ECE 6775

High-Level Digital Design Automation Fall 2023

More Scheduling

Announcements

- Lab 1 graded
- Only 2 integer bits needed for the fixed-point design
- Lab 2 due tomorrow
- Lab 3 will be released soon
- Virtual lecture next Tuesday

Agenda

- ILP for time-constrained scheduling
- Heuristic algorithms for constrained scheduling
- List scheduling
- SDC-based scheduling

Exercise: Formulating ILP

- Minimize the number of classrooms that the school must allocate for the following courses
- Steps to formulate the ILP
(1) Create variables
(2) Each course to be scheduled to exactly one of the preferred slots
(3) Determine the number of rooms required (by creating new derived variables)
(4) Set up the objective function
(1) $X_{i, s}$: course i uses slot s

Course	Preferred Slots
A	$(1)(2)$
B	$(1)(3)$
C	$(2)(3)$
D	(2)

> (1) $8: 00-10: 00 \mathrm{am}$
> (2) 10:00am - 12:00pm
> (3) 12:00-2:00pm
(2) $X_{A, 1}+x_{A, 2}=1$
(3) $r_{1}=x_{A, 1}+x_{B, 1}$
$\mathrm{x}_{\mathrm{B}, 1}+\mathrm{x}_{\mathrm{B}, 3}=1$
$r_{2}=x_{A, 2}+x_{C, 2}+x_{D, 2}$
$\mathrm{x}_{\mathrm{C}, 2}+\mathrm{x}_{\mathrm{C}, 3}=1$
$r_{3}=X_{B, 3}+x_{C, 3}$
$x_{D, 2}=1$
(4) Objective: $\min \max \{r 1, r 2, r 3\}$

$$
\begin{aligned}
& \min R \\
& R \geq r_{1}, R \geq r_{2}, R \geq r_{3}
\end{aligned}
$$

Time-Constrained Scheduling (TCS)

- Dual problem of resource-constrained scheduling
- Overall latency is given as a constraint (deadline)
- Minimize the total cost in terms of area (or resource usage), power, etc.
- NP-hard problem
- ILP formulation is exact but is not a polynomial-time solution
- Force-directed scheduling is a well-known heuristic for TCS (see De Micheli chapter 5.4.4)

Example: ILP Formulation for TCS

- ILP for time-constrained scheduling minimize $c^{\top} y$

$$
\begin{aligned}
& x_{1,1}+x_{2,1}+x_{6,1}+x_{8,1} \leq y_{1} \\
& x_{3,2}+x_{6,2}+x_{7,2}+x_{8,2} \leq y_{1} \\
& x_{7,3}+x_{8,3} \leq y_{1} \\
& x_{5,4}+x_{9,4}+x_{11,4} \leq y_{2}
\end{aligned}
$$

What does the y vector represent?

Recap: Constrained Scheduling in HLS

- Constrained scheduling
- General case NP-hard
- Resource-constrained scheduling (RCS)
- Minimize latency given constraints on area or resources
- Time-constrained scheduling (TCS)
- Minimize resources subject to bound on latency
- Exact methods
- Integer linear programming (ILP)
- Hu's algorithm for a very restricted problem
- Heuristics
- List scheduling
- Force-directed list scheduling
- SDC-based scheduling

List Scheduling

- A widely-used heuristic algorithm for RCS
- Schedule one control step (cycle) at a time
- Maintain a list of "ready" operations considering dependence
- Assign priorities to operations; most "critical" operations (with the highest priorities) go first
- Often refers to a family of algorithms
- Typically classified by the way priority function is calculated
- Static priority: Priorities are calculated once before scheduling
- Dynamic priority calculation: Priorities are updated during scheduling

Static Priority Example: Node Height

Nodes are labelled with distance to sink (height)

Ready operations are colored in green

- Assumptions:
- All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

Ready Nodes with Highest Priorities Picked First

- Assumptions:
- All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step

- Assumptions:
- All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

Update Ready Nodes and Repeat for Each Step

- Assumptions:
- All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

Repeat Until All Nodes Scheduled

- Assumptions:
- All operations have unit delay
- 2 MULTs, 1 AddSub, and 1 CMP available

A Special Case

- With the following (very) restrictive conditions:
- All operations have unit delay (i.e., single cycle)
- All operations (and resources) are of the same type
- Graph is a forest
- List scheduling with static height-based priorities guarantees optimality
- This is known as Hu's algorithm
- T. C. Hu, Parallel sequencing and assembly line problems. Operations Research, 9(6), 841-848, 1961
- Guarantees

HLS Scheduling:
 Tension between Scalability and Quality

More Realistic Scheduling Problems

- Operation chaining
- More compact schedule
- Multi-cycle operations
- Nonpipelined or pipelined
- Higher frequency
- Mutually exclusive operations
- Scheduled in the same step, but with mutually exclusive execution conditions
- Higher resource utilization
- Other timing constraints
- Frequency constraints, latency constraints,
 relative time constraints

A Simple Operation Chaining Problem

Given: A chain of n operations. Without any registers, the cycle time equals the total combinational delay, which is D
$=\operatorname{sum}\left(\mathrm{d}_{\mathrm{i}}\right)$.

