Announcements

- HW 1 will be released tomorrow
Agenda

- Basics of algorithm analysis
 - Complexity analysis and asymptotic notations
 - Taxonomy of algorithms

- Basics of graph algorithms
 - EDA application: Static timing analysis
Review: LUT Mapping

(1) How many 3-input LUTs are needed to implement the following full adder?
(2) How about using 4-input LUTs?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C<sub>in</sub></th>
<th>C<sub>out</sub></th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C<sub>in</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>out</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>
Recap: Algorithms Drive Automation

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]
Analysis of Algorithms

- Need a systematic way to compare two algorithms
 - Execution time is typically the most common criterion used
 - Space (memory) usage is also important in most cases
 - But difficult to compare in practice since these algorithms may be implemented on different machines, use different languages, etc.
 - Plus, execution time is usually input-dependent

- **big-O** notation is widely used for asymptotic analysis
 - Complexity is represented with respect to some natural & abstract measure of the problem size N
Big-O Notation

- Express execution time as a function of input size n
 - Running time $F(n)$ is of order $G(n)$, written as $F(n)$ is $O(G(n))$ when
 $\exists n_0, \forall n \geq n_0, F(n) \leq K \cdot G(n)$ for some constant K
 - F will not grow larger than G by more than a constant factor
 - G is often called an “upper bound” for F

- Interested in the worst-case input & the growth rate for large input size
Big-O Notation (cont.)

- How to determine the order of a function?
 - Ignore lower order terms
 - Ignore multiplicative constants
 - Examples:
 \[3n^2 + 6n + 2.7 \text{ is } O(n^2) \]
 \[n^{1.1} + 10000000000n \text{ is } O(n^{1.1}), \text{ } n^{1.1} \text{ is also } O(n^2) \]
 \[n! > C^n > n^C > \log n > \log \log n > C \]
 \[\Rightarrow n! > n^{10}; n \log n > n; n > \log n \]

- What do asymptotic notations mean in practice?
 - If algorithm A is \(O(n^2) \) and algorithm B is \(O(n \log n) \),
 we usually say algorithm B is more scalable.
More Asymptotic Notions

- **big-Omega** notation: \(F(n) \) is \(\Omega(G(n)) \)
 - \(\exists n_0, \forall n \geq n_0, F(n) \geq K \cdot g(n) \) for some constant \(K \)
 - G is called a “lower bound” for F

- **big-Theta** notation: \(F(n) \) is \(\Theta(G(n)) \)
 - If G is both an upper and lower bound for F, it describes the growth of a function more accurately than big-O or big-Omega
 - Examples:
 - \(4n^2 + 1024 = \Theta(n^2) \)
 - \(n^3 + 4n \neq \Theta(n^2) \)
Exponential Growth

Consider a 1 GHz processor (1 ns per clock cycle) running \(2^n\) operations (assuming each op requires one cycle)

<table>
<thead>
<tr>
<th>n</th>
<th>(2^n)</th>
<th>(1\text{ns/op} \times 2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10³</td>
<td>1 us</td>
</tr>
<tr>
<td>20</td>
<td>10⁶</td>
<td>1 ms</td>
</tr>
<tr>
<td>30</td>
<td>10⁹</td>
<td>1 s</td>
</tr>
<tr>
<td>40</td>
<td>10¹²</td>
<td>16.7 mins</td>
</tr>
<tr>
<td>50</td>
<td>10¹⁵</td>
<td>11.6 years</td>
</tr>
<tr>
<td>60</td>
<td>10¹⁸</td>
<td>31.7 years</td>
</tr>
<tr>
<td>70</td>
<td>10²¹</td>
<td>31710 years</td>
</tr>
</tbody>
</table>
NP-Complete

- The class **NP-complete** (NPC) is the set of decision problems which we “believe” there is no polynomial time algorithms (hardest problem in NP)

- **NP-hard** is another class of problems, which are at least as hard as the problems in NPC (also containing NPC)

- If we know a problem is in NPC or NP-hard, there is (very) little hope to solve it exactly in an efficient way
Reduction

- Showing a problem P is at least as hard as (or not easier than) another problem Q
 - Formal steps:
 - Given an instance q of problem Q, there is a polynomial-time transformation to an instance p of P, q is a “yes” instance if and only if p is a “yes” instance
 - Informally, if P can be solved efficiently, we can solve Q efficiently (Q is reduced to P)
 - P is polynomial time solvable → Q is polynomial time solvable
 - Q is not polynomial time solvable → P is not polynomial time solvable

- Example
 - Problem P: Sort n numbers
 - Problem Q: Given n numbers, find the median
How to Identify an NP-Complete Problem

- I can’t find an efficient algorithm, I guess I’m just too dumb.

- I can’t find an efficient algorithm, because no such algorithm is possible.

- I can’t find an efficient algorithm, but neither can all these famous people.

[source: “Computers and Intractibility” by Garey and Johnson]
Types of Algorithms

- There are many ways to categorize different types of algorithms
 - Polynomial vs. Exponential, in terms of computational effort
 - Optimal (or Exact) vs. Heuristic, in solution quality
 - Deterministic vs. Stochastic, in decision making
 - Constructive vs. Iterative, in structure
 ...

