ECE 6775 High-Level Digital Design Automation Fall 2023

More Scheduling

Announcements

- Lab 1 graded
 - Only 2 integer bits needed for the fixed-point design
- Lab 2 due tomorrow
- Lab 3 will be released soon
- Virtual lecture next Tuesday

Agenda

- ILP for time-constrained scheduling
- Heuristic algorithms for constrained scheduling
 - List scheduling
 - SDC-based scheduling

Exercise: Formulating ILP

- Minimize the number of classrooms that the school must allocate for the following courses
- Steps to formulate the ILP
 - (1) Create variables
 - (2) Each course to be scheduled to exactly one of the preferred slots
 - (3) Determine the number of rooms required (by creating new derived variables)
 - (4) Set up the objective function

Course	Preferred Slots	
А	(1) (2)	
В	(1) (3)	
С	(2) (3)	
D	(2)	

- (1) 8:00 10:00am
- (2) 10:00am 12:00pm
- (3) 12:00 2:00pm

1 x_{i,s}: course i uses slot s

②
$$X_{A,1} + X_{A,2} = 1$$
 ③ $r_1 = X_{A,1} + X_{B,1}$
 $X_{B,1} + X_{B,3} = 1$ $r_2 = X_{A,2} + X_{C,2} + X_{D,2}$
 $X_{C,2} + X_{C,3} = 1$ $r_3 = X_{B,3} + X_{C,3}$
 $x_{C,3} = 1$

4 Objective: min max {r1, r2, r3}

Linearize min R
$$R \ge r_1$$
, $R \ge r_2$, $R \ge r_3$

Time-Constrained Scheduling (TCS)

- Dual problem of resource-constrained scheduling
 - Overall latency is given as a constraint (deadline)
 - Minimize the total cost in terms of area (or resource usage), power, etc.
- NP-hard problem
 - ILP formulation is exact but is not a polynomial-time solution
 - Force-directed scheduling is a well-known heuristic for TCS (see De Micheli chapter 5.4.4)

Example: ILP Formulation for TCS

ILP for time-constrained scheduling
 minimize c^Ty

$$\begin{aligned} x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} &\leq y_1 \\ x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} &\leq y_1 \\ x_{7,3} + x_{8,3} &\leq y_1 \\ x_{5,4} + x_{9,4} + x_{11,4} &\leq y_2 \end{aligned}$$

What does the y vector represent?

Recap: Constrained Scheduling in HLS

- Constrained scheduling
 - General case NP-hard
 - Resource-constrained scheduling (RCS)
 - Minimize latency given constraints on area or resources
 - Time-constrained scheduling (TCS)
 - Minimize resources subject to bound on latency
- Exact methods
 - Integer linear programming (ILP)
 - Hu's algorithm for a very restricted problem
- Heuristics
 - List scheduling
 - Force-directed list scheduling
 - SDC-based scheduling

. . .

List Scheduling

- A widely-used heuristic algorithm for RCS
 - Schedule one control step (cycle) at a time
 - Maintain a list of "ready" operations considering dependence
 - Assign priorities to operations; most "critical" operations (with the highest priorities) go first
- Often refers to a family of algorithms
 - Typically classified by the way priority function is calculated
 - Static priority: Priorities are calculated once before scheduling
 - Dynamic priority calculation: Priorities are updated during scheduling

Static Priority Example: Node Height

Nodes are labelled with distance to sink (height)

Ready operations are colored in green

- Assumptions:
 - All operations have unit delay
 - 2 MULTs, 1 AddSub, and 1 CMP available

Ready Nodes with Highest Priorities Picked First

- Assumptions:
 - All operations have unit delay
 - 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step

- Assumptions:
 - All operations have unit delay
 - 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step

- Assumptions:
 - All operations have unit delay
 - 2 MULTs, 1 AddSub, and 1 CMP available

Repeat Until All Nodes Scheduled

- Assumptions:
 - All operations have unit delay
 - 2 MULTs, 1 AddSub, and 1 CMP available

A Special Case

- With the following (very) restrictive conditions:
 - All operations have unit delay (i.e., single cycle)
 - All operations (and resources) are of the same type
 - Graph is a forest
- List scheduling with static height-based priorities guarantees optimality
- This is known as Hu's algorithm
 - T. C. Hu, Parallel sequencing and assembly line problems.
 Operations Research, 9(6), 841-848, 1961
 - Guarantees

HLS Scheduling: Tension between Scalability and Quality

More Realistic Scheduling Problems

- Operation chaining
 - More compact schedule
- Multi-cycle operations
 - Nonpipelined or pipelined
 - Higher frequency
- Mutually exclusive operations
 - Scheduled in the same step, but with mutually exclusive execution conditions
 - Higher resource utilization
- Other timing constraints
 - Frequency constraints, latency constraints, relative time constraints

A Simple Operation Chaining Problem

Given: A chain of n operations. Without any registers, the cycle time equals the total combinational delay, which is $D = sum(d_i)$.

