ECE 6775
High-Level Digital Design Automation
Fall 2023

Analysis of Algorithms

3 Cornell University

Announcements

» HW 1 will be released tomorrow

Agenda

» Basics of algorithm analysis
- Complexity analysis and asymptotic notations
— Taxonomy of algorithms

» Basics of graph algorithms
— EDA application: Static timing analysis

Review: LUT Mapping

(1) How many 3-input LUTs are needed to implement the
following full adder?
(2) How about using 4-input LUTs?

A B

A B GC,|Coi S . . | . .

0 0 0[O0 O l ! T ! I ' 1 C,
O 0O 1 0O 1

i JUUUJOU
o 1 1 1 O

1 0 0|0 1

1 0 1 1 O

1 1 0 1 O

1 1 1 1 1 Cout S

Recap: Algorithms Drive Automation
Topics touched on in 6775

Circuit Timing

Extraction : : Placement Routing o)
analysis analysis optimization checking
DAE PDE Machi Compilers Concurrency
solvers solvers achllne
learning ..
Search Decision
Function Model rocedures
approximations reduction
Nonlinear F ast Continuous Discrete Combinatoria B aoe Logic and
linear o R . automata and .
solvers optimization (|Joptimization || algorithms semantics
solvers concurrency
Continuous mathematics Discrete mathematics

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]

Analysis of Algorithms

> Need a systematic way to compare two algorithms
— Execution time is typically the most common criterion used
— Space (memory) usage is also important in most cases

— But difficult to compare in practice since these algorithms
may be implemented on different machines, use different
languages, etc.

— Plus, execution time is usually input-dependent

> big-O notation is widely used for asymptotic analysis

— Complexity is represented with respect to some natural &
abstract measure of the problem size N

Big-O Notation

> Express execution time as a function of input size n

— Running time F(n) is of order G(n), written as F(n) is O(G(n)) when
dn,, VN = ng, F(n) < K - G(n) for some constant K

-~ F will not grow larger than G by more than a constant factor
-~ G is often called an “upper bound” for F

> Interested in the worst-case input & the growth rate for
large input size

Big-O Notation (cont.)

> How to determine the order of a function?
— Ignore lower order terms
— lgnore multiplicative constants
— Examples:
3n°+ 6n + 2.7 is O(n?)
n’-T+ 10000000000n is O(n'1), n'1is also O(n?)
n'>C">nC>logn>loglogn>C

—n! > n% nlogn>n;n>logn

» What do asymptotic notations mean in practice?
— If algorithm A is O(n?) and algorithm B is O(n log n),
we usually say algorithm B is more scalable.

More Asymptotic Notions

> big-Omega notation: F(n) is Q(G(n))
— 3ng, Vn = ng, F(n) 2 K - g(n) for some constant K
G is called a “lower bound” for F

> big-Theta notation: F(n) is ©(G(n))
— If G is both an upper and lower bound for F, it describes the
growth of a function more accurately than big-O or big-Omega
- Examples:
4n2 + 1024 = ©(n?)
n3 + 4n = O(n?)

Exponential Growth

> Consider a 1 GHz processor (1 ns per clock cycle)
running 2" operations (assuming each op requires one cycle)

n 2" 1ns (/op) x 2"
10 10° 1 us

20 106 1ms

30 10° 1s

40 1012 16.7 mins
50 107° 11.6 years
60 1018 31.7 years
70 1021 31710 years

NP-Complete

> The class NP-complete (NPC) is the set of decision

problems which we “believe” there is no polynomial time
algorithms (hardest problem in NP)

> NP-hard is another class of problems, which are at least
as hard as the problems in NPC (also containing NPC)

> If we know a problem is in NPC or NP-hard, there is
(very) little hope to solve it exactly in an efficient way

10

Reduction

» Showing a problem P is at least as hard as (or not easier
than) another problem Q

— Formal steps:

- Given an instance q of problem Q,
there is a polynomial-time transformation to an instance p of P,
g is a “yes” instance if and only if p is a “yes” instance

— Informally, if P can be solved efficiently, we can solve Q efficiently
(Q is reduced to P)

P is polynomial time solvable = Q is polynomial time solvable
+ Qis not polynomial time solvable - P is not polynomial time solvable

> Example

— Problem P: Sort n numbers
— Problem Q: Given n numbers, find the median

11

How to Identify an NP-Complete Problem

= | can’t find an efficient
algorithm, | guess I’'m just
too dumb.

= | can’t find an efficient
algorithm, but neither can all
these famous people.

i

e
e
>
|

C
Tl
|
{

(

|

v

= | can’t find an efficient
algorithm, because no such
algorithm is possible.

[source: “Computers and Intractibility”
by Garey and Johnson] 12

Types of Algorithms

> There are many ways to categorize different types of
algorithms
- Polynomial vs. Exponential, in terms of computational effort
— Optimal (or Exact) vs. Heuristic, in solution quality
— Deterministic vs. Stochastic, in decision making
— Constructive vs. lterative, in structure

13

Problem Intractability

> Most of the nontrivial EDA problems are intractable
(NP-complete or NP-hard)

- Best-known algorithm complexities that grow exponentially with
n, e.g., O(n!), O(n"), and O(2").

