ECE 6775

High-Level Digital Design Automation Fall 2023

Binary Decision Diagrams (BDDs)

Announcements

- HW 1 released
- Lab 1 CORDIC design due by Friday at 11:59pm
- Fixed-point design should not have DSP48 usage

Agenda

- Graph algorithms applied to two EDA problems
- Static timing analysis
- Binary decision diagrams

[source: Alberto Sangiovanni-Vincentelli's keynote at ICCAD'2012]

More on Static Timing Analysis

- Assumptions:
- All inputs arrive at time 0
- All gate delays $=1 \mathrm{~ns}$, wire delay $=0$
- Clock period $=5 n s$
- What is the maximum slowdown of each gate without violating timing?

FPGA LUT Mapping Revisited

- Cone C_{V} : a subgraph rooted on a node v
- K-feasible cone: \#inputs $\left(\mathrm{C}_{\mathrm{v}}\right) \leq \mathrm{K}$ (Can occupy a K-input LUT)
- K-feasible cut: The set of input nodes of a K-feasible C_{v}

Another 3-feasible cone with an associated cut $=\{a, b, c\}$

Timing Analysis with LUT Mapping

- Assumptions
- K=3
- All inputs arrive at time 0
- Unit delay model: 3-input LUT delay = 1; Zero delay on wire
- Question: Minimum arrival time (AT) of each gate output?

Binary Decision Diagrams

6
One of the only really fundamental data structures that came out in the last twenty-five years

Donald Knuth, 2008

One of the most cited papers in CS/CE

Ideal Representation of a Boolean Function

- We wish to find a representation with the following characteristics
- Compact in terms of size
- Efficient to compute the output with the given inputs and efficient to manipulate and modify
- Ideally, a canonical representation
- Equivalent functions have the same unique form (under certain restrictions)

Example: Voting Function

- A Boolean voting function
- An n-ary Boolean function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ evaluates to 1 if 50% or more $(\geq\lceil n / 2\rceil)$ of its inputs are set to 1
- Examples:
- $f(0,0)=0$
- $f(0,1)=1$
- $f(0,0,1)=0$
- $f(1,0,1)=1$
- How to formally represent this function?
- Truth table
- Karnaugh map
- Sum of Products (SOP)

Truth Table and Canonical Sum

x	y	z	f	
0	0	0	0	
0	0	1	0	
Truth table is canonical				
0	1	0	0	
0	1	1	2^{n} table entries are required!	
1	0	0	0	Canonical sum of products (SOP)
1	0	1	1	(4z minterms) $+x y z+x^{\prime} y z$
1	1	0	1	Is it a compact form?
1	1	1	1	

Karnaugh Map and Minimized SOP

Minimized SOP (3 terms): xy + xz + yz
What about \boldsymbol{n} inputs? (esp. where n is large)
Note: K-map only handles up to 6 inputs; plus the solution is not necessarily unique

Complexity of SOP Representation

- An n-input Boolean voting function has at least $\mathrm{C}(\mathrm{n}, \mathrm{n} / 2)$ prime implicants
- Growth rate of $\mathrm{C}(n, k)$ in terms of n
- For $k=1, \mathrm{C}(n, 1)=n$
- For $k=2, \mathrm{C}(n, 2)=n(n-1) / 2$
- For $k=3, C(n, 3)=n(n-1)(n-2) / 6$
$-\underset{\text { (uses Stirling formula) }}{\text { For K }=n / 2, \mathrm{C}(n, n / 2)}=\frac{n!}{[(n / 2)!]^{2}} \in \Theta\left(2^{n} n^{-0.5}\right)$

Shannon Expansion and Decision Tree

Shannon Expansion

$f(x, y, z)=x \cdot f_{x=0}+x \cdot f_{x=1}$
$=x \cdot f(0, y, z)+x \cdot f(1, y, z)$