Question: How to place TWO registers on the chain to achieve the minimum cycle time?

SDC-Based Scheduling

SDC = System of difference constraints

 \mathbf{s}_i : schedule variable for operation i

Dependence constraints

$$| > < V_0 , V_4 > : S_0 - S_4 \le 0$$

Timing constraints

- Target cycle time: 5ns
- Delay estimates
 - Mul (x): 3ns
 - Add (+): 1ns
 - Load/Store (ld/st): 1ns

Cycle time constraints

$$v_1 \rightarrow v_5 : s_1 - s_5 \le -1$$

$$\rightarrow$$
 $v_2 \rightarrow v_5 : s_2 - s_5 \le -1$

To meet the cycle time, v_2 and v_5 should have a minimum separation of one cycle

Exercise: Latency Constraint in SDC

How to enforce that operations $\mathbf{v_3}$ and $\mathbf{v_4}$ are not chained and at most two cycles apart?

Difference Constraints

- A difference constraint is a formula in the form of $x y \le b$ or x y < b for numeric variables x and y, and constant b
- With scheduling variables, we use integer difference constraints to model a variety of scheduling constraints
 - x and y must have integral values
 - Thus *b* only needs to be an integer => form x-y < b is redundant

SDC Constraint Matrix

- The constraint matrix of SDC(X, C) is a totally unimodular matrix (TUM):
 - Every nonsingular square submatrix has a determinant of -1/+1.

$$\left(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \\ 0 \ 1 \ 0 \ -1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ -1 \\ 0 \ 1 \ 0 \ 0 \ 0 \ -1 \\ 0 \ 1 \ 0 \ 0 \ 0 \ -1 \\ \end{array} \right) \ \leq \ \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{array} \right)$$

$$A \qquad \qquad X \qquad \qquad b$$

- Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular and b is a vector of integers, every extreme point of polyhedron {x : Ax ≤ b} is integral.
 - Solving linear programming (LP) relaxation leads to integral solutions

SDC Constraint Graph

- Difference constraints can be conveniently represented using constraint graph
 - Each vertex represents a variable, and each weighted edge corresponds to a different constraint
 - Detect infeasibility by the presence of negative cycle (by solving single-source shortest path)

Handling Resource Constraints (NP-Hard in General)

 Resource constraints cannot be represented exactly in integer difference form

- Resource constraint
 - Two read ports

- Resource constraints
 - → Heuristic partial orderings

$$v_0 \rightarrow v_2 : s_0 - s_2 \le -1$$
 3 cycle latency
OR

$$v_1 \rightarrow v_0 : s_1 - s_0 \le -1$$

 $v_2 \rightarrow v_0 : s_2 - s_0 \le -1$ 2 cycle latency

Linear Objectives

ASAP: min $\sum_{i \in V} s_i$

ALAP: $\max \sum_{i \in V} s_i$

Minimum latency: min $\max_{i \in V} \{s_i\}$

Minimum average case latency (control-intensive design)

Many other ...

 $\min s_0 + ... + s_5$

- Target cycle time: 5ns
- Delay estimates
 - Mul (x): 3ns
 - Add (+): 1ns
 - Load/Store (ld/st): 1ns

Control Flow Graphs

- Control dependencies can also be honored
 - If bb₂ is control dependent on bb₁, the operation nodes of bb₂ are not allowed to be scheduled before those of bb₁
 - Polarize each basic block bb_i
 with two scheduling variables (head and tail)

•
$$\forall v \in bb_i$$
, $s_h(bb_i) - s_h(v) \leq 0$

•
$$\forall v \in bb_i$$
, $s_t(v) - s_t(bb_i) \leq 0$

- If $e_c(bb_i, bb_i) \in E_c$ and e_c is not a back edge

•
$$s_t(bb_i) - s_h(bb_i) \le 0$$

$$s_t(B_1) - s_h(B_2) \le 0$$

Example: Greatest Common Divisor (GCD)

```
x = in1;
y = in2;
while (x != y) {
    if ( x > y )
        x = x - y;
    else y = y - x;
}
*out = x;
```


GCD in SSA form

```
x = in1;
y = in2;
while (x != y) {
    if (x > y)
        x = x - y;
    else y = y - x;
}
*out = x;
```