Question: How to place TWO registers on the chain to achieve the minimum cycle time?

Example: $\rightarrow 5 \rightarrow(1) \rightarrow(6 \rightarrow+\rightarrow$

SDC-Based Scheduling

- SDC = System of difference constraints

- Target cycle time: 5ns
- Delay estimates
- Mul (x): 3ns
- Add (+): 1ns
- Load/Store (ld/st): 1ns
s_{i} : schedule variable for operation i
- Dependence constraints
$\left.\Rightarrow<v_{0}, v_{4}\right\rangle: s_{0}-s_{4} \leq 0$
$<v_{1}, v_{3}>: s_{1}-s_{3} \leq 0$
$<v_{2}, v_{3}>: s_{2}-s_{3} \leq 0$
$<\mathrm{V}_{3}, \mathrm{v}_{4}>: \mathrm{S}_{3}-\mathrm{s}_{4} \leq 0$
$<\mathrm{V}_{4}, \mathrm{~V}_{5}>: \mathrm{S}_{4}-\mathrm{S}_{5} \leq 0$
Timing constraints
- Cycle time constraints
$\left.\Rightarrow \begin{array}{l}\mathrm{v}_{1} \rightarrow \mathrm{v}_{5}: \mathrm{s}_{1}-\mathrm{s}_{5} \leq-1 \\ \mathrm{v}_{2} \rightarrow \mathrm{v}_{5}: \mathrm{s}_{2}-\mathrm{s}_{5} \leq-1\end{array}\right]$
To meet the cycle time, v_{2} and v_{5} should have a minimum separation of one cycle

Exercise: Latency Constraint in SDC

How to enforce that operations $\mathbf{v}_{\mathbf{3}}$ and $\mathbf{v}_{\mathbf{4}}$ are not chained and at most two cycles apart?

Difference Constraints

- A difference constraint is a formula in the form of $x-y \leq b$ or $x-y<b$ for numeric variables x and y, and constant b
- With scheduling variables, we use integer difference constraints to model a variety of scheduling constraints
- x and y must have integral values
- Thus b only needs to be an integer $=>$ form $x-y<b$ is redundant

SDC Constraint Matrix

- The constraint matrix of $\operatorname{SDC}(X, C)$ is a totally unimodular matrix (TUM):
- Every nonsingular square submatrix has a determinant of $-1 /+1$.

$$
\begin{aligned}
& \left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5}
\end{array}\right] \leq\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
-1
\end{array}\right] \\
& \text { A } \quad \mathrm{X} \\
& \text { b }
\end{aligned}
$$

- Theorem (Hoffman \& Kruskal, 1956): If A is totally unimodular and b is a vector of integers, every extreme point of polyhedron $\{x: A x \leq b\}$ is integral.
- Solving linear programming (LP) relaxation leads to integral solutions

SDC Constraint Graph

- Difference constraints can be conveniently represented using constraint graph
- Each vertex represents a variable, and each weighted edge corresponds to a different constraint
- Detect infeasibility by the presence of negative cycle (by solving single-source shortest path)

Handling Resource Constraints (NP-Hard in General)

- Resource constraints cannot be represented exactly in integer difference form

- Resource constraint
- Two read ports
- Resource constraints
\rightarrow Heuristic partial orderings
$\mathrm{v}_{0} \rightarrow \mathrm{v}_{2}: \mathrm{s}_{0}-\mathrm{s}_{2} \leq-1 \quad 3$ cycle latency OR
$\mathrm{v}_{1} \rightarrow \mathrm{v}_{0}: \mathrm{s}_{1}-\mathrm{s}_{0} \leq-1$
$\mathrm{v}_{2} \rightarrow \mathrm{v}_{0}: \mathrm{s}_{2}-\mathrm{s}_{0} \leq-1$

Linear Objectives

- ASAP: $\min \sum_{i \in V} s_{i}$
- ALAP: $\max \sum_{i \in V} s_{i}$
- Minimum latency: min $\max _{i \in \mathrm{~V}}\left\{\mathrm{~s}_{\mathrm{i}}\right\}$
- Minimum average case latency (control-intensive design)
- Many other ...