- Nonterminal node in orange
- Follow dashed line for value 0
- Follow solid line for value 1
- Terminal (leaf) node in green
- Function value determined by leaf values

Reduction Rule \#1

- Merge equivalent leaves

Reduction Rule \#2

- Remove redundant tests
- If a node v has the same left child as its right child, it's deemed redundant
- i.e., left(v) $=\operatorname{right}(\mathrm{v})$

Reduction Rule \#3

- Merge isomorphic nodes (i.e., nodes with the same structure)
- u and v are isomorphic, when $\operatorname{left}(u)=\operatorname{left}(v)$ and $\operatorname{right}(u)=\operatorname{right}(v)$

Efficient BDD Construction

- BDDs are usually directly constructed bottom up, avoiding the reduction steps
- One approach is using a hash table called unique table, which contains the IDs of the Boolean functions whose BDDs have been constructed ${ }^{[1]}$
- A new function is added if its associated ID is not already in the unique table

[^0]BDD Package. Design Automation Conference (DAC), 1991.

BDDs History

- Initially proposed by Lee in 1959, and later Akers in 1976
- Idea of representing Boolean function as a rooted DAG with a decision at each vertex
- Popularized by Bryant in 1986
- Further restrictions + efficient algorithms to make a useful data structure (ROBDD)
- BDD = ROBDD since then

ROBDDs

- Reduced and Ordered (ROBDD)
- Directed acyclic graph (DAG)
- Two children per node
- Two terminals 0, 1
- Ordered:
- Co-factoring variables (splitting variables) always follow the same order along all paths $x_{1}<x_{2}<x_{3}<\ldots<x_{n}$
- Reduced:
- Any node with two identical children is removed (rule \#2)
- Two nodes with isomorphic BDDs are merged (rules \#1 and \#3)

3 -input voting function in BDD form

More on Variable Ordering

- Follow a total ordering to variables
- e.g., $x<y<z$
- Variables must appear in the same ascending order along all paths

Canonical Representation

- BDD is a canonical representation of Boolean functions
- Given the same variable order, two functions equivalent if and only if they have the same BDD form
- "0" unique unsatisifable function
- "1" unique tautology

More Virtues of BDDs

- There are many, but to list a few more:
- Can represent an exponential number of paths with a DAG
- Can evaluate an n-ary Boolean function in at most n steps
- By tracing paths to the 1 node, we can count or enumerate all solutions to equation $f=1$
- Every BDD node (not just root) represent some Boolean function in a canonical way
- A BDD can be multi-rooted representing multiple
 Boolean functions sharing subgraphs

BDD Representation of Voting Function

- 8-input voting function in BDD with only 20 nonterminal nodes
- In contrast to 70 prime implicants in SOP form

EDA Application: Equivalence Checking

bool P(bool x, bool y) \{return ~(~x \& ~y); \}
\& means bitwise AND in C; \sim is negation

$$
\begin{gathered}
\mathbf{P} \stackrel{?}{=} \mathbf{Q} \\
\text { Is } P \text { equivalent to } Q ?
\end{gathered}
$$

bool Q(bool x, bool y) \{ return $x^{\wedge} y$; \}
\wedge means bitwise XOR in C

- Either prove equivalence or find counterexample(s)
- Counterexamples: Input values (x, y) for which the two programs produce different results

Equivalence Checking using BDDs

BDD Limitations

- NP-hard problem to construct the optimal order for a given BDD
- Extensive research in ordering algorithms
- No efficient BDD exists for some functions regardless of the order
- Existing heuristics work well enough on many combinational functions from real circuits

$$
f=a b+c d \text { under two }
$$

Same function, two different orderings, different graphs

Next Lecture

- Front-end compilation and CDFG

Acknowledgements

- These slides contain/adapt materials from / developed by
- Prof. Randal Bryant (CMU)

[^0]: [1] K. Brace, R. Rudell, and R. Bryant, Efficient Implementation of a

