
Control Flow Graph

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ Lab 2 released

▸ HW 1 due tomorrow

1

Announcements

Agenda

▸A typical HLS compilation flow
– Front-end compilation and intermediate

representation

▸Basics of control data flow graph
– Basic blocks
– Control flow graph

▸Dominance relation
– Finding loops

2

Accelerator Design Flow with HLS
High-level Programming

Languages

Logic Synth.,
Tech. Mapping,

Place & Route, STA

RTL

if (condition) {
 …
} else {
 t1 = a + b;
 t2 = c * d;
 t3 = e + f;
 t4 = t1 * t2;
 z = t4 – t3;
}

Untimed
high-level
description

Timed design

Bitstream /
GDSII

Compilation

Scheduling/
Pipelining,

Binding

HLS
Flow

RTL
Flow

ab

z

d

3

FPGA ASIC

or

4

HLS for FPGAs: Entering the Mainstream

HLS-based design entry is available from all leading FPGA vendors

5

FPGA HLS: Expanding Reach in Academia

> 50% of the design papers presented at top FPGA conferences utilize HLS

6

HLS Adoption for ASIC Design

“… Argos is a piece of hardware defined by software, which meant that the
engineers working on the chip could use what are called high-level synthesis
techniques to iterate on the design much more quickly. Google developed its
own version of high-level synthesis software called Taffel that it used to help
make the TPUs and the Argos processors …”

https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics (8/24/2022)

YouTube Argos chip, or video-coding
unit (VCU)

https://www.protocol.com/enterprise/youtube-custom-chips-argos-asics

High-level Programming
Languages

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*–

Control data flow graph
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
 …
} else {
 t1 = a + b;
 t2 = c * d;
 t3 = e + f;
 t4 = t1 * t2;
 z = t4 – t3;
}

Scheduling Binding

Allocation

A Typical HLS Flow

7

Intermediate
Representation (IR)

Intermediate Representation (IR)

▸ Purposes of creating and
operating on an IR
– Encode the behavior of the program
– Facilitate analysis
– Facilitate optimization
– Facilitate retargeting

▸ The IR we will focus on is control
data flow graph (CDFG)

Front
end

Code
generation

Optimization

Source code

Target code

Analysis
IR

IR’

8

Program Flow Analysis

9

Basic block

Program

Function

Inter-procedural

Intra-procedural

Local

Flow analysis

Data flow analysis

Control flow analysis

▸ Control flow analysis: determine control structure of a
program and build control flow graphs (CFGs)

▸ Data flow analysis: determine the flow of data values
and build data flow graphs (DFGs)

Basic Blocks

10

▸ Basic block: a sequence of consecutive intermediate
language statements in which flow of control can only
enter at the beginning and leave at the end

– Only the last statement of a basic block can be a branch
statement and only the first statement of a basic block can be a
target of a branch

Partitioning a Program into Basic Blocks

▸ Each basic block begins with a leader statement

▸ Identify leader statements (i.e., the first statements of
basic blocks) by using the following rules:

– (i) The first statement in the program is a leader

– (ii) Any statement that is the target of a branch statement is a
leader (for most intermediate languages these are statements
with an associated label)

– (iii) Any statement that immediately follows a branch or return
statement is a leader

11

Example: Forming the Basic Blocks

12

Basic Blocks:

(2) if (theta > curr) goto (7)

(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)

B2

B3

(1) initialize(…)
(2) if (theta > curr) goto (7)
(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)
(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];
(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)
(13) return X, Y

(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];

B4

(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)

B5

(13) return X, YB6

(1) initialize(…)B1

Leader statement is:
(1) the first in the program
(2) any that is the target of a branch
(3) any that immediately follows a branch

Control Flow Graph (CFG)

▸ A control flow graph (CFG), or simply a flow graph, is a
directed graph in which:
– (i) the nodes are basic blocks; and
– (ii) the edges are induced from the possible flow of the program

▸ The basic block whose leader is the first intermediate
language statement is called the entry node

▸ In a CFG we assume no information about data values
– an edge in the CFG means that the program may take that path

13

14

(2) if (theta > curr) goto (7)

(3) T = X + (Y >> i);
(4) Y = -(X >> i) + Y;
(5) curr = curr - ctab[i];
(6) goto (10)

B2

B3

(7) T = X - (Y >> i);
(8) Y = (X >> i) + Y;
(9) curr = curr + ctab[i];

B4

(10) X = T;
(11) i++
(12) if (i < STEPS) goto (2)

B5

(13) return X, YB6

(1) initialize(…)B1

Example: Control Flow Graph Formation

CFG

B1

B6

B2

B3 B4

B5

▸ A node p in a CFG dominates a node q if every path
from the entry node to q goes through p. We say that
node p is a dominator of node q

▸ The dominator set of node q, DOM(q), is formed by all
nodes that dominate q
– Each node dominates itself by definition; thus q Î DOM(q)

15

Dominators

▸ Definition: Let G = (V, E, s) denote a CFG, where
 V : set of nodes
 E : set of edges
 s : entry node and
 let p Î V, q Î V

– p dominates q, written p £ q
• also written p Î DOM(q)

– p properly (strictly) dominates q, written p < q if p £ q and p ¹ q
– p immediately (or directly) dominates q, written p <d q

if p < q and there is no tÎV such that p < t < q
• also written p = IDOM(q)

16

Dominance Relation

▸ Dominator sets:
 DOM(1) = {1}
 DOM(2) = {1, 2}
 DOM(3) = {1, 2, 3}
 DOM(10) = {1, 2, 10}

▸ Immediate domination:
 1 <d 2, 2 <d 3, …
 IDOM(2) = 1, IDOM(3) = 2 …

17

Example: Dominance Relation

1

2

3

4

5

6 7

8

9

10

entry

▸Which of the following is TRUE
– A CFG node strictly dominates itself

– A CFG node always dominates its successor

– If a node A dominates all of B’s predecessors, it also
dominates B

18

Exercise: Dominance Relationship

Exercise: Dominance Relationship

19

1

2

3

4

5

6 7

8

9

10

entry

Assume that node P is an immediate
dominator of node Q

Question: Is P necessarily a predecessor
of Q in the CFG?

Answer: NO

IDOM(8) = ?

Dominator Tree

▸ A node (basic block) N in CFG may have multiple
dominators, but only one of them will be closest to N
and be dominated by all other dominators of N

▸ A dominator tree is a useful way to represent the
dominance relation
– The entry node s is the root
– Each node in the dominator tree is the immediate dominator

of its children
• Each node d dominates only its descendants in the tree

20

Example: Dominator Tree

21

1

2

3

5 6

8

9 10

1

2 3

4

5 6 7

8

9 10

entry

4

7

CFG Dominator Tree

Identifying Loops

▸ Motivation: Programs spend most of the execution time in
loops, therefore there is a larger payoff for optimizations that
exploit loop structure

▸ Goal: Identify loops in a CFG, not sensitive to syntax of the
input language
– Create a uniform treatment for program loops written using

different syntactical constructs (e.g., while, for, goto)

▸ Approach: Use a general approach based on analyzing graph-
theoretical properties of the CFG

22

▸ Definition of a (natural) loop
– A strongly connected component (SCC) of the CFG, with a

single-entry point called the header which dominates all nodes
in the SCC

23

Loop Definition

• All nodes in blue form a loop,
which is an SCC

• Node 2 is the loop header

1

2

5

3 4

6

▸ Question: In the CFG depicted below, do nodes 2 and 3
form an SCC, and if so, do they also form a loop?

24

Is it a Loop?

1

2 3

Finding Loops

▸ Loop identification algorithm
1. Find an edge B®H where H dominates B

• This edge is called a back edge

2. Find all nodes that (1) are dominated by H,
and (2) can reach B via nodes dominated by H

3. Add these nodes to the loop (H and B are
naturally included)

25

1

2

5

3 4

6

Back
edge

26

Finding Loops

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

4

7

27

Finding Loops (1)

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1)4

7

28

Finding Loops (1)

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph4

7

29

Finding Loops (2)

1

2

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

3

4

7

Intuition of Dominance Relation

30

Imagine a source of light
at the entry node, and that
the edges are optical fibers

To find which nodes are
dominated by a given node,
place an opaque barrier at that
node and observe which nodes
become dark

1

2

5 6

8

9 10

3

4

7

entry

31

Finding Loops (2)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

32

Finding Loops (2)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

(7,4)

33

Finding Loops (3)

1

2

3

4

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

7

(7,4)

34

Finding Loops (3)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

35

Finding Loops (3)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4) {4,5,6,7,8,10}

Summary

▸Basic Blocks
– Group of statements that execute atomically

▸Control Flow Graphs
– Model the control dependences between basic blocks

▸Dominance relations
– Shows control dependences between BBs
– Used to determine natural loops

36

▸Static single assignment (SSA)

37

Next Lecture

▸These slides contain/adapt materials developed
by
– Forrest Brewer (UCSB)
– Ryan Kastner (UCSD)
– Prof. José Amaral (Alberta)

38

Acknowledgements

