
More CFG
Static Single Assignment

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ In-class midterm moved to Oct 22

▸ Lecture on Oct 1 may be rescheduled, date TBD
(a poll will be posted on Ed)

1

Announcements

▸ More control flow analysis
– Dominator tree
– Dominance frontier

▸ Data flow graph (DFG) and data dependences

▸ Static single assignment (SSA)
– SSA definition
– PHI node (F-node) placement
– Code optimizations with SSA

2

Agenda

Review: Dominator Tree

3

1

2

3

5 6

8

9 10

1

2 3

4

5 6 7

8

9 10

entry

4

7

CFG Dominator Tree

Dominance Frontier

▸ A basic block q is in the dominance frontier set (DF) of
basic block p if and only if
(1) p does NOT strictly dominate q
(2) p dominates some predecessor(s) of q
If above two conditions hold, qÎDF(p)

▸ Informally, for an qÎDF(p), q is almost strictly dominated
by p

▸ Useful for efficiently computing the SSA form

4

DF(p)
–
?
7
7
6
6
7
?

5

Example: Dominance Frontiers

B0

B1

B2 B3

B4

B6

B7

B5

CFG

p
0
1
2
3
4
5
6
7

q is in the dominance frontier set (DF) of p iff
(1) p does NOT strictly dominate q
(2) p dominates some predecessor(s) of q
If above two conditions hold, qÎDF(p)

Dominance
frontiers (DF)

6

Dominance Frontiers and Dominator Tree

B0

B1

B2 B3

B4

B6

B7

B5

Dominance
frontiers (DF)

CFG

/* Algorithm to construct the DF sets */
foreach convergence point Q in CFG
 foreach predecessor X of Q in CFG
 Run up to Y=IDOM(Q) in the dominator tree;
 Add Q to DF(P) for each P between [X, Y)

B0

B1

B2 B3

B4
B6

B5

B7

Dominator tree

p
0
1
2
3
4
5
6
7

DF(p)
–
1
7
7
6
6
7
1

A convergence point is a node in
CFG with multiple predecessors
(B1, B6, B7 in this example)

Only convergence points appear on the DF sets!

Data Flow Graph
▸ A data flow graph (DFG) represents the flow of data

between operations in a program
– Nodes: represent operations, e.g., arithmetic operations,

memory accesses
– Edges: represent the flow of data between these operations

▸ DFG captures data dependences between
computations, which is crucial for compilers to perform
optimizations (e.g., recording, parallelization) while
ensuring correctness

7

Data Dependences
▸ Types of data dependences

– True dependences, anti-dependences, output dependences
– Intra-iteration (loop independent), inter-iteration (loop carried)

• In this lecture, we focus on intra-iteration dependences on scalars

▸ True dependence
– Also known as Read After Write (RAW) or flow dependence
– S1 àt S2 : S1 precedes S2 in the program execution and computes a

value that S2 uses

▸ Anti-dependence
– Also known as Write After Read (WAR) dependence
– S1 àa S2 : S1 precedes S2 in the program execution and may read

from a variable (or memory location) that is later updated by S2

▸ Output dependence
– Also known as Write After Write (WAW) dependence
– S1 ào S2 : S1 precedes S2 in the program execution and may write to

a variable (or memory location) that is later (over)written by S2
8

A Simple Example

9

S1: x = read()
S2: x = x + 1
S3: x = x * 5

• True dependence (RAW) : S1 àt S2; S2 àt S3
• Anti dependence (WAR) : S2 àa S3
• Output dependence (WAW) : S1 ào S2, S1 ào S3, S2 ào S3

Static Single Assignment

▸ The static single assignment (SSA) form is a
restricted IR where
– Each (scalar) variable definition has a unique name
– Each (scalar) variable use refers to a single definition

▸ SSA simplifies both dataflow and dependence
analyses, enabling more effective and streamlined
compiler optimizations
– SSA eliminates artificial dependences (e.g., WAW, WAR) on

on scalars

10

SSA within a Basic Block

▸ Assign each variable definition a unique name
▸ Update the uses accordingly

x = read()
x = x + 1
x = x * 5

x0 = read()
x1 = x0 + 1
x2 = x1 * 5

11

read

+

×

x1

x0

x2

1

5

Original code SSA form
Corresponding
data flow graph

Defs of x Uses of x

SSA with Control Flow

▸ Consider a situation where two control-flow paths merge
– e.g., due to an if-then-else statement or a loop

x = read()
if (x > 0)
 y = 5
else
 y = 10
x = y

y = 5 y = 10

x = y

x = read()
if (x > 0)

y0 = 5 y1 = 10

x1 = y

x0 = read()
if (x0 > 0)

should this be y0 or y1?