— No known algorithms can ensure, in a time-efficient manner,
globally optimal solution

> Heuristic algorithms are used to find near-optimal
solutions
-~ Be content with a “reasonably good” solution

14

Many Algorithm Design Techniques

» There can be many different algorithms to solve the
same problem
- Exhaustive search
— Divide and conquer
— Greedy
— Dynamic programming
— Network flow
- ILP
- Simulated annealing
— Evolutionary algorithms

Broader Classification of Algorithms

>

Combinatorial algorithms
- |Graph algorithms

Computational mathematics
= |Optimization algorithms
— Numerical algorithms

Computational science
— Bioinformatics
— Linguistics
— Statistics

Digital logic

— Boolean minimization

Information theory & signal processing

Machine learningjand statistical classification

Many more

Topics touched on in 6775

[source: en.wikipedia.org/wiki/List_of_algorithms]

16

Graph Definition

» Graph: a set of objects and their connections
— Ubiquitous: any binary relation can be represented as a graph

» Formal definition:
- G=V,E),V=A{vq, vy, .., v}, E={eq, €, ..., €n}
« V : set of vertices (nodes), E : set of edges (arcs)
-~ Undirected graph: an edge {u, v} also implies {v, u}
- Directed graph: each edge (u, v) has a direction

17

Simple Graph

» Loops, multi edges, and simple graphs
— An edge of the form (v, v) is said to be a self-loop

— A graph permitted to have multiple edges (or parallel edges)
between two vertices is called a multigraph

— Agraph is said to be simple if it contains no self-loops or
multiedges

Simple graph Multigraph

() :

2 ok S

18

Graph Connectivity

» Paths

- A path is a sequence of edges connecting two vertices
- A simple path never goes through any vertex more than once

» Connectivity

- Agraph is connected if there is there is a path between any two
vertices

— Any subgraph that is connected can be referred to as a
connected component

- Adirected graph is strongly connected if there is always a
directed path between vertices

19

Trees and DAGs

> A cycle is a path starting and ending at the same vertex.
A cycle in which no vertex is repeated other than the
starting vertex is said to be a simple cycle

> An undirected graph with no cycles is a tree if it is
connected, or a forest otherwise

-~ Adirected tree is a directed graph which would be a tree if the
directions on the edges were ignored

> Adirected graph with no directed cycles is said to be a
directed acyclic graph (DAG)

20

Examples

21

Graph Traversal

» Purpose: visit all the vertices in a particular order,
check/update their properties along the way

> Commonly used algorithms
— Depth-first search (DFS)
— Breadth-first search (BFS)

DFS order (from node a): ??

BFS order: ??

22

Topological Sort

> A topological order of a directed graph is an ordering
of nodes where all edges go from an earlier vertex (left)
to a later vertex (right)

- Feasible if and only if the subject graph is a DAG

o
O o¥oXo¥e

6’0

23

Application in EDA: Static Timing Analysis

> In circuit graphs, static timing analysis (STA) refers to
the problem of finding the delays from the input pins of the
circuit (esp. nodes) to each gate
— In sequential circuits, flip-flop (FF) input acts as output pin, FF
output acts as input pin
- Max delay of the output pins determines clock period
— Critical path is a path with max delay among all paths

> Two important terms

- Required time: The time that the data signal needs to arrive at
certain endpoint on a path to ensure the timing is met

— Arrival time: The time that the data signal actually arrives at
certain endpoint on a path

24

STA: An Example

» pred(n): predecessors of node n
- e.g., pred(f) = {d, €}

» succ(n): successors of node n
- e.g., succ(e) = {f, g}

O U
Output pins

Input pins

STA: Arrival Times

> Assumptions
— All inputs arrive at time O
— All gate delays = 1ns (d = 1); all wire delays =0

> Questions: Arrival time (AT) of each gate output?

Minimum clock period?
% AT; = maXy prean{ATk} + df]
0 1 2

3

Gates are visited in a topological order 2%

STA: Required Times

> Assumptions
— All inputs arrive at time O
— All gate delays = 1ns (d = 1); all wire delays =0
— Clock period = 5ns (200MHz frequency)
» Question: Required time (RT) of each gate output in

order to meet the clock period?
RT; = min_gyccn{RTx — di}

0 1 2 3

D 5

D5

Gates are visited in a reverse topological order

27

STA: Slacks

> |In addition to the arrival time and required time of each
node, we are interested in knowing the slack (= RT - AT)
of each node / edge
— Negative slacks indicate unsatisfied timing constraints

— Positive slacks often present opportunities for additional
(area/power) optimization

— Node on the critical path have zero slacks

28

Next Lecture

» Binary decision diagrams (BDDs)

29

Acknowledgements

> These slides contain/adapt materials from /
developed by
— Prof. David Pan (UT Austin)

- “VLSI Physical Design: From Graph Partitioning to
Timing Closure” authored by Prof. Andrew B. Kahng,
Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu

30

