ECE 6775
High-Level Digital Design Automation
Fall 2024

Control Flow Graph

_UNJp
£ o y@@;
(® =\ . .
A== )7 Cornell University s
&\ -
QxS "




Announcements

» Lab 2 released

» HW 1 due tomorrow



Agenda

> A typical HLS compilation flow

- Front-end compilation and intermediate
representation

» Basics of control data flow graph
— Basic blocks
— Control flow graph

» Dominance relation
— Finding loops



Accelerator Design Flow with HLS

if (condition) {
High-level Programming

— = Languages g Untimed
1 [ SRS - > :zfc*d_; high-|eve|
3 = e+ f! R .
: 1 ty=t; * by description
z=t -1
Compilation }
HLS 1
==
Flow Scheduling/
Pipelining, 5]

Binding ® 7
1 gfﬂ

RTL | - === - - — - S

4

RTL Logic Synt_h.,
Flow Tech. Mapping,
Place & Route, STA FPGA

‘l' 'E%?;];’fﬁji Jrrx

1

Timed design

H
== Bitstream /| = = = = = = — -> S
GDSII ]

FEEEES0E0;
ey

o
w




HLS for FPGAs: Entering the Mainstream

OneAPI DPC++ Compiler and Runtime

FPGA SDK §

C/ ., C/C++ for HLS

AMDa HLS Tool

Clang/LLVM

DPC++ Runtime

FOROPENCL

Vitis —_—
</>
o 5000
CPU GPU PR AR

|
LEm—
fem————
fmm———
pre——
= —
== ——
o e——
| —J—

——

C——

e_ l " Press Releases Date: 08/07/2018
 Achronix and Mentor Partner to Provide Link Between High-Level Synthesis and FPGA

@ M I c R 0 c H I p » Achronix Speedcore eFPGAS fully supported by Catapult HLS

HLS-based design entry is available from all leading FPGA vendors



FPGA HLS: Expanding Reach in Academia

= Google Scholar  *high-level synthesis” "fpga” n

Number of Publications

3000 == ===

2500 15— R
2000 f---==--==mmmcccccsccccc s cc e s s e s s s e e s e s s s s e e e e e - - == — = — = — — S~ — ~ T~ ~
1500 §---=-======mmmmmemmccccnncc e s c e s e e e e e e e - -;—---':-T----------*------ e~ — — il — =
g 1] 1 S —— (B RS S AN ) A ) HNN S S (S E S

e m T ] """"

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

> 50% of the design papers presented at top FPGA conferences utilize HLS



HLS Adoption for ASIC Design
w\;\slhy YouTube decided to make its own video
chip

With YouTube designing its own custom chips, the company joins a growing group of big tech companies seeking to offer something
unique in the data center. Operating behind the scenes, Argos made YouTube’s data centers much more efficient.

YouTube Argos chip, or video-coding
unit (VCU)

“... Argos is a piece of hardware defined by software, which meant that the
engineers working on the chip could use what are called high-level synthesis
techniques to iterate on the design much more quickly. Google developed its
own version of high-level synthesis software called Taffel that it used to help
make the TPUs and the Argos processors ...”

https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics (8/24/2022)



https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics

A Typical HLS Flow

if (condition) {

High-level Programming } :1S_e { b
Languages f = : M ds
— (C/C++, OpenCL, SystemC, ...) to= e+ s
= —-—-—————_————— > t, =t * ty;
l z =t - t3; s ™\
} OO
Parsing >
| )
J————n Intermediate
I Representation (IR) ©
Transformations '
===-=1 Control data flow graph
. - (CDFG)
Allocation
( 3}3_

&Vll
I E: ]

Scheduling‘ Binding ¥
T |\ [ \¥
—————————— = 1 1
1 1 & _S3 7
RTL D
generation 3 cycles l

Finite state machines with datapath .



Intermediate Representation (IR)

Source code

> Purposes of creating and !
operating on an IR Front
— Encode the behavior of the program end
- Facilitate analysis l
- Facilitate optimization : IR
- Facilitate retargeting Analysis . J' .
Optimization
> The IR we will focus on is control é’
data flow graph (CDFQG) !
Code
generation

I

Target code



Program Flow Analysis

Control flow analysis Inter-procedural __

— Program
Flow analysis — Intra-procedural Function
Data flow analysis Local Basic block

» Control flow analysis: determine control structure of a
program and build control flow graphs (CFGs)

» Data flow analysis: determine the flow of data values
and build data flow graphs (DFGs)



Basic Blocks

» Basic block: a sequence of consecutive intermediate
language statements in which flow of control can only
enter at the beginning and leave at the end

— Only the last statement of a basic block can be a branch
statement and only the first statement of a basic block can be a
target of a branch

10



Partitioning a Program into Basic Blocks

» Each basic block begins with a leader statement

> |dentify leader statements (i.e., the first statements of
basic blocks) by using the following rules:

— (i) The first statement in the program is a leader

— (i) Any statement that is the target of a branch statement is a
leader (for most intermediate languages these are statements
with an associated label)

— (iii) Any statement that immediately follows a branch or return
statement is a leader

11



Example: Forming the Basic Blocks

Basic Blocks:

(1) initialize(...) B1 | (1) initialize(...)

