ECE 6775
High-Level Digital Design Automation
Fall 2024

Binary Decision Diagrams
(BDDs)

L UNDY
7 - =X
S =) \| . .
Il [==] JJ Cornell University -
@@ 7@ E
%E@ [[T

Announcements

» Lab 2 will be released tomorrow

FPGA LUT Mapping Revisited

» Cone C,: a subgraph rooted on a node v
- K-feasible cone: #inputs(C,) < K (Can occupy a K-input LUT)
— K-feasible cut: The set of input nodes of a K-feasible C,

Another 3-feasible cone with
an associated cut = {a, b, c}

\ A 3-feasible cone
Rl . withacut={c, e, f}

10
|) a)o— {>° f N D
i1 ' . o)
| 1 Yo N
I | S o ‘/
') g K—~>"< D
I \\ AN
|
|

N
?
)
W\ 2/ 7
/
/7
\\//
7

- Ay Z
13 @ A\ 2 \ 2%
4 D S

===

Timing Analysis with LUT Mapping

> Assumptions
- K=83
— All inputs arrive at time O
— Unit delay model: 3-input LUT delay = 1; Zero delay on wire

> Question: Minimum arrival time (AT) of each gate output?
AT(@)=1 ATd)=1 AT(f)="?

\ \ Associated cut?
e ' AT(g) = 2
0D TN T / I
i1 / B
/
4
2D— h

/ [\
13> ! l \E/ \
4 B i i AT(h) = ?

AT(b)=1 AT(€)=1 AT(c) Ly

Agenda

> Introduction to BDD: A canonical graph-based
representation of Boolean functions

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

Abstract—In this paper we present a'new data structure for
representing Boolean functions and an associated set of manipu-
lation algorithms. Functions are represented by directed, acyclic
graphs in a manner similar to the

677

Graph-Based Algorithms for Boolean Function
Manipulation

RANDAL E. BRYANT, MEMBER, IEEE

A variety of methods have been developed for representing
and manipulating Boolean functions. Those based on classical
representations such as truth tables, Karnaugh maps, or

by
Lee [1] and Akers [2], but with further restrictions on the
ordering of decision variables in the graph. Although a function
requires, in the worst case, a graph of size exponential in the
number of arguments, many of the functions encountered in

canonical f-products form [4] are quite impractical—
every function of n arguments has a represéntation of size 2"
or more. More practical approaches utilize representations that,
at least for many functions, are not of exponential size.

typical have a more Our
have time i ional 1o the sizes of the
graphs being operated on, and hence are quite efficient as long as
the graphs do not grow oo large. We present experimental results
from apphing these algorithms to problems in logic design
of our approach.

Index Terms—Boolean functions, binary decision diagrams,
logic design verification, symbolic manipulation.

1. INTRODUCTION

OOLEAN Algebra forms a cornerstone of computer
science and digital system design. Many pmb]ems in

Example ions include as a reduced sum of products
[4] (or equivalently as sets of prime cubes [S]) and factored
into unate functions [6]. These representations suffer from
several drawbacks. First, certain common functions still
require representations of exponential size. For example, the
even and odd parity functions serve as worst case examples in
all of these representations. Second, while a certain function
may have a reasonable representation, performing a simple
operation such as complementation could yield a function with
an exponential representation. Finally, none of these represen-
tations are canonical forms, i.e., a given function may have
many different representations. Consequently. testing. for

digital logic design and testing, artificial and
combinatorics can be expressed as a sequence of operations on
Boolean functions. Such applications would benefit from
efficient algorithms for representing and manipulating Bool-
ean functions symbolically. Unfortunately, many of the tasks
one would like to perform with Boolean functions, such as
testing whether there exists any assignment of input vanables

or ility can be quite difficult.

Due to these characteristics, most programs that process a
sequence of operations on Boolean functions have rather
erratic behavior. They proceed at a reasonable pace, but then
suddenly *“blow up,” either running out of storage or failing
to complete an operation in a reasonable amount of time.

In this paper we present a new class of algorithms for

such that a given Boolean ion evaluates to 1

ity), or two Boolean expressions denote the same function
(equivalence) require solutions to NP-complete or co NP-
complete problems [3]. Consequently, all known approaches
to performing these operations require, in the worst case, an

Boolean functions represented as directed acy-
clic graphs. Our representation resembles the binary decision
diagram notation introduced by Lee [1] and further popular-
ized by Akers [2]. However, we place further restrictions on
the ordering of decision variables in the vertices. These

amount of computer time that grows it with the enable the of i for manipu-
size of the problem. This makes it difficult to compare the lating the represenlauons in a more emc.enl manner.
relative iencies of different to Our has several over previous

and manipulating Booléan functions. In the worst case, all
known approaches perform as poorly as the naive approach of
representing functions by their truth tables and defining all of
the desired operations in terms of their effect on truth table
entries. In practice, by utilizing more clever representations
and manipulation algorithms, we can often avoid these
exponential computations.

Manuscript received November 28, 1984; revised June 11, 1985. This work
was supported in part by the Defense Advanced Research Projects Agency
under Orders 3771 and 3597
‘The author is with the Departnent of Computer Science, Carnegie-Mellon
Universiy, Pisburgh, PA 15213,
E Log Number 8609399,

approaches to Boolean function manipulation. First, most
commonly encountered functions have a reasonable represen-
tation. For example, all symmetric functions (including even
and odd parity) are represented by graphs where the number of
vertices grows at most as the square of the number of
arguments. Second, the performance of a program based on
our i when p ing a sequence of

degrades slowly, if at all. That is, the time complexity of any
single operation is bounded by the product of the graph sizes
for the functions being operated on. For example, comple-
menting a function requires time proportional to the size of the
function graph, while combining two functions with a binary
operation (of which intersection, subtraction, and testing for

0018-9340/86/0800-0677$01.00 © 1986 IEEE

One of the only really fundamental
data structures that came out in the
last twenty-five years

Donald Knuth, 2008

http://en.wikipedia.org/wiki/Donald_Knuth

Ideal Representation of a Boolean Function

> We wish to find a representation with the
following characteristics
-~ Compact in terms of size

— Efficient to compute the output with the given inputs
and efficient to manipulate and modify
— Ideally, a canonical representation

« Equivalent functions have the same unique form (under
certain restrictions)

Example: Voting Function

> A Boolean voting function

- An n-ary Boolean function f(x,,X,,...,X,) evaluates to 1
if 50% or more (=[n/2]) of its inputs are set to 1

- Examples:

> How to formally represent this function?
— Truth table

- Karnaugh map
-~ Sum of Products (SOP)

Truth Table and Canonical Sum

- = =2 a2 O O O OfX

- =2 O O = = 0O 0O

- O - O == O = O]|N

4 4 4 0 2. OO0 O

Truth table is canonical
But 2" table entries are required!

Canonical sum of products (SOP)
XyZ' + XY'Z + Xyz + X'yz
(4 minterms)

Karnaugh Map and Minimized SOP

Xy
. 00 01 11 10

Minimized SOP (3 terms): xy + Xz + yz

What about n inputs? (esp. where n is large)

Note: K-map only handles up to 6 inputs, and the solution
IS not necessarily unique

Complexity of SOP Representation

> An n-input Boolean voting function has at least
C(n, n/2) prime implicants

» Growth rate of C(k) in terms of n
— For k=1, C(n,1) =
—- For k=2, C(n,2) = (1)/2
- For k=3, C(n,3) = n(n-1)(n-2)/6

n!

- For k=n/2, C(n, n/2) = __co@'n™)
(uses Stirling formula) ~ [(7/2)!]

Co-factors and Shannon Expansion

» The co-factor of a Boolean function f(xq, x5, ..., x;,) is the
result of simplifying the function with respect to a specific
variable, either by setting that variable to 1 or O

- fx;=1 denotes the positive co-factor with respect to x;, which is
obtained by substituting x; = 1 into the original function f
* For example, f; -1 = f(1, x5, ..., xp)

- fx;=0 denotes the negative co-factor with respect to x;, which is
obtained by substituting x; = 0 into f

> The Shannon expansion with respect to a variable x;:
f(x1,%2, 00, Xp) = xi'fxizl + xi’°fxi=0

10

Boolean Function in a Decision Tree

X y Z f
R e T x 00010111
I o —
: 0 0O L 0. :y Pl \
o0 | o y | 0001 0111
: 0 1 1 1 :y=1 ;//\ < /\‘
T 0 0 [0] =z|00 O 01| |11
x=1 1 0 1 1 »/’\ ‘/\ ‘/\ ‘,’\
| B 0|0/ 01 |01 1)1
1 1 1 1

— Nonterminal node in orange

] * Follow dashed line for value O
Shannon Expansion >ned val
* Follow solid line for value 1

f(X,, Y, 2) =X *fig+xefiy — Terminal (leaf) node in green
=X ° f(O, Y, Z) +X° f(l, Y, Z) + Function value determined by leaf values

11

0

Reduction Rule #1

| /
. | \/
> Merge equivalent leaves = £
1
00010111 00010111
‘,,/ \ A,/,, \
0001 0111 0001 0111
//\ //\ |:> , ,
L/ "4 L// K/
01 00 01 01 11
\ \ \ \ N>\
N ‘ ’/ /2,
ol o Tof n