Problem Intractability

- Most of the nontrivial EDA problems are intractable (NP-complete or NP-hard)
 - Best-known algorithm complexities that grow exponentially with n, e.g., $O(n!)$, $O(n^n)$, and $O(2^n)$.
 - No known algorithms can ensure, in a time-efficient manner, globally optimal solution

- **Heuristic** algorithms are used to find near-optimal solutions
 - Be content with a “reasonably good” solution
Many Algorithm Design Techniques

- There can be many different algorithms to solve the same problem
 - Exhaustive search
 - Divide and conquer
 - Greedy
 - Dynamic programming
 - Network flow
 - ILP
 - Simulated annealing
 - Evolutionary algorithms
 ...

Broader Classification of Algorithms

- Combinatorial algorithms
 - Graph algorithms
 - ...
- Computational mathematics
 - Optimization algorithms
 - Numerical algorithms
 - ...
- Computational science
 - Bioinformatics
 - Linguistics
 - Statistics
 - ...
- Digital logic
 - Boolean minimization
 - ...
- Information theory & signal processing
 - ...
- Machine learning and statistical classification
 - Many more

[source: en.wikipedia.org/wiki/List_of_algorithms]
Graph Definition

- Graph: a set of objects and their connections
 - Ubiquitous: any binary relation can be represented as a graph

- Formal definition:
 - $G = (V, E)$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$
 - V: set of **vertices** (nodes), E: set of **edges** (arcs)
 - **Undirected graph**: an edge $\{u, v\}$ also implies $\{v, u\}$
 - **Directed graph**: each edge (u, v) has a direction
Loops, multi edges, and simple graphs
- An edge of the form \((v, v)\) is said to be a **self-loop**
- A graph permitted to have multiple edges (or parallel edges) between two vertices is called a **multigraph**
- A graph is said to be **simple** if it contains no self-loops or multiedges
Graph Connectivity

- **Paths**
 - A *path* is a sequence of edges connecting two vertices
 - A *simple path* never goes through any vertex more than once

- **Connectivity**
 - A graph is *connected* if there is a path between any two vertices
 - Any subgraph that is connected can be referred to as a *connected component*
 - A directed graph is *strongly connected* if there is always a directed path between vertices
Trees and DAGs

- A **cycle** is a path starting and ending at the same vertex. A cycle in which no vertex is repeated other than the starting vertex is said to be a **simple cycle**.

- An undirected graph with no cycles is a **tree** if it is connected, or a **forest** otherwise.
 - A **directed tree** is a directed graph which would be a tree if the directions on the edges were ignored.

- A directed graph with no directed cycles is said to be a **directed acyclic graph (DAG)**.
Examples

Directed graphs with cycles

Directed acyclic graph (DAG)
Graph Traversal

- Purpose: visit all the vertices in a particular order, check/update their properties along the way

- Commonly used algorithms
 - Depth-first search (DFS)
 - Breadth-first search (BFS)

DFS order (from node a): ??
BFS order: ??
A **topological order of a directed graph** is an ordering of nodes where all edges go from an earlier vertex (left) to a later vertex (right)

- Feasible if and only if the subject graph is a DAG
Application in EDA: Static Timing Analysis

- In circuit graphs, **static timing analysis** (STA) refers to the problem of finding the delays from the input pins of the circuit (esp. nodes) to each gate
 - In sequential circuits, flip-flop (FF) input acts as output pin, FF output acts as input pin
 - Max delay of the output pins determines clock period
 - **Critical path** is a path with max delay among all paths

- Two important terms
 - **Required time**: The time that the data signal needs to arrive at certain endpoint on a path to ensure the timing is met
 - **Arrival time**: The time that the data signal actually arrives at certain endpoint on a path
STA: An Example

- **pred(n)**: predecessors of node n
 - e.g., \(\text{pred}(f) = \{d, e\}\)

- **succ(n)**: successors of node n
 - e.g., \(\text{succ}(e) = \{f, g\}\)

![Diagram of STA example](image-url)
STA: Arrival Times

▶ Assumptions
 – All inputs arrive at time 0
 – All gate delays = 1ns (d = 1); all wire delays = 0

▶ Questions: **Arrival time** (AT) of each gate output? Minimum clock period?

\[\text{AT}_f = \max_{k \in \text{pred}(f)} \{ \text{AT}_k \} + d_f \]

Gates are visited in a topological order
STA: Required Times

- **Assumptions**
 - All inputs arrive at time 0
 - All gate delays = 1ns (d = 1); all wire delays = 0
 - Clock period = 5ns (200MHz frequency)

- **Question:** Required time (RT) of each gate output in order to meet the clock period?

\[RT_f = \min_{k \in \text{succ}(f)} \{ RT_k - d_k \} \]

Gates are visited in a reverse topological order
STA: Slacks

- In addition to the arrival time and required time of each node, we are interested in knowing the **slack** \(= RT - AT \) of each node / edge
 - Negative slacks indicate unsatisfied timing constraints
 - Positive slacks often present opportunities for additional (area/power) optimization
 - Node on the **critical path** have zero slacks
Next Lecture

- Binary decision diagrams (BDDs)
Acknowledgements

- These slides contain/adapt materials from / developed by
 - Prof. David Pan (UT Austin)
 - “VLSI Physical Design: From Graph Partitioning to Timing Closure” authored by Prof. Andrew B. Kahng, Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu