
Binary Decision Diagrams
(BDDs)

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ Lab 2 will be released tomorrow

1

Announcements

▸ Cone Cv : a subgraph rooted on a node v
– K-feasible cone: #inputs(Cv) £ K (Can occupy a K-input LUT)
– K-feasible cut: The set of input nodes of a K-feasible Cv

2

FPGA LUT Mapping Revisited

a

b

d f

c

e

g

h

Another 3-feasible cone with
an associated cut = {a, b, c}

A 3-feasible cone
with a cut = {c, e, f}

i0

i1

i2

i3
i4

▸ Assumptions
– K=3
– All inputs arrive at time 0
– Unit delay model: 3-input LUT delay = 1; Zero delay on wire

▸ Question: Minimum arrival time (AT) of each gate output?

3

Timing Analysis with LUT Mapping

a

b

d f

c

e

g

h

AT(a) = 1 AT(d) = 1

AT(h) = ?
AT(b) = 1 AT(e) = 1 AT(c) = 1

i0

i1

i2

i3
i4

AT(f) = ?
Associated cut?

AT(g) = ?

4

Agenda

“
”

One of the only really fundamental
data structures that came out in the
last twenty-five years

Donald Knuth, 2008

▸ Introduction to BDD: A canonical graph-based
representation of Boolean functions

http://en.wikipedia.org/wiki/Donald_Knuth

Ideal Representation of a Boolean Function

▸We wish to find a representation with the
following characteristics
– Compact in terms of size
– Efficient to compute the output with the given inputs

and efficient to manipulate and modify
– Ideally, a canonical representation

• Equivalent functions have the same unique form (under
certain restrictions)

5

Example: Voting Function

▸A Boolean voting function
– An n-ary Boolean function evaluates to 1

if 50% or more () of its inputs are set to 1
– Examples:

• f(0,0) = 0
• f(0,1) = 1
• f(0,0,1) = 0
• f(1,0,1) = 1

▸How to formally represent this function?
– Truth table
– Karnaugh map
– Sum of Products (SOP)

…
6

f (x1, x2,..., xn)
≥ n / 2"# $%

Truth Table and Canonical Sum

7

x y z f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

But 2n table entries are required!
Truth table is canonical

Canonical sum of products (SOP)
xyz’ + xy’z + xyz + x’yz
(4 minterms)
Is it a compact form?

8

Karnaugh Map and Minimized SOP

0 0 1 0

0 1 1 1

00 01 11 10

0

1

xy
z

What about n inputs? (esp. where n is large)
Minimized SOP (3 terms): xy + xz + yz

Note: K-map only handles up to 6 inputs, and the solution
is not necessarily unique

Complexity of SOP Representation

▸An n-input Boolean voting function has at least
C(n, n/2) prime implicants

▸Growth rate of C(n, k) in terms of n
– For k=1, C(n,1) = n
– For k=2, C(n,2) = n(n-1)/2
– For k=3, C(n,3) = n(n-1)(n-2)/6
– …
– For k=n/2, C(n, n/2) =

(uses Stirling formula)

9

n!
[(n / 2)!]2

∈Θ(2n n−0.5)

Co-factors and Shannon Expansion

▸ The co-factor of a Boolean function 𝑓 𝑥!, 𝑥", … , 𝑥# is the
result of simplifying the function with respect to a specific
variable, either by setting that variable to 1 or 0
– 𝑓!!"#	denotes the positive co-factor with respect to 𝑥$, which is

obtained by substituting 𝑥$ = 1 into the original function 𝑓
• For example, 𝑓!!"# = 𝑓(1, 𝑥$, … , 𝑥%)

– 𝑓!!"%	denotes the negative co-factor with respect to 𝑥$, which is
obtained by substituting 𝑥$ = 0 into 𝑓

▸ The Shannon expansion with respect to a variable 𝑥,:
𝑓 𝑥!, 𝑥", … , 𝑥# = 𝑥,•𝑓-!.! + 𝑥,′•𝑓-!./

10

Boolean Function in a Decision Tree

11

x y z f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

00010111

0001 0111

00 01 01 11

0 0 0 1 0 1 1 1

x

y

z

– Nonterminal node in orange
• Follow dashed line for value 0
• Follow solid line for value 1

– Terminal (leaf) node in green
• Function value determined by leaf values

x=0

x=1

y=0

y=1

f(x, y, z) = x’ • fx=0 + x • fx=1
= x’ • f(0, y, z) + x • f(1, y, z)

Shannon Expansion

Reduction Rule #1

▸ Merge equivalent leaves

12

00010111

0001 0111

00 01 01 11

0 0 0 1 0 1 1 1

1 1 1

00010111

0001 0111

00 01 01 11

0 1

▸ Remove redundant tests
– If a node v has the same left child as

its right child, it’s deemed redundant
• i.e., left(v) = right(v)

