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▸ Lab 2 released

▸ HW 1 due tomorrow
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Announcements



Agenda

▸A typical HLS compilation flow 
– Front-end compilation and intermediate 

representation

▸Basics of control data flow graph
– Basic blocks
– Control flow graph

▸Dominance relation
– Finding loops
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Accelerator Design Flow with HLS
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if (condition) {
  …
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HLS for FPGAs: Entering the Mainstream

HLS-based design entry is available from all leading FPGA vendors
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FPGA HLS: Expanding Reach in Academia

> 50% of the design papers presented at top FPGA conferences utilize HLS
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HLS Adoption for ASIC Design

“… Argos is a piece of hardware defined by software, which meant that the 
engineers working on the chip could use what are called high-level synthesis 
techniques to iterate on the design much more quickly. Google developed its 
own version of high-level synthesis software called Taffel that it used to help 
make the TPUs and the Argos processors …”

https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics (8/24/2022)

YouTube Argos chip, or video-coding 
unit (VCU)

https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics
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if (condition) {
  …
} else {
  t1 = a + b;
  t2 = c * d;
  t3 = e + f;
  t4 = t1 * t2;
  z = t4 – t3;
}
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A Typical HLS Flow
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Intermediate 
Representation (IR)



Intermediate Representation (IR)

▸ Purposes of creating and 
operating on an IR
– Encode the behavior of the program
– Facilitate analysis
– Facilitate optimization
– Facilitate retargeting

▸ The IR we will focus on is control 
data flow graph (CDFG)

Front 
end

Code
generation

Optimization

Source code

Target code

Analysis
IR

IR’
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Program Flow Analysis
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Basic block

Program

Function

Inter-procedural

Intra-procedural

Local

Flow analysis

Data flow analysis

Control flow analysis

▸ Control flow analysis: determine control structure of a 
program and build control flow graphs (CFGs) 

▸ Data flow analysis: determine the flow of data values 
and build data flow graphs (DFGs)



Basic Blocks
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▸ Basic block: a sequence of consecutive intermediate 
language statements in which flow of control can only 
enter at the beginning and leave at the end

– Only the last statement of a basic block can be a branch 
statement and only the first statement of a basic block can be a 
target of a branch



Partitioning a Program into Basic Blocks

▸ Each basic block begins with a leader statement

▸ Identify leader statements (i.e., the first statements of 
basic blocks) by using the following rules:

– (i) The first statement in the program is a leader

– (ii) Any statement that is the target of a branch statement is a 
leader (for most intermediate languages these are statements 
with an associated label)

– (iii) Any statement that immediately follows a branch or return 
statement is a leader
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Example: Forming the Basic Blocks
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Basic Blocks: 

(2) if (theta > curr) goto (7)

(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)

B2

B3

(1) initialize(…)
(2) if (theta > curr) goto (7)
(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)
(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];
(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)
(13) return X, Y

(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];

B4

(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)

B5

(13) return X, YB6

(1) initialize(…)B1

Leader statement is: 
(1) the first in the program
(2) any that is the target of a branch 
(3) any that immediately follows a branch



Control Flow Graph (CFG)

▸ A control flow graph (CFG), or simply a flow graph, is a 
directed graph in which: 
– (i) the nodes are basic blocks; and 
– (ii) the edges are induced from the possible flow of the program

▸ The basic block whose leader is the first intermediate 
language statement is called the entry node

▸ In a CFG we assume no information about data values 
– an edge in the CFG means that the program may take that path
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(2) if (theta > curr) goto (7)

(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)

B2

B3

(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];

B4

(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)

B5

(13) return X, YB6

(1) initialize(…)B1

Example: Control Flow Graph Formation

CFG

B1

B6

B2

B3 B4

B5



▸ A node p in a CFG dominates a node q if every path 
from the entry node to q goes through p. We say that 
node p is a dominator of node q

▸ The dominator set of node q, DOM(q), is formed by all 
nodes that dominate q
– Each node dominates itself by definition; thus q Î DOM(q)
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Dominators



