ECE 6775 High-Level Digital Design Automation Fall 2023

Analysis of Algorithms

Announcements

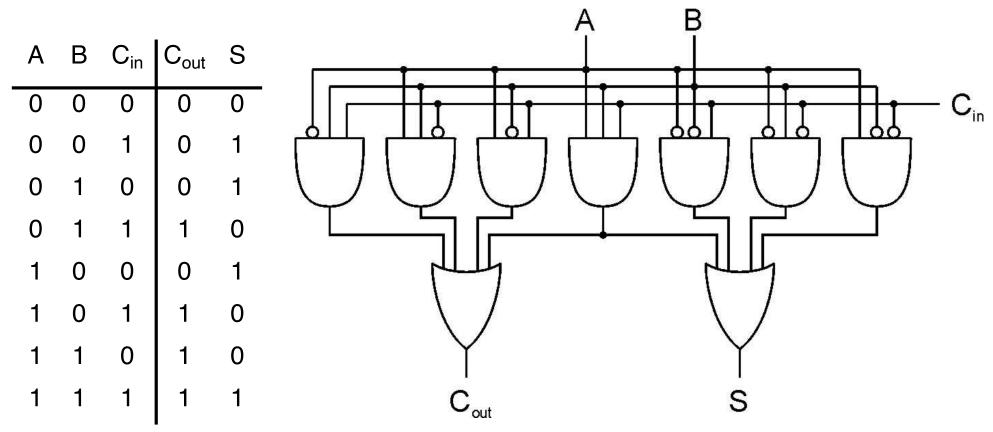
HW 1 will be released tomorrow

Agenda

- Basics of algorithm analysis
 - Complexity analysis and asymptotic notations
 - Taxonomy of algorithms
- Basics of graph algorithms
 - EDA application: Static timing analysis

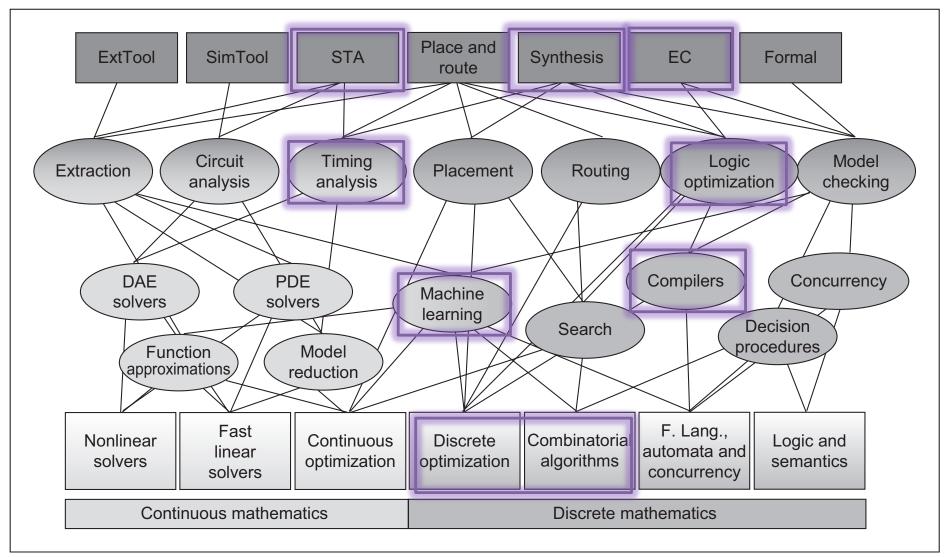
Review: LUT Mapping

- (1) How many 3-input LUTs are needed to implement the following full adder?
- (2) How about using 4-input LUTs?



Recap: Algorithms Drive Automation

Topics touched on in 6775



Key Algorithms in EDA

[source: Andreas Kuehlmann, Synopsys Inc.]