(2) if (theta > curr) goto (7) _

B) T =X+ (Y>> i) B2 | (2) if (theta > curr) goto (7)

Y =-X>>0)+Y, B3|[(3) T=X+ (Y>> i)

(5) curr = curr - ctabli]; @)Y =-X>>i0)+Y:

(6) goto (10) (5) curr = curr - ctabl[i];

(7) T=X-(Y>>i) (6) goto (10)

B)Y=X>>1i)+Y,

(9) curr = curr + ctabli]; B4|(7) T=X- (Y >>i);

(10) X =T, B)Y=X>>i)+Y,

(11) i++ (9) curr = curr + ctab]i];

(12) if (i < STEPS) goto (2) =

(13) return X, Y BS g %) I)i; T

(12) if (i < STEPS) goto (2)

Leader statement is: B6 | (13) return X, Y

(1) the first in the program

(2) any that is the target of a branch
(3) any that immediately follows a branch

12




Control Flow Graph (CFG)

> A control flow graph (CFG), or simply a flow graph, is a
directed graph in which:

— (i) the nodes are basic blocks; and
— (ii) the edges are induced from the possible flow of the program

» The basic block whose leader is the first intermediate
language statement is called the entry node

» In a CFG we assume no information about data values
— an edge in the CFG means that the program may take that path

13



Example: Control Flow Graph Formation

B1
B2

B3

B4

BS5

B6

(1) initialize(...)

(2) if (theta > curr) goto (7)

B)T=X+(Y>>i);
AY=-X>>1i)+Y,;

(5) curr = curr - ctabli];
(6) goto (10)

(7)T=X-(Y>>i);
B)Y=X>0)+Y,
(9) curr = curr + ctabli];

(1 0) X= T;
(11) i++
(12) if (i < STEPS) goto (2)

(13) return X, Y

CFG

@
@
@ @

.
®

14



Dominators

> Anode p in a CFG dominates a node q if every path

from the entry node to g goes through p. We say that
node p is a dominator of node g

» The dominator set of node g, DOM(q), is formed by all
nodes that dominate g

- Each node dominates itself by definition; thus g € DOM(q)

15



Dominance Relation

> Definition: Let G = (V, E, s) denote a CFG, where
V : set of nodes
E : set of edges
s : entry node and
letpeV,qeV
-~ p dominates g, written p < g
* also written p € DOM(q)
— p properly (strictly) dominates g, writtenp<qifp<gandp=#q
- p immediately (or directly) dominates g, written p <4 g

if p<gandthereisnoteVsuchthatp<t<q
« also written p = IDOM(q)

16



Example: Dominance Relation

> Dominator sets:
DOM(1) = {1}

DOM(2) = {1, 2}
DOM(3) = {1, 2, 3}
DOM(10) = {1, 2, 10}

» Immediate domination:
1<42,2<43, ...
IDOM(2) =1, IDOM(3) =2 ...

entry
>(2
4
(5)

17



Exercise: Dominance Relationship

> Which of the following is TRUE
— A CFG node strictly dominates itself

— A CFG node always dominates its successor

— If a node A dominates all of B’s predecessors, it also
dominates B

18



Exercise: Dominance Relationship

Assume that node P is an immediate
dominator of node Q

Question: Is P necessarily a predecessor
of Q in the CFG?

Answer: NO

entry
>(2
4
(5)

19



Dominator Tree

> A node (basic block) N in CFG may have multiple
dominators, but only one of them will be closest to N
and be dominated by all other dominators of N

> A dominator tree is a useful way to represent the
dominance relation

— The entry node s is the root

— Each node in the dominator tree is the immediate dominator
of its children

« Each node d dominates only its descendants in the tree

20



Example: Dominator Tree

CFG Dominator Tree

ONC

21



Identifying Loops

> Motivation: Programs spend most of the execution time in
loops, therefore there is a larger payoff for optimizations that
exploit loop structure

> Goal: Identify loops in a CFG, not sensitive to syntax of the
input language
— Create a uniform treatment for program loops written using
different syntactical constructs (e.g., while, for, goto)

> Approach: Use a general approach based on analyzing graph-
theoretical properties of the CFG

22



Loop Definition

» Definition of a (natural) loop

- Astrongly connected component (SCC) of the CFG, with a
single-entry point called the header which dominates all nodes
in the SCC

« All nodes in blue form a loop,
which is an SCC
* Node 2 is the loop header

23



Is it a Loop?

> Question: In the CFG depicted below, do nodes 2 and 3
form an SCC, and if so, do they also form a loop?

24



Finding Loops

> Loop identification algorithm

1. Find an edge B—>H where H dominates B
- This edge is called a back edge

2. Find all nodes that (1) are dominated by H,

and (2) can reach B via nodes dominated by H Back
e 9 edge

3. Add these nodes to the loop (H and B are

naturally included)

@ O

25



Finding Loops

Find all back edges in this graph
and the natural loop associated
with each back edge

26



Finding Loops (1)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1)

27



Finding Loops (1)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

28



Finding Loops (2)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

29



Intuition of Dominance Relation

Imagine a source of light
at the entry node, and that
the edges are optical fibers

To find which nodes are
dominated by a given node,
place an opague barrier at that
node and observe which nodes
become dark

30



Finding Loops (2)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

31



Finding Loops (2)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

32



Finding Loops (3)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4)

33



Finding Loops (3)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4)

34



Finding Loops (3)

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4) {4,5,6,7,8,10}

35



Summary

» Basic Blocks
— Group of statements that execute atomically

» Control Flow Graphs
— Model the control dependences between basic blocks

» Dominance relations

- Shows control dependences between BBs
— Used to determine natural loops

36



Next Lecture

» Static single assignment (SSA)

37



Acknowledgements

> These slides contain/adapt materials developed
by
— Forrest Brewer (UCSB)
— Ryan Kastner (UCSD)
— Prof. José Amaral (Alberta)

38