▸ Definition: Let G = (V, E, s) denote a CFG, where 
 V : set of nodes 
 E : set of edges 
 s : entry node and 
 let p Î V, q Î V

– p dominates q, written p £ q
• also written p Î DOM(q)

– p properly (strictly) dominates q, written p < q if p £ q and p ¹ q
– p immediately (or directly) dominates q, written p <d q 

if p < q and there is no tÎV such that p < t < q
• also written p = IDOM(q) 
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Dominance Relation



▸ Dominator sets:
 DOM(1) = {1}
 DOM(2) = {1, 2}
 DOM(3) = {1, 2, 3}
 DOM(10) = {1, 2, 10}

▸ Immediate domination:
 1 <d 2, 2 <d 3, …
 IDOM(2) = 1, IDOM(3) = 2 …
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Example: Dominance Relation
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▸Which of the following is TRUE
– A CFG node strictly dominates itself

– A CFG node always dominates its successor

– If a node A dominates all of B’s predecessors, it also 
dominates B
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Exercise: Dominance Relationship



Exercise: Dominance Relationship
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1
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8

9

10

entry

Assume that node P is an immediate 
dominator of node Q 

Question: Is P necessarily a predecessor 
of Q in the CFG?

Answer: NO

IDOM(8) = ?



Dominator Tree

▸ A node (basic block) N in CFG may have multiple 
dominators, but only one of them will be closest to N 
and be dominated by all other dominators of N

▸ A dominator tree is a useful way to represent the 
dominance relation 
– The entry node s is the root 
– Each node in the dominator tree is the immediate dominator 

of its children 
• Each node d dominates only its descendants in the tree
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Example: Dominator Tree
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Identifying Loops

▸ Motivation: Programs spend most of the execution time in 
loops, therefore there is a larger payoff for optimizations that 
exploit loop structure

▸ Goal: Identify loops in a CFG, not sensitive to syntax of the 
input language
– Create a uniform treatment for program loops written using 

different syntactical constructs (e.g., while, for, goto)

▸ Approach: Use a general approach based on analyzing graph-
theoretical properties of the CFG
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▸ Definition of a (natural) loop
– A strongly connected component (SCC) of the CFG, with a 

single-entry point called the header which dominates all nodes 
in the SCC
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Loop Definition

• All nodes in blue form a loop, 
which is an SCC

• Node 2 is the loop header

1

2

5

3 4

6



▸ Question: In the CFG depicted below, do nodes 2 and 3 
form an SCC, and if so, do they also form a loop?
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Is it a Loop?

1

2 3



Finding Loops

▸ Loop identification algorithm
1. Find an edge B®H where H dominates B 

• This edge is called a back edge

2. Find all nodes that (1) are dominated by H, 
and (2) can reach B via nodes dominated by H 

3. Add these nodes to the loop (H and B are 
naturally included)

25
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Finding Loops

1
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5 6

8

9 10

Find all back edges in this graph
and the natural loop associated 
with each back edge

4

7
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Finding Loops (1)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1)4

7
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Finding Loops (1)

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph4

7
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Finding Loops (2)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7)
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Intuition of Dominance Relation
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Imagine a source of light
at the entry node, and that
the edges are optical fibers

To find which nodes are 
dominated by a given node, 
place an opaque barrier at that 
node and observe which nodes 
become dark
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Finding Loops (2)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7)
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Finding Loops (2)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}



(7,4)
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Finding Loops (3)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
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(7,4)
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Finding Loops (3)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
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Finding Loops (3)
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Find all back edges in this graph
and the natural loop associated 
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4) {4,5,6,7,8,10}



Summary

▸Basic Blocks
– Group of statements that execute atomically

▸Control Flow Graphs
– Model the control dependences between basic blocks

▸Dominance relations
– Shows control dependences between BBs
– Used to determine natural loops
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▸Static single assignment (SSA)
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Next Lecture



▸These slides contain/adapt materials developed 
by
– Forrest Brewer (UCSB)
– Ryan Kastner (UCSD)
– Prof. José Amaral (Alberta)
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