Analysis of Algorithms

- Need a systematic way to compare two algorithms
 - Execution time is typically the most common criterion used
 - Space (memory) usage is also important in most cases
 - But difficult to compare in practice since these algorithms may be implemented on different machines, use different languages, etc.
 - Plus, execution time is usually input-dependent
- big-O notation is widely used for asymptotic analysis
 - Complexity is represented with respect to some natural & abstract measure of the problem size N

Big-O Notation

- Express execution time as a function of input size n
 - Running time F(n) is of order G(n), written as F(n) is \mathbf{O} (G(n)) when $\exists n_0, \forall n \geq n_0, F(n) \leq K \cdot G(n)$ for some constant K
 - F will not grow larger than G by more than a constant factor
 - G is often called an "upper bound" for F
- Interested in the worst-case input & the growth rate for large input size

Big-O Notation (cont.)

- How to determine the order of a function?
 - Ignore lower order terms
 - Ignore multiplicative constants
 - Examples:

```
3n^{2} + 6n + 2.7 is O(n^{2})

n^{1.1} + 100000000000 is O(n^{1.1}), n^{1.1} is also O(n^{2})

n! > C^{n} > n^{C} > log n > log log n > C

\Rightarrow n! > n^{10}; n log n > n; n > log n
```

- What do asymptotic notations mean in practice?
 - If algorithm A is O(n²) and algorithm B is O(n log n),
 we usually say algorithm B is more scalable.

More Asymptotic Notions

- **big-Omega** notation: F(n) is $\Omega(G(n))$
 - $\exists n_0$, $\forall n \ge n_0$, $F(n) \ge K \cdot g(n)$ for some constant K G is called a "**lower bound**" for F
- ▶ **big-Theta** notation: F(n) is $\Theta(G(n))$
 - If G is both an upper and lower bound for F, it describes the growth of a function more accurately than big-O or big-Omega
 - Examples:

$$4n^2 + 1024 = \Theta(n^2)$$

 $n^3 + 4n \neq \Theta(n^2)$

Exponential Growth

Consider a 1 GHz processor (1 ns per clock cycle)
 running 2ⁿ operations (assuming each op requires one cycle)

	2 ⁿ	1ns (/op) x 2 ⁿ
10	10 ³	1 us
20	10 ⁶	1 ms
30	10 ⁹	1 s
40	10 ¹²	16.7 mins
50	10 ¹⁵	11.6 years
60	10 ¹⁸	31.7 years
		•
70	10 ²¹	31710 years

NP-Complete

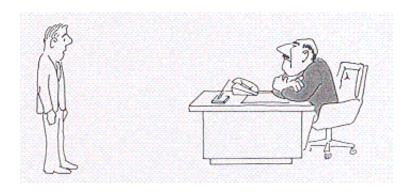
- The class NP-complete (NPC) is the set of decision problems which we "believe" there is no polynomial time algorithms (hardest problem in NP)
- ▶ NP-hard is another class of problems, which are at least as hard as the problems in NPC (also containing NPC)
- If we know a problem is in NPC or NP-hard, there is (very) little hope to solve it exactly in an efficient way

Reduction

- Showing a problem P is at least as hard as (or not easier than) another problem Q
 - Formal steps:
 - Given an instance q of problem Q, there is a polynomial-time transformation to an instance p of P, q is a "yes" instance if and only if p is a "yes" instance
 - Informally, if P can be solved efficiently, we can solve Q efficiently (Q is reduced to P)
 - P is polynomial time solvable → Q is polynomial time solvable
 - Q is not polynomial time solvable → P is not polynomial time solvable
- Example
 - Problem P: Sort n numbers
 - Problem Q: Given *n* numbers, find the median

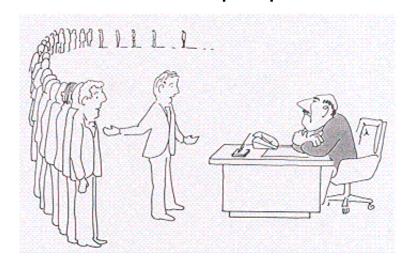
How to Identify an NP-Complete Problem

 I can't find an efficient algorithm, I guess I'm just too dumb.



