102 — 3X103 = 1

assume L=4

ASAP schedule ALAP schedule

29

ILP Formulation: Resource Constraints

> Resource constraints (assuming 2 multipliers and 1 ALU)

X11 + X21tXe1txg1 < 2
X32 + Xe2tXx72txg, <2
X73txg3 < 2

X101 =1

XgtX102FX112 <1
X437t Xg3+X193+Xx113 < 1
X54FXg4tX114 < 1

assume L=4

ASAP schedule ALAP schedule

30

ILP Summary

> Pros: versatile modeling ability

— Can be extended to handle almost every design aspect
* Resource allocation
* Module selection
* Area, power, etc.

» Cons: computationally expensive
— #variables = O(#nodes * #steps)
- 0-1 variables: need extensive search to find optimal solution

31

Next Lecture

» More scheduling algorithms

32

Acknowledgements

> These slides contain/adapt materials developed

by
— Ryan Kastner (UCSD)

33