12

Reduction Rule #2

» Remove redundant tests

— |f a node v has the same left child as
its right child, it's deemed redundant

* i.e., left(v) = right(v)

00010111

13

Reduction Rule #3

> Merge isomorphic nodes (i.e.,
nodes with the same structure)

— U and v are isomorphic, when
left(u) = left(v) and right(u) = right(v)

00010111 00010111

14

Efficient BDD Construction

> BDDs are usually directly constructed bottom up,
avoiding the reduction steps

> One approach is using a hash table called unique
table, which contains the IDs of the Boolean
functions whose BDDs have been constructed [l

— A new function is added if its associated ID is not already
in the unique table

15
[1] K. Brace, R. Rudell, and R. Bryant, Efficient Implementation of a BDD Package, DAC’91.

https://doi.org/10.1145/123186.123222

BDDs History

> Initially proposed by Lee in 1959, and later Akers in 1976

— ldea of representing Boolean function as a rooted DAG with a
decision at each vertex

> Popularized by Bryant in 1986

— Further restrictions + efficient algorithms to make a useful data
structure (ROBDD)

— BDD = ROBDD since then

16

ROBDDs

» Reduced and Ordered (ROBDD)
— Directed acyclic graph (DAG)

» Two children per node
* Two terminals O, 1

— Ordered:

 Co-factoring variables (splitting
variables) always follow the same order
along all paths x; <X, <X3<... <X,

-~ Reduced:

* Any node with two identical children is
removed (rule #2)

« Two nodes with isomorphic BDDs are
merged (rules #1 and #3)

3-input voting function
in BDD form

17

More on Variable Ordering

> Follow a total ordering to variables
- eg,xX<y<z

» Variables must appear in the same ascending order
along all paths

5
-

<
<
<
X

N |¢-
X - N

18

Canonical Representation

» BDD is a canonical representation of Boolean
functions

— Given the same variable order, two functions
equivalent if and only if they have the same BDD form

* “0” unique unsatisifable function
+ “1” unique tautology

19

More Virtues of BDDs

v

There are many, but to list a few more:

— Can represent an exponential number of paths
with a DAG

— Can evaluate an n-ary Boolean function in at
most n steps

- By tracing paths to the 1 node, we can count or
enumerate all solutions to equation f =1

— Every BDD node (not just root) represent some
Boolean function in a canonical way

« A BDD can be multi-rooted representing multiple
Boolean functions sharing subgraphs

|
|
|
|
4
0

'\
\

Z

/\
7
g

1

20

BDD Representation of Voting Function
2D

A B

= 8-input voting function in BDD with only 20 nonterminal nodes
= |n contrast to 70 prime implicants in SOP form

Diagram generated by www.cs.uc.edu/~weaversa/BDD_Visualizer.html

21

Example Application: Equivalence Checking

bool P(bool x, bool y) { return ~(~x & ~y); }

& means bitwise AND in C; ~ is negation P 2 Q

Is P equivalent to Q7

bool Q(bool x, bool y) { return x A y; }

N means bitwise XOR in C

» Either prove equivalence or find counterexample(s)

— Counterexamples: Input values (x, y) for which the two
programs produce different results

22

Equivalence Checking using BDDs

X X
P=~(~x&~y) { Q=x"y yl y
=X|y I'y\ :x:
O 1 O] 1
BDD of P p X Q BDD of Q

Checking equivalence of P and Q by constructing the BDD of (P==Q)

Let S denote the function of (P==Q), i.e., P XNOR Q
Exercise: first derive S,_; and S,_, before constructing the BDD of S

23

Equivalence Checking using BDDs

X X
P=~(~x&~y) < Q=x"y yl y
=x|y P X
0 1 O/ |1
BDDofP 2 BDD of Q

Checking equivalence of P and Q by constructing the BDD of (P==Q)

BDD of Counterexample
X (P==Q) Settingx=1&y=1
\ leads to a false output
Ly
"N Hence P £ Q

24

BDD Limitations

f = ab+cd under two
> NP-hard problem to construct the different variable orders

optimal order for a given BDD / \
- Extensive research in ordering 3
algorithms \ a R \
\ \ %
. : : b C C
> No efficient BDD exists for some e ! K \
functions regardless of the order ;> .: g »
| \ T
» Existing heuristics work well ! r o/ r
enough on many combinational '.'// \ o
. . . L%
functions from real circuits - Ay
0 1 0 1
a<b<c<d a<c<b<d

Same function, two different orderings,

different graphs
25

Next Lecture

» Front-end compilation and CDFG

26

Acknowledgements

» These slides contain/adapt materials from /
developed by
- Prof. Randal Bryant (CMU)

27

