
More CFG
Static Single Assignment

ECE 6775
High-Level Digital Design Automation

Fall 2023

▸ Lab 2 is released

1

Announcements

▸ More control flow analysis
– Dominator tree
– Dominance frontier

▸ Dataflow analysis – static single assignment (SSA)
– SSA definition
– PHI node (F-node) placement
– Code optimizations with SSA

▸ A brief overview of LLVM

2

Agenda

▸ Definition: Let G = (V, E, s) denote a CFG, where
 V : set of nodes
 E : set of edges
 s : entry node and
 let p Î V, q Î V

– p dominates q, written p £ q
• also written pÎDOM(q)

– p properly (strictly) dominates q, written p < q if p £ q and p ¹ q
– p immediately (or directly) dominates q, written p <d q

if p < q and there is no tÎV such that p < t < q
• also written p = IDOM(q)

3

Review: Dominance Relation

4

Review: Finding Loops

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4) {4,5,6,7,8,10}
(3,4) {3,4,5,6,7,8,10}

Dominator Tree

▸ A node (basic block) N in CFG may have multiple
dominators, but only one of them will be closest to N
and be dominated by all other dominators of N

▸ A dominator tree is a useful way to represent the
dominance relation
– The entry node s is the root
– Each node in the dominator tree is the immediate dominator

of its children
• Each node d dominates only its descendants in the tree

5

Example: Dominator Tree

6

1

2

3

5 6

8

9 10

1

2 3

4

5 6 7

8

9 10

entry

4

7

CFG Dominator Tree

Dominance Frontier

▸ A basic block q is in the dominance frontier set (DF)
of basic block p if and only if
(1) p does NOT strictly dominate q
(2) p dominates some predecessor(s) of q
If above two conditions hold, qÎDF(p)

▸ Intuitively, for an qÎDF(p), q is almost strictly
dominated by p

▸ Useful for efficiently computing the SSA form

7

DF(p)
–
?
7
7
6
6
7
?

8

Example: Dominance Frontiers

B0

B1

B2 B3

B4

B6

B7

B5

CFG

p
0
1
2
3
4
5
6
7

q is in the dominance frontier set (DF) of p iff
(1) p does NOT strictly dominate q
(2) p dominates some predecessor(s) of q
If above two conditions hold, qÎDF(p)

Dominance
frontiers (DF)

9

Dominance Frontiers and Dominator Tree

B0

B1

B2 B3

B4

B6

B7

B5

Dominance
frontiers (DF)

CFG

/* Algorithm to construct the DF sets */
foreach convergence point1 Q in CFG
 foreach predecessor X of Q in CFG
 Run up to Y=IDOM(Q) in the dominator tree,
 adding Q to DF(P) for each P between [X, Y)

B0

B1

B2 B3

B4
B6

B5

B7

Dominator tree

p
0
1
2
3
4
5
6
7

DF(p)
–
1
7
7
6
6
7
1

1convergence point is a node in
CFG with multiple predecessors

Only convergence points are added to the DF sets!

Static Single Assignment

▸ Static single assignment (SSA) form is a restricted IR
where
– Each variable definition has a unique name
– Each variable use refers to a single definition

▸ SSA simplifies data flow analysis and many compiler
optimizations
– Eliminates artificial dependences (on scalars)

• Write-after-write
• Write-after-read

10

SSA within a Basic Block

▸ Assign each variable definition a unique name
▸ Update the uses accordingly

x = read()
x = x * 5
x = x + 1
y = x * 9

x0 = read()
x1 = x0 * 5
x2 = x1 + 1
y = x2 * 9

11

×

+

×

5

x1

x0

x2

1

9

y

Original code SSA form
Corresponding
data flow graph

defs
of x

uses
of x

SSA with Control Flow

▸ Consider a situation where two control-flow paths merge
– e.g., due to an if-then-else statement or a loop

x = read()
if (x > 0)
 y = 5
else
 y = 10
x = y

y = 5 y = 10

x = y

x = read()
if (x > 0)

y0 = 5 y1 = 10

x1 = y

x0 = read()
if (x0 > 0)

should this be y0 or y1?

12

Introducing ϕ-Node

▸ Inserts special join functions (called ϕ-nodes or PHI nodes)
at points where different control flow paths converge

y0 = 5 y1 = 10

y2 = ϕ(y0, y1)
x1 = y2

if (x0 > 0) Note: ϕ is not an executable function!
To generate executable code from this form,
appropriate copy statements need to be
generated in the predecessors (in other words,
reversing the SSA process for code generation)

13

SSA in a Loop

▸ Insert ϕ-nodes in the loop header block

x = 0
i = 1
while (i<10) {
 x = x+i
 i = i+1
}

if (i < 10)

Outside
x = x + 1
i = i + 1

x = 0
i = 1

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1

14

ϕ-Node Placement

▸ When and where to insert ϕ-nodes?
– If two control paths A à C and B à C

converge at a node C, and both A and B
contain assignments to variable “x”, then ϕ-
node for “x” must be placed at C
• We call C a join node or convergence point
• Generalizes to more than two converging

control paths

▸ Objective: Minimize the number of ϕ-nodes
– Need to compute dominance frontier sets

15

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1

16

Example: Dominance Frontier and SSA
B0

B1

B2 B3

B4

B6

B7

B5

Region
dominated
by B3

▸ B7 is in the dominance frontier set of B3
– In other words, B7 is the destination of some edge(s) leaving a

region dominated by B3
▸ For each variable definition in B3, a ϕ node is needed in B7

17

ϕ-Node Placement
p DF
0 -
1 1
2 7
3 7
4 6
5 6
6 7
7 1

y =
z =

z =

y =

x =
y =
z =B0

B1

B2 B3

B4

B6

B7

B5

x =

Place ϕ node(s) of a variable x in
the dominance frontier set of the
block(s) where x gets defined

