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▸ Lab 2 will be released tomorrow
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Announcements



▸ Cone Cv : a subgraph rooted on a node v
– K-feasible cone: #inputs(Cv) £ K (Can occupy a K-input LUT)
– K-feasible cut: The set of input nodes of a K-feasible Cv

2

FPGA LUT Mapping Revisited
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Another 3-feasible cone with 
an associated cut = {a, b, c}

A 3-feasible cone 
with a cut = {c, e, f}
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▸ Assumptions
– K=3
– All inputs arrive at time 0 
– Unit delay model: 3-input LUT delay = 1; Zero delay on wire

▸ Question: Minimum arrival time (AT) of each gate output? 
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Timing Analysis with LUT Mapping 

a

b

d f

c

e

g

h

AT(a) = 1 AT(d) = 1

AT(h) = ?
AT(b) = 1 AT(e) = 1 AT(c) = 1
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AT(f) = ?
Associated cut?

AT(g) = ?
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Agenda

“
”

One of the only really fundamental 
data structures that came out in the 
last twenty-five years

Donald Knuth, 2008

▸ Introduction to BDD: A canonical graph-based 
representation of Boolean functions

http://en.wikipedia.org/wiki/Donald_Knuth


Ideal Representation of a Boolean Function

▸We wish to find a representation with the 
following characteristics
– Compact in terms of size
– Efficient to compute the output with the given inputs 

and efficient to manipulate and modify
– Ideally, a canonical representation

• Equivalent functions have the same unique form (under 
certain restrictions) 
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Example: Voting Function

▸A Boolean voting function
– An n-ary Boolean function                             evaluates to 1 

if 50% or more (            ) of its inputs are set to 1
– Examples:

• f(0,0) = 0
• f(0,1) = 1
• f(0,0,1) = 0
• f(1,0,1) = 1

▸How to formally represent this function? 
– Truth table
– Karnaugh map
– Sum of Products (SOP) 

… 
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f (x1, x2,..., xn )
≥ n / 2"# $%



Truth Table and Canonical Sum
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x y z f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

But 2n table entries are required!
Truth table is canonical 

Canonical sum of products (SOP) 
xyz’ + xy’z + xyz + x’yz 
(4 minterms)
Is it a compact form?



8

Karnaugh Map and Minimized SOP

0 0 1 0

0 1 1 1

00 01 11 10

0

1

xy
z

What about n inputs? (esp. where n is large)
Minimized SOP (3 terms): xy + xz + yz

Note: K-map only handles up to 6 inputs, and the solution 
is not necessarily unique 



Complexity of SOP Representation

▸An n-input Boolean voting function has at least 
C(n, n/2) prime implicants 

▸Growth rate of C(n, k) in terms of n
– For k=1, C(n,1) = n
– For k=2, C(n,2) = n(n-1)/2
– For k=3, C(n,3) = n(n-1)(n-2)/6
– …
– For k=n/2, C(n, n/2) =                                

(uses Stirling formula)
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n!
[(n / 2)!]2

∈Θ(2n n−0.5 )



Co-factors and Shannon Expansion

▸ The co-factor of a Boolean function 𝑓 𝑥!, 𝑥", … , 𝑥#  is the 
result of simplifying the function with respect to a specific 
variable, either by setting that variable to 1 or 0
– 𝑓!!"#	denotes the positive co-factor with respect to 𝑥$, which is 

obtained by substituting 𝑥$ = 1 into the original function 𝑓
• For example, 𝑓!!"# = 𝑓(1, 𝑥$, … , 𝑥%)

– 𝑓!!"%	denotes the negative co-factor with respect to 𝑥$, which is 
obtained by substituting 𝑥$ = 0 into 𝑓

▸ The Shannon expansion with respect to a variable 𝑥,: 
𝑓 𝑥!, 𝑥", … , 𝑥#  = 𝑥,•𝑓-!.! + 𝑥,′•𝑓-!./ 
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Boolean Function in a Decision Tree

11

x y z f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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– Nonterminal node in orange
• Follow dashed line for value 0
• Follow solid line for value 1

– Terminal (leaf) node in green 
• Function value determined by leaf values

x=0

x=1

y=0

y=1

f(x, y, z) = x’ • fx=0 + x • fx=1 
= x’ • f(0, y, z) + x • f(1, y, z)

Shannon Expansion



Reduction Rule #1

▸ Merge equivalent leaves
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▸ Remove redundant tests
– If a node v has the same left child as 

its right child, it’s deemed redundant
• i.e., left(v) = right(v)