Reduction Rule #2

13

00010111

0001 0111

00 01 01 11

0 1

00010111

0001 0111

01 01

0 1

11

1

1

14

00010111

0001 0111

01

0 1

▸ Merge isomorphic nodes (i.e.,
nodes with the same structure)
– u and v are isomorphic, when

left(u) = left(v) and right(u) = right(v)

Reduction Rule #3
01

0 1

01 01

0 1

01

00010111

0001 0111

01

0 1

▸ BDDs are usually directly constructed bottom up,
avoiding the reduction steps

▸ One approach is using a hash table called unique
table, which contains the IDs of the Boolean
functions whose BDDs have been constructed [1]

– A new function is added if its associated ID is not already
in the unique table

15

Efficient BDD Construction

[1] K. Brace, R. Rudell, and R. Bryant, Efficient Implementation of a BDD Package, DAC’91.

https://doi.org/10.1145/123186.123222

BDDs History

▸ Initially proposed by Lee in 1959, and later Akers in 1976
– Idea of representing Boolean function as a rooted DAG with a

decision at each vertex

▸ Popularized by Bryant in 1986
– Further restrictions + efficient algorithms to make a useful data

structure (ROBDD)
– BDD = ROBDD since then

16

ROBDDs

▸Reduced and Ordered (ROBDD)
– Directed acyclic graph (DAG)

• Two children per node
• Two terminals 0, 1

– Ordered:
• Co-factoring variables (splitting

variables) always follow the same order
along all paths x1 < x2 < x3 < … < xn

– Reduced:
• Any node with two identical children is

removed (rule #2)
• Two nodes with isomorphic BDDs are

merged (rules #1 and #3)

17

3-input voting function
in BDD form

0 1

y y

x

z

More on Variable Ordering

▸ Follow a total ordering to variables
– e.g., x < y < z

▸ Variables must appear in the same ascending order
along all paths

18

x

y

z

y

x

z

x

y✔ ✖

Canonical Representation

▸BDD is a canonical representation of Boolean
functions
– Given the same variable order, two functions

equivalent if and only if they have the same BDD form
• “0” unique unsatisifable function
• “1” unique tautology

19

More Virtues of BDDs

▸ There are many, but to list a few more:
– Can represent an exponential number of paths

with a DAG

– Can evaluate an n-ary Boolean function in at
most n steps
• By tracing paths to the 1 node, we can count or

enumerate all solutions to equation f = 1

– Every BDD node (not just root) represent some
Boolean function in a canonical way
• A BDD can be multi-rooted representing multiple

Boolean functions sharing subgraphs

20

0 1

y y

x

z

BDD Representation of Voting Function

21Diagram generated by www.cs.uc.edu/~weaversa/BDD_Visualizer.html

§ 8-input voting function in BDD with only 20 nonterminal nodes
§ In contrast to 70 prime implicants in SOP form

Example Application: Equivalence Checking

▸ Either prove equivalence or find counterexample(s)
– Counterexamples: Input values (x, y) for which the two

programs produce different results

bool P(bool x, bool y) { return ~(~x & ~y); }

bool Q(bool x, bool y) { return x ^ y; }

22

P ≟ Q
Is P equivalent to Q?

^ means bitwise XOR in C

& means bitwise AND in C; ~ is negation

23

Equivalence Checking using BDDs

P = ~(~x & ~y)
= x | y

Q = x ^ y

x

y

10

x

y

10

y

BDD of P BDD of Q

Let S denote the function of (P==Q), i.e., P XNOR Q
Exercise: first derive Sx=1 and Sx=0 before constructing the BDD of S

P ≟ Q
Checking equivalence of P and Q by constructing the BDD of (P==Q)

24

Equivalence Checking using BDDs

P = ~(~x & ~y)
= x | y

Q = x ^ y

x

y

01

Counterexample
Setting x = 1 & y = 1
leads to a false output

Hence P ≠ Q

x

y

10

x

y

10

y

BDD of P BDD of Q

BDD of
(P==Q)

P ≟ Q
Checking equivalence of P and Q by constructing the BDD of (P==Q)

Same function, two different orderings,
different graphs

f = ab+cd under two
different variable orders

25

a

b

c

10

d

c

b

a<c<b< d

a

c

b

10

d

a<b<c< d

BDD Limitations

▸ NP-hard problem to construct the
optimal order for a given BDD
– Extensive research in ordering

algorithms

▸ No efficient BDD exists for some
functions regardless of the order

▸ Existing heuristics work well
enough on many combinational
functions from real circuits

▸Front-end compilation and CDFG

26

Next Lecture

▸These slides contain/adapt materials from /
developed by
– Prof. Randal Bryant (CMU)

27

Acknowledgements