 I can't find an efficient algorithm, because no such algorithm is possible.

 I can't find an efficient algorithm, but neither can all these famous people.



[source: "Computers and Intractibility" by Garey and Johnson]

Types of Algorithms

- There are many ways to categorize different types of algorithms
 - Polynomial vs. Exponential, in terms of computational effort
 - Optimal (or Exact) vs. Heuristic, in solution quality
 - Deterministic vs. Stochastic, in decision making
 - Constructive vs. Iterative, in structure

. . .

Problem Intractability

- Most of the nontrivial EDA problems are intractable (NP-complete or NP-hard)
 - Best-known algorithm complexities that grow exponentially with n, e.g., O(n!), O(nⁿ), and O(2ⁿ).
 - No known algorithms can ensure, in a time-efficient manner, globally optimal solution
- Heuristic algorithms are used to find near-optimal solutions
 - Be content with a "reasonably good" solution

Many Algorithm Design Techniques

- There can be many different algorithms to solve the same problem
 - Exhaustive search
 - Divide and conquer
 - Greedy
 - Dynamic programming
 - Network flow
 - ILP
 - Simulated annealing
 - Evolutionary algorithms

. . .

Broader Classification of Algorithms

- Combinatorial algorithms
 - Graph algorithms

. . .

- Computational mathematics
 - Optimization algorithms
 - Numerical algorithms

. . .

- Computational science
 - Bioinformatics
 - Linguistics
 - Statistics

. . .

- Digital logic
 - Boolean minimization

. . .

Information theory & signal processing

. . .

Machine learning and statistical classification

Many more

[source: en.wikipedia.org/wiki/List_of_algorithms]

Topics touched on in 6775

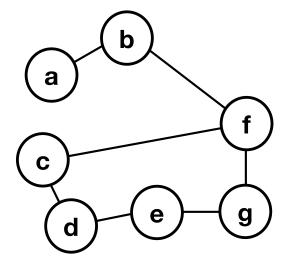
Graph Definition

- Graph: a set of objects and their connections
 - Ubiquitous: any binary relation can be represented as a graph
- Formal definition:
 - $G = (V, E), V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
 - V : set of vertices (nodes), E : set of edges (arcs)
 - Undirected graph: an edge {u, v} also implies {v, u}
 - Directed graph: each edge (u, v) has a direction

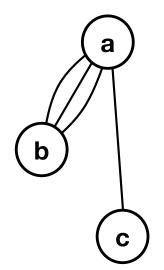
Simple Graph

- Loops, multi edges, and simple graphs
 - An edge of the form (v, v) is said to be a **self-loop**
 - A graph permitted to have multiple edges (or parallel edges) between two vertices is called a multigraph
 - A graph is said to be **simple** if it contains no self-loops or multiedges

Simple graph



Multigraph



Graph Connectivity

Paths

- A path is a sequence of edges connecting two vertices
- A simple path never goes through any vertex more than once

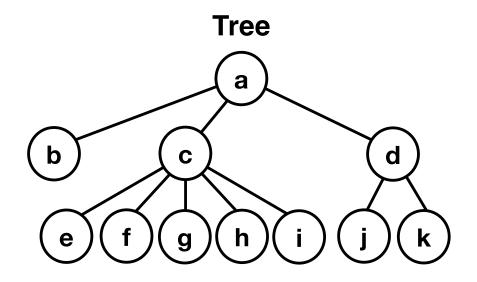
Connectivity

- A graph is **connected** if there is there is a path between any two vertices
- Any subgraph that is connected can be referred to as a connected component
- A directed graph is **strongly connected** if there is always a directed path between vertices