Interpreting the LP Solution of SDC Scheduling

Operations and Predicates

$$x_0 = in1$$

 $y_0 = in2$
 $cond1 = (x_0 != y_0)$

1 $x_1 = \Phi(x_0, x_1, x_2)$ $y_1 = \Phi(y_0, y_1, y_2)$ $cond2 = (x_1 > y_1)$ $x_2 = x_1 - y_1$ $cond3 = (x_2 != y_1)$ $y_2 = y_1 - x_1$ $cond4 = (x_1 != y_2)$ $x_3 = \Phi(x_0, x_1, x_2)$ *out = x₃

Add predicates for conditionally executed operations in each state


```
x_0 = \text{in1}

y_0 = \text{in2}

\text{cond1} = (x_0 != y_0)
```

```
If (cond1) {
x_1 = \Phi (x_0, x_1, x_2)
y_1 = \Phi (y_0, y_1, y_2)
cond2 = (x_1 > y_1)
if (cond2) {
x_2 = x_1 - y_1
cond3 = (x_2 != y_1)
} else {
y_2 = y_1 - x_1
cond4 = (x_1 != y_2)
}
if (!cond1 || (!cond3 && !cond4)) {
x_3 = \Phi (x_0, x_1, x_2)
*out = x_3
```

Deriving State Transition Graph (STG)

Predicates for operations and state transitions can be derived from original control flow and dominance analysis

```
(cond1) {
  x_1 = \Phi(x_0, x_1, x_2)
  y_1 = \Phi (y_0, y_1, y_2)
  cond2 = (x_1 > y_1)
  if (cond2) {
     X_2 = X_1 - Y_1
     cond3 = (x_2 != y_1)
  } else {
     y_2 = y_1 - x_1
     cond4 = (x_1 != y_2)
if (!cond1 || (!cond3 && !cond4))
     x_3 = \Phi(x_0, x_1, x_2)
     *out = x_3
```

!cond1 && (cond3 || cond4)

*Exact Encoding of Resource Constraints

Two read ports only!

Load operations must be serialized,

(**NP-Hard** in general)

	Port1 Port2 DSP		
cycle=1	v ₀	V ₂	
cycle=2	V ₁		V ₃
cycle=3		V ₅	V ₄

OR

PORT PORZ DSP				
V ₁	v ₂	V ₃		
V ₀	V ₅	V ₄		

D = 44 D = 40 D C D

$$\bigcirc$$

$$s_0 - s_1 \neq 0$$

$$s_0 - s_1 \leq -1$$

$$\underset{\mathsf{OR}}{\mathsf{OR}}$$

$$s_1 - s_0 \le -1$$

Resource sharing variable $R_{0,1}$ v_0 and v_1 share the same port?

Ordering variable $\mathbf{0}_{\mathbf{0}\to\mathbf{1}}$ v₀ scheduled before v₁?

 v_1 scheduled before v_0 ?

Note: $R_{0,1} \rightarrow (O_{0\rightarrow 1} \vee O_{1\rightarrow 0})$ reads " $R_{0,1}$ implies $O_{0\rightarrow 1}$ or $O_{1\rightarrow 0}$ "

Difficult to exactly encode resource constraints in the strict SDC form

Using Boolean formulas instead

*SDS: Exact and Practically Scalable Scheduling with SDC and SAT

Partial Difference orderings constraints $S_0 - S_4 \leq 0$ $R_{01} \to (0_{0 \to 1} \lor 0_{1 \to 0})$ $s_1 - s_3 \le 0$ $\neg (0_{0 \rightarrow 1} \land 0_{1 \rightarrow 0})$ $s_2 - s_3 \le 0$ SAT SDC $R_{02} \rightarrow (O_{0\rightarrow 2} \lor O_{2\rightarrow 0})$ $S_3 - S_4 \le 0$ **Timing** Resource $\neg (0_{0\rightarrow 2} \land 0_{2\rightarrow 0})$ $s_4 - s_5 \le 0$ **Constraints Constraints** $R_{12} \to (O_{1 \to 2} \lor O_{2 \to 1})$ $s_2 - s_5 \le -1$ $\neg (0_{1\rightarrow 2} \land 0_{2\rightarrow 1})$ $S_1 - S_5 \le -1$ **Infeasibility** Conflict clauses **Conflict based Graph based** feasibility checking search Polynomial time ~1M variables Conflict-driven learning >1M clauses

Scheduling Summary

- ► ILP
 - Exact, but exponential worst-case runtime
- Hu's algorithm
 - Optimal and polynomial
 - Only works in very restricted cases
- List scheduling
 - Extension to Hu's for general cases
 - Greedy (fast) but suboptimal
- SDC-based scheduling
 - A versatile heuristic based on LP formulation with different constraints
 - Amenable to global optimization

Next Lecture

- Resource sharing
- Pipelining concepts

Acknowledgements

- These slides contain/adapt materials developed by
 - Ryan Kastner (UCSD)