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▸Lab 1 and Vivado HLS setup guide released
– Complete the tool setup this week

▸Paper reading this Thursday
– A. Boutros and V. Betz, “FPGA Architecture: 

Principles and Progression”, IEEE CAS-M 2021 

Announcements
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https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607


Agenda

▸Common hardware specialization techniques
– More on fixed point types
– Case study on customized memory hierarchy
– An example of customized communication architecture

▸Roofline-based performance modeling
– Operational intensity (OI) analysis
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– Amortize overhead in control and data supply across 
multiple instructions

– Use smaller (or simpler) data => cheaper operations, 
lower storage & communication costs

– Move data locally and directly
• Store data nearby in simpler memory (e.g., scratchpads are 

cheaper than cache)
• Wire compute units for direct (or even combinational) 

communication when possible
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Recap: Principles for Improving Energy Efficiency

Do even less work!

Do less work!
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Recap: Common HW Specialization Techniques

Custom Compute Units: Use complex instructions 
to amortize overhead (e.g., SIMD, “ASIC”-in-an-
instruction)

Custom Numeric Types: Balance accuracy and 
efficiency with data types that use smaller bit widths 
or simpler arithmetic

Custom Memory Hierarchy: Exploit data access 
patterns to reduce energy per memory operation

Custom Communication Architecture: Tailor on-
chip networks to data movement patterns

Lab 1

Lab 2

Lab 3
Lab 4



▸ The positional binary encoding can also represent 
fractional values, by using a fixed position of the binary 
point and place values with negative exponents
(–) Less convenient to use in software, compared to floating point  
(+) Much more efficient in hardware
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Recap: Fixed-Point Representation

23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

Binary point

Signed (2’c)
fixed-point 
number

Integer part (4 bits) Fractional part (2 bits)



▸ When working with fixed-point types, quantization and 
overflow issues often arise due to the limited precision 
and range of representation

▸ Overflow occurs when a value exceeds the maximum 
representable range for the fixed-point format
– In our class, overflow mainly concerns the integer part of the 

fixed-point number

▸ Quantization is needed when converting real numbers 
from a higher-precision format (like float) to fixed point
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Overflow and Quantization Issues
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Common Modes for Handling Overflow (1)
▸ Wrapping or wraparound: The value wraps around 

within the range using modulo arithmetic
– Efficient in hardware, as it involves simply dropping the MSB(s) 

of the original number

-23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

2’c
0 1 1 0 1 = ??

Wrapping can cause a negative number to become 
positive, or a positive to negative

Dropping MSB 
when integer width 
is reduced
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Common Modes for Handling Overflow (2)
▸ Saturation: The closest representable value (either 

maximum or minimum) is used, preventing wraparound
– Implementing saturation in hardware requires additional logic to 

check for overflows and apply the clamping

-23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

2’c
? ? ? ? ? = ??

Saturation

What is the saturated result for the example above?
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Common Quantization Modes
▸ Truncation: Cuts off the excess bits that don't fit in the 

target precision 
– Efficient in hardware, as it involves simply dropping the LSB(s) 

of the original number

▸ Rounding: Rounds the value to a representable fixed-
point number, potentially reducing quantization error 
compared to truncation
– Round to Nearest: The most common method, where the value 

is rounded to the nearest fixed-point representation
– Round Toward Zero: Rounds towards zero, effectively 

truncating the fractional part
– Round Toward Infinity: Rounds away from zero, towards 

positive or negative infinity



Fixed-Point Types in Vivado HLS

▸ap_fixed is a templated C++ data type used for 
representing fixed-point numbers
– Signed: ap_fixed; Unsigned: ap_ufixed
– Template parameters ap_(u)fixed<W, I, Q, O>

• W: total bitwidth
• I: integer bitwidth 
• Q: quantization mode (optional, default is AP_TRN)
• O: overflow mode (optional, default is AP_WRAP)
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Binary point

W

I



Custom Memory Hierarchy: Case Study on 
Convolution
▸ Convolution is pervasive in image/video processing and 

ML – performed over overlapping windows (aka stencils)

-1 -2 -1

0 0 0
1 2 1

A K by K dot product is performed 
for each output pixel (K=3 here)

Input image 
frame

Output image 
frame
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An Application of Convolution: Edge Detection

▸ Identifies discontinuities in an image where brightness 
(or image intensity) changes sharply
– Very useful for feature extractions in computer vision

Figures: Pilho Kim, GaTech

Sobel operator 
G = (GX ,GY)
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CPU Implementation of a 3x3 Convolution

CPU
Cache

for (r = 1; r < R; r++) 
    for (c = 1; c < C; c++) 
      for (i = 0; i < K; i++) 
        for (j = 0; j < K; j++) 
          out[r][c] += img[r+i-1][c+j-1] * f[i][j];
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C

