ECE 6775 High-Level Digital Design Automation Fall 2024

Field-Programmable Gate Arrays (FPGAs)

Cornell University

Announcements

- TA-led hands-on tutorial on HLS next Tuesday
 - Bring your laptop

Exercise: OI Analysis of 2D Convolution

Estimate the OI for the 2D convolution kernel both without and with data use

OI Analysis of 2D Convolution w/o LineBuffer

for (r = 1; r < R; r++) for (c = 1; c < C; c++) for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) out[r][c] += img[r+i-1][c+j-1] * f[i][j];

- OI without data reuse
 - Number of operations = C*R*9*2
 (1 multiply + 1 add per pixel)
 - External mem accesses (bytes) = C*R*9 (assuming 1 byte per pixel in grayscale)
 - Resulting OI = 2

OI Analysis of 2D Convolution w/ LineBuffer

 $\begin{array}{l} \mbox{for } (r=1;\,r< R;\,r++) \\ \mbox{for } (c=1;\,c< C;\,c++) \\ \mbox{for } (i=0;\,i<3;\,i++) \\ \mbox{for } (j=0;\,j<3;\,j++) \\ \mbox{out}[r][c] += img[r+i-1][c+j-1] * f[i][j]; \end{array}$

- OI with data reuse using line buffer
 - Number of operations = $C^*R^*9^*2$
 - External mem accesses (bytes) = C*R
 - OI = 18

Recap: Design Space Exploration with Roofline

Operational Intensity (OI)

Agenda

- FPGA introduction
 - Basic building blocks
 - Classical homogeneous FPGA architectures
 - Modern heterogeneous FPGA architectures

Tradeoff between Compute Efficiency and Flexibility

What Are FPGAs

- Field-programmable gate array
 - Can be configured to act like any circuit after manufacturing
 - Can do many things we focus on computation acceleration

FPGAs Come In Many Forms

In-Network

Building Blocks of Modern FPGA Architectures

A programmable array of logic blocks (LUT, FF), interconnects, I/Os, and dedicated blocks (BRAM, DSP)

Counting Boolean Functions

How many distinct 2-input 1-output Boolean functions exist?

What about K inputs?

Multiplexer as a Universal Gate

 Any function of k variables can be implemented with a 2^k:1 multiplexer

Look-Up Table (LUT)

- A k-input LUT (k-LUT) can be configured to implement any kinput 1-output combinational logic
 - 2^k SRAM bits
 - Delay is independent of logic function

A 3-input LUT

Exercise: Implementing Logic with LUTs

Implement a 2:1 MUX using a network of 2-input LUTs. Use the minimum number of LUTs

Building block: 2-input LUT

A Logic Element

- A k-input LUT is usually followed by a flip-flop (FF) that can be bypassed
- The LUT and FF combined form a logic element

A Logic Block

 A logic block clusters multiple logic elements

Arithmetic Circuitry in Logic Block

Intel/Altera

Xilinx (now AMD)

LUTs implement carry propagate and generation logic

LUTs pass inputs to hardened adders

Routing Architecture

Hierarchical routing architecture

Island-style routing architecture

Traditional Homogeneous FPGA Architecture

Modern Heterogeneous Field-Programmable System-on-Chip (SoC)

- Island-style configurable mesh routing
- Lots of dedicated components
 - Memories/multipliers, I/Os, processors
 - Specialization leads to higher performance and lower power

[Figure credit: embeddedrelated.com]

Dedicated DSP Blocks

- Built-in components for fast arithmetic operation optimized for DSP applications
 - Essentially a multiply-accumulate core with many other features
 - Fixed logic and connections, functionality may be configured using control signals at run time
 - Much faster than LUT-based implementation (ASIC vs. LUT)

Example: Xilinx DSP48E Slice

Dedicated Block RAMs (BRAMs)

- Example: Xilinx 18K/36K block RAMs
 - 32k x 1 to 512 x 72 in one
 36K block
 - Simple dual-port and true dual-port configurations
 - Built-in FIFO logic
 - 64-bit error correction coding per 36K block

An Embedded FPGA SoC

A Cloud FPGA Instance

An Even More Heterogeneous (FPGA) Accelerator

[source: AMD Xilinx]

Key Advantages of FPGA-Based Computing

Massive amount of finegrained parallelism

 Highly parallel and/or deeply pipelined architecture

Silicon (re)configurable to fit the application

- Compute at desired numerical accuracy
- Customized memory hierarchy
- \Rightarrow low (and predictable) latency \Rightarrow higher energy efficiency

Next Lecture

Analysis of Algorithms

Acknowledgements

- These slides contain/adapt materials developed by
 - Prof. Jason Cong (UCLA)
 - Andrew Boutros and Prof. Vaughn Betz (Univ. of Toronto)
 - UCI CS295 by Prof. Sang-Woo Jun