12

Introducing ϕ-Node

▸ Inserts special join functions (called ϕ-nodes or PHI nodes)
at points where different control flow paths converge

y0 = 5 y1 = 10

y2 = ϕ(y0, y1)
x1 = y2

if (x0 > 0) Note: ϕ is not an executable function!
To generate executable code from this form,
appropriate copy statements need to be
generated in the predecessors (in other words,
reversing the SSA process for code generation)

13

SSA in a Loop

▸ Insert ϕ-nodes in the loop header block

x = 0
i = 1
while (i<10) {
 x = x+i
 i = i+1
}

if (i < 10)

Outside
x = x + 1
i = i + 1

x = 0
i = 1

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1

14

ϕ-Node Placement

▸ When and where to insert ϕ-nodes?
– If two control paths A à C and B à C

converge at a node C, and both A and B
contain assignments to variable “x”, then ϕ-
node for “x” must be placed at C
• We call C a join node or convergence point
• Generalizes to more than two converging

control paths

▸ Objective: Minimize the number of ϕ-nodes
– Need to compute dominance frontier sets

15

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1

16

Example: Dominance Frontier and SSA
B0

B1

B2 B3

B4

B6

B7

B5

Region
dominated
by B3

▸ B7 is in the dominance frontier set of B3
– In other words, B7 is the destination of some edge(s) leaving a

region dominated by B3
▸ For each variable definition in B3, a ϕ node is needed in B7

17

ϕ-Node Placement
p DF
0 -
1 1
2 7
3 7
4 6
5 6
6 7
7 1

y =
z =

z =

y =

x =
y =
z =B0

B1

B2 B3

B4

B6

B7

B5

x =

Place ϕ node(s) of a variable x in
the dominance frontier set of the
block(s) where x gets defined

18

ϕ-Node Placement: Iterative Insertion
p DF
0 -
1 1
2 7
3 7
4 6
5 6
6 7
7 1

y =
z =

z =

y =

x =
y =
z =B0

B1

B2 B3

B4

B6

B7

B5

x = ϕ(…)
y = ϕ(…)
z = ϕ(…)

z = ϕ(…)

x = ϕ(…)
y = ϕ(…)
z = ϕ(…)

x =

• x is defined in 0, 3
=> insert ϕ in 7,
then x also defined in 7
=> insert ϕ in 1

• y is defined in 0, 2, 6
=> insert ϕ in 7
then y also defined in 7
=> insert ϕ in 1

• z is defined in 0,2,5
=> insert ϕ in 6,7
then z also defined in 7
=> insert ϕ in 1

Afterwards, assign a unique
name to each variable
definition (including ϕ nodes)
and update all uses

▸ SSA form simplifies data flow analysis and many code
transformations
– Primarily due to explicit & simplified (sparse) def-use chains

▸ Here we show two simple examples
– Dead code elimination
– Loop induction variable detection

19

SSA Applications

Dead Code in CDFG

▸ A dead statement is either
(1) Unreachable code
(2) Definitions never used

▸ How to efficiently Identify the
dead statements?

x = a + b
y = c + d

x = a – b

z = z + 1

y = c – d
z = x + y

f(x, y)

B1

B2

B4

B5

B6

20

21

Dead Code Elimination (DCE) with SSA

x1 = a + b
y1 = c + d

x2 = a – b

z2 = z1 + 1

x3 = ϕ(x1, x2)
y2 = c – d
z1 = x3 + y2

f(x3, y2)

B1

B2

B3

B4

B5

x1 = a + b

x2 = a – b

x3 = ϕ(x1, x2)
y2 = c – d

f(x3, y2)

Iteratively remove unused definitions
first remove y1, z2, and B4; then remove z1

DCE

▸ An induction variable is a variable that
– Gets increased or decreased by a fixed amount (loop

invariant) on every iteration of a loop
• i = i + c (basic induction variable)

– or is an affine function of another induction variable
• j = a * i + b (mutual induction variable)

22

Loop Induction Variables

▸ Find basic loop induction
variable(s)

1. Inspect back edges in the loop

2. Each back edge points to a ϕ node
in the loop header, which may indicate
a basic induction variable

3. ϕ is a function of an initialized
variable and a definition in the form of
“i + c” (i.e., increment operation)

23

Identifying Basic Loop Induction Variable

i1 = ϕ(0, i2)
if (i1 < 10)

Outside
i2 = i1 + 1

…

▸Scheduling

24

Next Lecture

▸These slides contain/adapt materials developed
by
– Prof. Scott Mahlke (UMich)

25

Acknowledgements