Reduction Rule #2
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00010111

0001 0111

01

0 1

▸ Merge isomorphic nodes (i.e., 
nodes with the same structure)
– u and v are isomorphic, when

left(u) = left(v) and right(u) = right(v) 

Reduction Rule #3
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▸ BDDs are usually directly constructed bottom up, 
avoiding the reduction steps

▸ One approach is using a hash table called unique 
table, which contains the IDs of the Boolean 
functions whose BDDs have been constructed [1]

– A new function is added if its associated ID is not already 
in the unique table
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Efficient BDD Construction

[1] K. Brace, R. Rudell, and R. Bryant, Efficient Implementation of a BDD Package, DAC’91.

https://doi.org/10.1145/123186.123222


BDDs History

▸ Initially proposed by Lee in 1959, and later Akers in 1976
– Idea of representing Boolean function as a rooted DAG with a 

decision at each vertex

▸ Popularized by Bryant in 1986
– Further restrictions + efficient algorithms to make a useful data 

structure (ROBDD)
– BDD = ROBDD since then
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ROBDDs

▸Reduced and Ordered (ROBDD) 
– Directed acyclic graph (DAG) 

• Two children per node
• Two terminals 0, 1 

– Ordered: 
• Co-factoring variables (splitting 

variables) always follow the same order 
along all paths x1 < x2 < x3 < … < xn

– Reduced: 
• Any node with two identical children is 

removed (rule #2)
• Two nodes with isomorphic BDDs are 

merged (rules #1 and #3)
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3-input voting function 
in BDD form
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More on Variable Ordering 

▸ Follow a total ordering to variables
– e.g., x < y < z

▸ Variables must appear in the same ascending order 
along all paths
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Canonical Representation

▸BDD is a canonical representation of Boolean 
functions 
– Given the same variable order, two functions 

equivalent if and only if they have the same BDD form
• “0” unique unsatisifable function
• “1” unique tautology
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More Virtues of BDDs

▸ There are many, but to list a few more:
– Can represent an exponential number of paths 

with a DAG

– Can evaluate an n-ary Boolean function in at 
most n steps
• By tracing paths to the 1 node, we can count or 

enumerate all solutions to equation f = 1

– Every BDD node (not just root) represent some 
Boolean function in a canonical way
• A BDD can be multi-rooted representing multiple 

Boolean functions sharing subgraphs
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BDD Representation of Voting Function

21Diagram generated by www.cs.uc.edu/~weaversa/BDD_Visualizer.html

§ 8-input voting function in BDD with only 20 nonterminal nodes
§ In contrast to 70 prime implicants in SOP form



Example Application: Equivalence Checking

▸ Either prove equivalence or find counterexample(s)
– Counterexamples: Input values (x, y) for which the two 

programs produce different results

bool P(bool x, bool y) { return ~(~x & ~y); }

bool Q(bool x, bool y) { return x ^ y; }
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P ≟ Q
Is P equivalent to Q?

^ means bitwise XOR in C

& means bitwise AND in C; ~ is negation



23

Equivalence Checking using BDDs

P = ~(~x & ~y)
= x | y

Q = x ^ y

x

y
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BDD of P BDD of Q

Let S denote the function of (P==Q), i.e., P XNOR Q
Exercise: first derive Sx=1 and Sx=0 before constructing the BDD of S

P ≟ Q
Checking equivalence of P and Q by constructing the BDD of (P==Q)
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Equivalence Checking using BDDs

P = ~(~x & ~y)
= x | y

Q = x ^ y

x

y

01

Counterexample
Setting x = 1 & y = 1
leads to a false output

Hence P ≠ Q
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BDD of P BDD of Q

BDD of 
(P==Q)

P ≟ Q
Checking equivalence of P and Q by constructing the BDD of (P==Q)



Same function, two different orderings, 
different graphs

f = ab+cd under two 
different variable orders
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a<b<c< d

BDD Limitations

▸ NP-hard problem to construct the 
optimal order for a given BDD
– Extensive research in ordering 

algorithms 

▸ No efficient BDD exists for some 
functions regardless of the order

▸ Existing heuristics work well 
enough on many combinational 
functions from real circuits



▸Front-end compilation and CDFG

26

Next Lecture



▸These slides contain/adapt materials from / 
developed by
– Prof. Randal Bryant (CMU)
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