- Target cycle time: 5ns
- Delay estimates
- Mul (x): 3ns
- Add (+): 1ns
- Load/Store (ld/st): 1ns

Control Flow Graphs

- Control dependencies can also be honored
- If $b b_{2}$ is control dependent on $b b_{1}$, the operation nodes of $b b_{2}$ are not allowed to be scheduled before those of $b b_{1}$
- Polarize each basic block $b b_{i}$ with two scheduling variables (head and tail)
- $\forall v \in b b_{i}, s_{h}\left(b b_{i}\right)-s_{h}(v) \leq 0$
- $\forall v \in b b_{i}, s_{t}(v)-s_{t}\left(b b_{i}\right) \leq 0$
- If $e_{c}\left(b b_{i}, b b_{j}\right) \in E_{c}$ and e_{c} is not a back edge

$$
\text { - } s_{t}\left(b b_{i}\right)-s_{h}\left(b b_{j}\right) \leq 0
$$

$s_{t}\left(B_{1}\right)-s_{h}\left(B_{2}\right) \leq 0$

Example: Greatest Common Divisor (GCD)

$x=\operatorname{in} 1$;
$y=i n 2 ;$
while (x != y) \{ if $(x>y)$ $x=x-y ;$
else $y=y-x$;
\}
*out = x;

GCD in SSA form

$x=\operatorname{in} 1$;
$y=i n 2 ;$
while (x != y) \{
if $(x>y)$
$x=x-y ;$
else $y=y-x ;$
\}
*out = x;

Interpreting the LP Solution of SDC Scheduling

- Scheduling is performed across basic block boundaries

Operations and Predicates

0 | $x_{0}=\operatorname{in1}$ |
| :--- |
| $y_{0}=\operatorname{in2}$ |
| cond1 $=\left(x_{0}!=y_{0}\right)$ |

$$
1 \begin{aligned}
& \mathrm{x}_{1}=\Phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& \mathrm{y}_{1}=\Phi\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \\
& \text { cond2 }=\left(\mathrm{x}_{1}>\mathrm{y}_{1}\right) \\
& \\
& \mathrm{x}_{2}=\mathrm{x}_{1}-\mathrm{y}_{1} \\
& \text { cond3 }=\left(\mathrm{x}_{2}!=\mathrm{y}_{1}\right) \\
& \mathrm{y}_{2}=\mathrm{y}_{1}-\mathrm{x}_{1} \\
& \operatorname{cond} 4=\left(\mathrm{x}_{1}!=\mathrm{y}_{2}\right) \\
& \\
& \mathrm{x}_{3}=\Phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& \\
& \\
& \text { *out }=\mathrm{x}_{3}
\end{aligned}
$$

Deriving State Transition Graph (STG)

*Exact Encoding of Resource Constraints

Difficult to exactly encode resource constraints in the strict SDC form

Using Boolean formulas instead
Resource sharing variable

$s_{0}-s_{1} \leq-1$
v_{0} and v_{1} share the same port?
Ordering variable
$\mathbf{0}_{\mathbf{0} \rightarrow \mathbf{1}} \quad \mathrm{v}_{0}$ scheduled before v_{1} ?
OR
V
$\mathbf{s}_{\mathbf{1}}-\mathbf{s}_{\mathbf{0}} \leq-\mathbf{1} \quad \mathbf{0}_{\mathbf{1} \rightarrow \mathbf{0}} \quad \mathrm{v}_{1}$ scheduled before v_{0} ?

Note: $\mathrm{R}_{0,1} \rightarrow\left(\mathrm{O}_{0 \rightarrow 1} \vee \mathrm{O}_{1 \rightarrow 0}\right)$ reads
" $\mathrm{R}_{0,1}$ implies $\mathrm{O}_{0 \rightarrow 1}$ or $\mathrm{O}_{1 \rightarrow 0}$ "

*SDS: Exact and Practically Scalable Scheduling with SDC and SAT

Scheduling Summary

- ILP
- Exact, but exponential worst-case runtime
- Hu's algorithm
- Optimal and polynomial
- Only works in very restricted cases
- List scheduling
- Extension to Hu's for general cases
- Greedy (fast) but suboptimal
- SDC-based scheduling
- A versatile heuristic based on LP formulation with different constraints
- Amenable to global optimization

Next Lecture

- Resource sharing
- Pipelining concepts

Acknowledgements

- These slides contain/adapt materials developed by
- Ryan Kastner (UCSD)