R

Main 
Memory



▸ A general-purpose cache can significantly reduce 
external memory accesses, but it is costly and incurs 
high energy overhead

General-Purpose Cache for Convolution

A subset of image data 
stored in cached
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Line Buffer: Customized “Cache” for Convolution
▸ “Cache” the input pixels in a line buffer: Each time we move the 

KxK window (in yellow) to the right and push in a new pixel (in orange) to 
the specialized “cache”
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Line Buffer: simple addressing, simple 
replacement policy (first in, first out)

old pixel 
popped

new pixel 
pushed

(K-1)*C+K pixels in flight, K=3 and C=8 here

C (number of columns or width)



A More Complete Picture of the Customized On-Chip 
Memory Hierarchy

Pixels in line buffer 
(stores 2 lines using on-chip SRAM)

New pixel read from 
frame buffer in main 
memory (DRAM)

Push 3 pixels into shift 
registers – 1 new pixel 
plus 2 from line buffer
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Output 
pixel 
produced 
by conv

Line Buffer + Shift Registers: 
a custom “cache” + a custom “register file”



▸ An array of processing elements (PEs) that process data in a 
systolic manner using nearest-neighbor communication
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Custom Communication Architecture: Systolic 
Arrays as an Example

In Sparse Matrix Proceedings, 1978

PE PE PE

PE PE PE

PE PE PE

+ Simple & regular design 
+ Massive parallelism 
+ Short nearest-neighbor 
interconnection
+ Balancing compute with I/O
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Matrix Multiplication (MatMul) on a Systolic Array

𝑪 = 𝑨×𝑩



▸ How do we model the performance of an application 
running on a compute device (e.g., an accelerator)? 
– What’s the maximum (peak) throughput of the device?
– What’s the actual attainable throughput?
– Where’re the bottlenecks?

▸ It requires characterization of both application and 
hardware
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Accelerator Performance Modeling



Key Metrics to Consider

...
Computation Resource

PE-1 PE-2 PE-n

Inter-
connect

buffer1
On-chip memory

buffer2

External Memory

Off-chip Bus

* OI is also known as computation to communication ratio (CTC)
or arithmetic intensity (AI)
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Computational Throughput

(OPs / Sec)

=
Total	number	of	operations

Total	execution	time	

Operational Intensity*
(OI)

(OPs / Byte Accessed)

=
Total	number	of	operations

Total	external	memory	accesses

Memory Bandwidth
(Bytes / Sec)

Accelerator (often called a “device”)
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Estimating OI: Matrix Matrix Multiplication

Number of operations: 2n3 (multiply & add counted as two ops)
External mem accesses: 3n2 x 4 bytes read or written

A ×n

n

B = C

OI = #	of	operations
#	of	bytes	read/written =

2n3
12n2 =

n
6

(with perfect data reuse)

A, B, C are in single-precision float (32-bit per element)



Roofline Model [1]
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Operational Intensity (OI)

Required 
Bandwidth

OPs/Sec

OPs/ 
Byte

A Design Point

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance 
model for multicore architectures, CACM, 2009.

𝑂𝑃𝑠/𝑆𝑒𝑐
𝑂𝑃𝑠/𝐵𝑦𝑡𝑒	𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑 =

𝐵𝑦𝑡𝑒𝑠
𝑆𝑒𝑐

=
Computational	Throughput

OI
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The Roofline Model visualizes a system's 
performance limits, showing how an application’s 
throughput compares to the theoretical maximums 
for computation and memory. It helps identify 
performance bottlenecks and guides optimization.



Roofline Model [1]
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Byte

Bandwidth Roof
(Device memory 

bandwidth)Computational Roof
(Max device throughput)

“The Roofline”

Exceeds On-Chip Resources

Bandwidth-Bottlenecked

Theoretical 
Throughput

Attainable 
Throughput

OPs/Sec

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance 
model for multicore architectures, CACM, 2009.
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Design points A & B 
achieve same throughput

But which one would you 
prefer?



Exercise: OI Analysis of 2D Convolution
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Input 
image
frame

Estimate the OI for the 2D convolution kernel both 
without and with the use of a line buffer

W

H



Summary

▸ End of Dennard scaling leads to increasing hardware 
specialization to sustain improvement in hardware 
performance and energy efficiency

▸ Special-purpose hardware accelerators commonly 
leverage customized (1) compute units, (2) numeric 
types, (3) memory hierarchy, and (4) communication 
architecture

▸ Roofline modeling is a useful tool for first-order 
analysis of the accelerator performance
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▸Field-programmable gate arrays (FPGAs)
– Read this paper before class
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Next Lecture 

https://doi.org/10.1109/MCAS.2021.3071607


▸These slides contain/adapt materials developed 
by
– Prof. Jason Cong (UCLA)
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