ECE 6775 High-Level Digital Design Automation Fall 2023

Field-Programmable Gate Arrays (FPGAs)

Agenda

- FPGA introduction
 - Basic building blocks
 - Classical homogeneous FPGA architectures
 - Modern heterogeneous FPGA architectures

Recap: Roofline Model

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance model for multicore architectures, CACM, 2009.

Exercise: Ol Analysis of 2D Convolution

- OI without line buffer, i.e., no data reuse
 - Number of operations = W*H*9*2
 (1 mult + 1 add per pixel)
 - External memory accesses = W*H*9 bytes (assuming 1 byte per pixel in grayscale)
- Ol with line buffer
 - Number of operations = ??
 - External memory accesses = ??

Tradeoff between Compute Efficiency and Flexibility

What Are FPGAs

- Field-programmable gate array
 - Can be configured to act like any circuit after manufacturing
 - Can do many things we focus on computation acceleration

FPGAs Come In Many Forms

In-Network

Building Blocks of Modern FPGA Architectures

 A programmable array of logic blocks (LUT, FF), interconnects, I/Os, and dedicated blocks (BRAM, DSP)

Counting Boolean Functions

How many distinct 2-input 1-output Boolean functions exist?

What about K inputs?

Multiplexer as a Universal Gate

Any function of k variables can be implemented with a 2^k:1 multiplexer

_					
Α	В	Cin	S	Cout	
0	0	0	0	0	2—0
0	0	1	1	0	?—1
0	1	0	1	0	$\begin{array}{c c} ? \longrightarrow 2 \\ ? \longrightarrow 3 \end{array}$
0	1	1	0	1	?—————————————————————————————————————
1	0	0	1	0	?——6
1	0	1	0	1	?——/ S2 S1 S0
1	1	0	0	\ 1 /	
1	1	1	1	1/	? ? ?

Look-Up Table (LUT)

- A k-input LUT (k-LUT) can be configured to implement any kinput 1-output combinational logic
 - 2k SRAM bits
 - Delay is independent of logic function

A 3-input LUT

Exercise: Implementing Logic with LUTs

Implement a 2:1 MUX using a network of 2-input LUTs. Use the minimum number of LUTs

A Logic Element

- A k-input LUT is usually followed by a flip-flop (FF) that can be bypassed
- The LUT and FF combined form a logic element

A Logic Block

 A logic block clusters multiple logic elements

Arithmetic Circuitry in Logic Block

Altera (now Intel)

Routing Architecture

Hierarchical routing architecture

Island-style routing architecture

Traditional Homogeneous FPGA Architecture

Modern Heterogeneous Field-Programmable System-on-Chip (SoC)

- Island-style configurable mesh routing
- Lots of dedicated components
 - Memories/multipliers, I/Os, processors
 - Specialization leads to higher performance and lower power

Dedicated DSP Blocks

- Built-in components for fast arithmetic operation optimized for DSP applications
 - Essentially a multiply-accumulate core with many other features
 - Fixed logic and connections, functionality may be configured using control signals at run time
 - Much faster than LUT-based implementation (ASIC vs. LUT)

Example: Xilinx DSP48E Slice

*These signals are dedicated routing paths internal to the DSP48E column. They a

- ■25x18 signed multiplier
- 48-bit add/subtract/accumulate
- 48-bit logic operations
- ■SIMD operations (12/24 bit)
- Pipeline registers for high speed

[source: AMD Xilinx]

Dedicated Block RAMs (BRAMs)

- Example: Xilinx 18K/36K block RAMs
 - 32k x 1 to 512 x 72 in one36K block
 - Simple dual-port and true dual-port configurations
 - Built-in FIFO logic
 - 64-bit error correction coding per 36K block

[source: AMD Xilinx]

An Embedded FPGA SoC

Xilinx Zynq All Programmable System-on-Chip

[Source: AMD Xilinx]

A Cloud FPGA Instance

AWS F1 instance: AMD Xilinx UltraScale+ VU9P

[Figure source: David Pellerin, AWS]

An Even More Heterogeneous (FPGA) Accelerator

AMD Xilinx Versal Architecture

[source: AMD Xilinx]

Key Advantages of FPGA-Based Computing

- Massive amount of fine-grained parallelism
 - Highly parallel and/or deeply pipelined architecture
- Silicon (re)configurable to fit the application
 - Compute at desired numerical accuracy
 - Customized memory hierarchy
 - ⇒ low (and often predictable) latency
 - ⇒ higher energy efficiency

Next Lecture

Analysis of Algorithms

Acknowledgements

- These slides contain/adapt materials developed by
 - Prof. Jason Cong (UCLA)
 - Andrew Boutros and Prof. Vaughn Betz (Univ. of Toronto)
 - UCI CS295 by Prof. Sang-Woo Jun