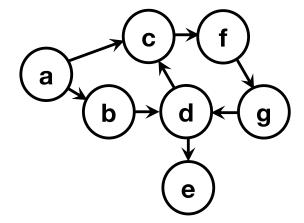
Trees and DAGs

- A cycle is a path starting and ending at the same vertex. A cycle in which no vertex is repeated other than the starting vertex is said to be a simple cycle
- An undirected graph with no cycles is a tree if it is connected, or a forest otherwise
 - A directed tree is a directed graph which would be a tree if the directions on the edges were ignored
- A directed graph with no directed cycles is said to be a directed acyclic graph (DAG)

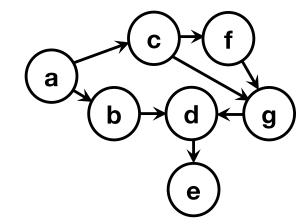
Examples



Directed graphs with cycles

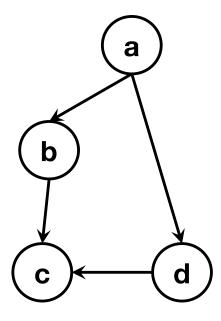


Directed acyclic graph (DAG)



Graph Traversal

- Purpose: visit all the vertices in a particular order, check/update their properties along the way
- Commonly used algorithms
 - Depth-first search (DFS)
 - Breadth-first search (BFS)

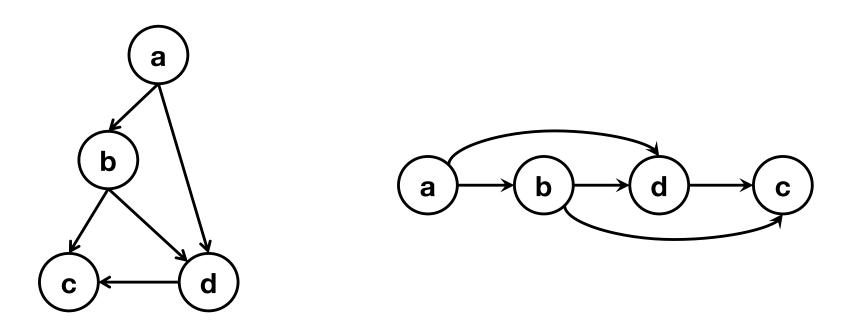


DFS order (from node a): ??

BFS order: ??

Topological Sort

- A topological order of a directed graph is an ordering of nodes where all edges go from an earlier vertex (left) to a later vertex (right)
 - Feasible if and only if the subject graph is a DAG

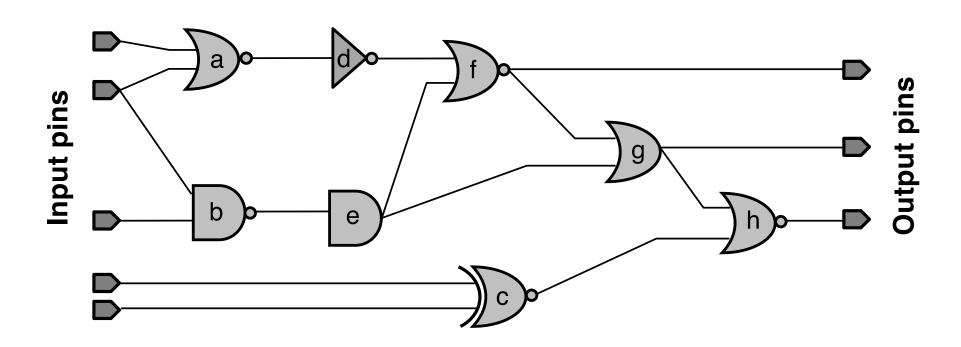


Application in EDA: Static Timing Analysis

- In circuit graphs, **static timing analysis** (STA) refers to the problem of finding the delays from the input pins of the circuit (esp. nodes) to each gate
 - In sequential circuits, flip-flop (FF) input acts as output pin, FF output acts as input pin
 - Max delay of the output pins determines clock period
 - Critical path is a path with max delay among all paths
- Two important terms
 - Required time: The time that the data signal needs to arrive at certain endpoint on a path to ensure the timing is met
 - Arrival time: The time that the data signal actually arrives at certain endpoint on a path