18

ϕ-Node Placement: Iterative Insertion
p DF
0 -
1 1
2 7
3 7
4 6
5 6
6 7
7 1

y =
z =

z =

y =

x =
y =
z =B0

B1

B2 B3

B4

B6

B7

B5

x = ϕ(…)
y = ϕ(…)
z = ϕ(…)

z = ϕ(…)

x = ϕ(…)
y = ϕ(…)
z = ϕ(…)

x =

• x is defined in 0, 3
=> insert ϕ in 7,
then x also defined in 7
=> insert ϕ in 1

• y is defined in 0, 2, 6
=> insert ϕ in 7
then y also defined in 7
=> insert ϕ in 1

• z is defined in 0,2,5
=> insert ϕ in 6,7
then z also defined in 7
=> insert ϕ in 1

Afterwards, assign a
unique name to each
variable definition
(including ϕ nodes) and
update all uses

▸ SSA form simplifies data flow analysis and many code
transformations
– Primarily due to explicit & simplified (sparse) def-use chains

▸ Here we show two simple examples
– Dead code elimination
– Loop induction variable detection

19

SSA Applications

Dead Code in CDFG

▸ A dead statement is either
(1) Unreachable code
(2) Definitions never used

▸ How to efficiently Identify the
dead statements?

x = a + b
y = c + d

x = a – b

z = z + 1

y = c – d
z = x + y

f(x, y)

B1

B2

B4

B5

B6

20

21

Dead Code Elimination (DCE) with SSA

x1 = a + b
y1 = c + d

x2 = a – b

z2 = z1 + 1

x3 = ϕ(x1, x2)
y2 = c – d
z1 = x3 + y2

f(x3, y2)

B1

B2

B3

B4

B5

x1 = a + b

x2 = a – b

x3 = ϕ(x1, x2)
y2 = c – d

f(x3, y2)

Iteratively remove unused definitions
first remove y1, z2, and B4; then remove z1

DCE

▸ An induction variable is a variable that
– Gets increased or decreased by a fixed amount (loop

invariant) on every iteration of a loop
• i = i + c (basic induction variable)

– or is an affine function of another induction variable
• j = a * i + b (mutual induction variable)

22

Loop Induction Variables

▸ Find basic loop induction
variable(s)

1. Inspect back edges in the loop

2. Each back edge points to a ϕ node
in the loop header, which may indicate
a basic induction variable

3. ϕ is a function of an initialized
variable and a definition in the form of
“i + c” (i.e., increment operation)

23

Identifying Basic Loop Induction Variable

i1 = ϕ(0, i2)
if (i1 < 10)

Outside
i2 = i1 + 1

…

24

LLVM Compiler Infrastructure

LLVM is not Compiler but a Compiler Infrastructure

▸ Formerly Low Level Virtual Machine
– Brainchild of Chris Lattner and Vikram Adve back in 2000
– ACM Software System Award in 2012

▸ The core of LLVM is the SSA-base IR
– Language independent, target independent, easy to use
– RISC-like virtual instructions, unlimited registers, exception handling, etc.

▸ Provides modular & reusable components for building compilers
– Components are ideally language/target independent
– Allows choice of the right component for the job
– Many high-quality libraries (components) with clean interfaces

• Optimizations, analyses, modular code generator, profiling, link time optimization,
ARM/X86/PPC/SPARC code generator …

• Tools built from the libraries: C/C++/ObjC compiler, modular optimizer, linker, debugger,
LLVM JIT …

What is LLVM?

25

https://en.wikipedia.org/wiki/ACM_Software_System_Award

▸ Module contains Functions/GlobalVariables
– Module is unit of compilation/analysis/optimization

▸ Function contains BasicBlocks/Arguments
– Functions roughly correspond to functions in C

▸ BasicBlock contains list of instructions
– Each block ends in a control flow instruction

▸ Instruction is opcode + vector of operands
– All operands have types
– Instruction result is typed

26

The Structure of a Program in LLVM

▸ High-level information exposed in the code
– Explicit dataflow through SSA form
– Explicit control-flow graph
– Explicit language-independent type-information
– Explicit typed pointer arithmetic

• Preserve array subscript and structure indexing

27

Example: An LLVM Loop

source: http://llvm.org

for (i=0; i<N; ++i)
foo(A[i], &P);

loop:

%i.1 = phi i5 [0, %bb0], [%i.2, %loop]

%AiAddr = getelementptr float* %A, i32 %i.1

call void %foo(float %AiAddr, %pair* %P)
%i.2 = add i5 %i.1, 1

%tmp = icmp eq i5 %i.1, 16

br i1 %tmp, label %loop, label %outloop

▸ LLVM is adopted in several commercial and academic
HLS tools

▸ It has built-in support for arbitrary width integers since
version 2.0 (e.g., i2, i128, i1024)
– Essential for hardware synthesis
– An 11b multiplier is significantly cheaper/faster than a 16b

implementation
– Can leverage other LLVM analyses/optimizations to perform

bitwidth minimization

28

Arbitrary Precision Integers in LLVM

▸ LLVM IR is in SSA form
– use-def and def-use chains are always available
– All objects have user/use info, even functions

▸ Control flow graph (CFG) is always available
– Exposed as BasicBlock predecessor/successor lists
– Many generic graph algorithms usable with the CFG

▸ Higher-level info implemented as passes
– CallGraph, Dominators, LoopInfo, …

29

LLVM Flow Analysis

source: http://llvm.org

▸Scheduling

30

Next Lecture

▸These slides contain/adapt materials developed
by
– Prof. Scott Mahlke (UMich)
– Dr. Chris Lattner (Modular AI)

31

Acknowledgements