STA: An Example

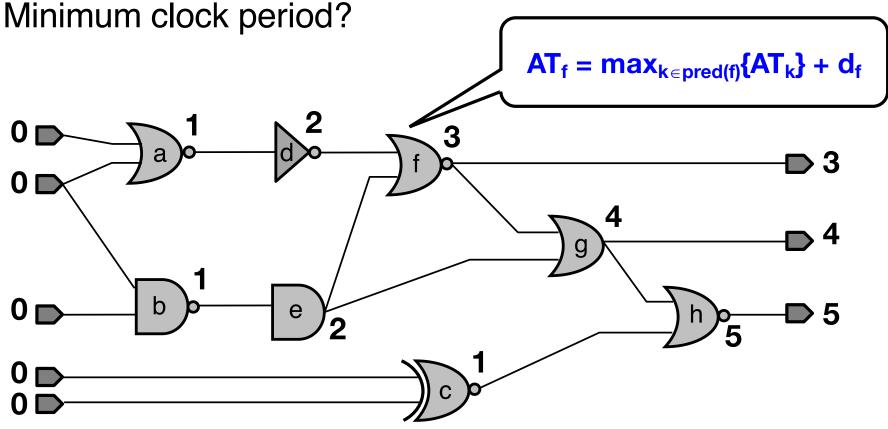
- pred(n): predecessors of node n
 - e.g., **pred**(f) = {d, e}
- succ(n): successors of node n
 - e.g., $succ(e) = \{f, g\}$



STA: Arrival Times

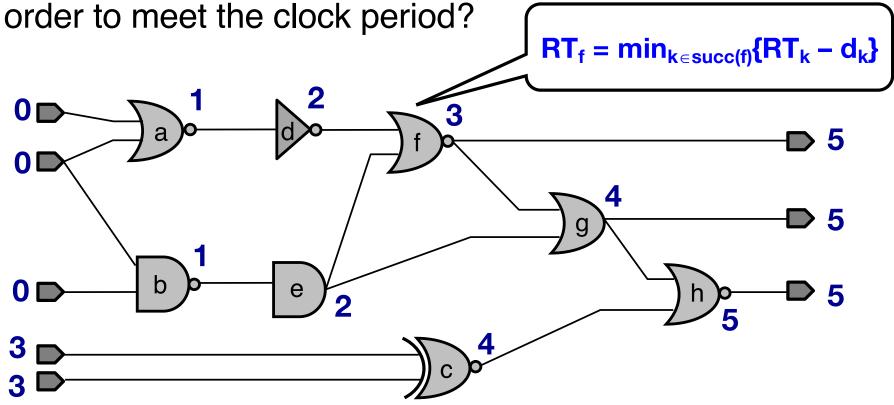
- Assumptions
 - All inputs arrive at time 0
 - All gate delays = 1 ns (d = 1); all wire delays = 0

Questions: Arrival time (AT) of each gate output?



STA: Required Times

- Assumptions
 - All inputs arrive at time 0
 - All gate delays = 1 ns (d = 1); all wire delays = 0
 - Clock period = 5ns (200MHz frequency)
- Question: Required time (RT) of each gate output in



STA: Slacks

- In addition to the arrival time and required time of each node, we are interested in knowing the slack (= RT - AT) of each node / edge
 - Negative slacks indicate unsatisfied timing constraints
 - Positive slacks often present opportunities for additional (area/power) optimization
 - Node on the critical path have zero slacks

Next Lecture

Binary decision diagrams (BDDs)

Acknowledgements

- These slides contain/adapt materials from / developed by
 - Prof. David Pan (UT Austin)
 - "VLSI Physical Design: From Graph Partitioning to Timing Closure" authored by Prof. Andrew B. Kahng, Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu