
More Hardware Specialization

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸Lab 1 and Vivado HLS setup guide released
– Complete the tool setup this week

▸Paper reading this Thursday
– A. Boutros and V. Betz, “FPGA Architecture:

Principles and Progression”, IEEE CAS-M 2021

Announcements

1

https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Agenda

▸Common hardware specialization techniques
– More on fixed point types
– Case study on customized memory hierarchy
– An example of customized communication architecture

▸Roofline-based performance modeling
– Operational intensity (OI) analysis

2

– Amortize overhead in control and data supply across
multiple instructions

– Use smaller (or simpler) data => cheaper operations,
lower storage & communication costs

– Move data locally and directly
• Store data nearby in simpler memory (e.g., scratchpads are

cheaper than cache)
• Wire compute units for direct (or even combinational)

communication when possible

3

Recap: Principles for Improving Energy Efficiency

Do even less work!

Do less work!

4

Recap: Common HW Specialization Techniques

Custom Compute Units: Use complex instructions
to amortize overhead (e.g., SIMD, “ASIC”-in-an-
instruction)

Custom Numeric Types: Balance accuracy and
efficiency with data types that use smaller bit widths
or simpler arithmetic

Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

Custom Communication Architecture: Tailor on-
chip networks to data movement patterns

Lab 1

Lab 2

Lab 3
Lab 4

▸ The positional binary encoding can also represent
fractional values, by using a fixed position of the binary
point and place values with negative exponents
(–) Less convenient to use in software, compared to floating point
(+) Much more efficient in hardware

5

Recap: Fixed-Point Representation

23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

Binary point

Signed (2’c)
fixed-point
number

Integer part (4 bits) Fractional part (2 bits)

▸ When working with fixed-point types, quantization and
overflow issues often arise due to the limited precision
and range of representation

▸ Overflow occurs when a value exceeds the maximum
representable range for the fixed-point format
– In our class, overflow mainly concerns the integer part of the

fixed-point number

▸ Quantization is needed when converting real numbers
from a higher-precision format (like float) to fixed point

6

Overflow and Quantization Issues

7

Common Modes for Handling Overflow (1)
▸ Wrapping or wraparound: The value wraps around

within the range using modulo arithmetic
– Efficient in hardware, as it involves simply dropping the MSB(s)

of the original number

-23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

2’c
0 1 1 0 1 = ??

Wrapping can cause a negative number to become
positive, or a positive to negative

Dropping MSB
when integer width
is reduced

8

Common Modes for Handling Overflow (2)
▸ Saturation: The closest representable value (either

maximum or minimum) is used, preventing wraparound
– Implementing saturation in hardware requires additional logic to

check for overflows and apply the clamping

-23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

2’c
? ? ? ? ? = ??

Saturation

What is the saturated result for the example above?

9

Common Quantization Modes
▸ Truncation: Cuts off the excess bits that don't fit in the

target precision
– Efficient in hardware, as it involves simply dropping the LSB(s)

of the original number

▸ Rounding: Rounds the value to a representable fixed-
point number, potentially reducing quantization error
compared to truncation
– Round to Nearest: The most common method, where the value

is rounded to the nearest fixed-point representation
– Round Toward Zero: Rounds towards zero, effectively

truncating the fractional part
– Round Toward Infinity: Rounds away from zero, towards

positive or negative infinity

Fixed-Point Types in Vivado HLS

▸ap_fixed is a templated C++ data type used for
representing fixed-point numbers
– Signed: ap_fixed; Unsigned: ap_ufixed
– Template parameters ap_(u)fixed<W, I, Q, O>

• W: total bitwidth
• I: integer bitwidth
• Q: quantization mode (optional, default is AP_TRN)
• O: overflow mode (optional, default is AP_WRAP)

10

Binary point

W

I

Custom Memory Hierarchy: Case Study on
Convolution
▸ Convolution is pervasive in image/video processing and

ML – performed over overlapping windows (aka stencils)

-1 -2 -1

0 0 0
1 2 1

A K by K dot product is performed
for each output pixel (K=3 here)

Input image
frame

Output image
frame

11

An Application of Convolution: Edge Detection

▸ Identifies discontinuities in an image where brightness
(or image intensity) changes sharply
– Very useful for feature extractions in computer vision

Figures: Pilho Kim, GaTech

Sobel operator
G = (GX ,GY)

12

CPU Implementation of a 3x3 Convolution

CPU
Cache

for (r = 1; r < R; r++)
 for (c = 1; c < C; c++)
 for (i = 0; i < K; i++)
 for (j = 0; j < K; j++)
 out[r][c] += img[r+i-1][c+j-1] * f[i][j];

13

C

R

Main
Memory

▸ A general-purpose cache can significantly reduce
external memory accesses, but it is costly and incurs
high energy overhead

General-Purpose Cache for Convolution

A subset of image data
stored in cached

14

Line Buffer: Customized “Cache” for Convolution
▸ “Cache” the input pixels in a line buffer: Each time we move the

KxK window (in yellow) to the right and push in a new pixel (in orange) to
the specialized “cache”

15

Line Buffer: simple addressing, simple
replacement policy (first in, first out)

old pixel
popped

new pixel
pushed

(K-1)*C+K pixels in flight, K=3 and C=8 here

C (number of columns or width)

A More Complete Picture of the Customized On-Chip
Memory Hierarchy

Pixels in line buffer
(stores 2 lines using on-chip SRAM)

New pixel read from
frame buffer in main
memory (DRAM)

Push 3 pixels into shift
registers – 1 new pixel
plus 2 from line buffer

16

Output
pixel
produced
by conv

Line Buffer + Shift Registers:
a custom “cache” + a custom “register file”

▸ An array of processing elements (PEs) that process data in a
systolic manner using nearest-neighbor communication

17

Custom Communication Architecture: Systolic
Arrays as an Example

In Sparse Matrix Proceedings, 1978

PE PE PE

PE PE PE

PE PE PE

+ Simple & regular design
+ Massive parallelism
+ Short nearest-neighbor
interconnection
+ Balancing compute with I/O

18

Matrix Multiplication (MatMul) on a Systolic Array

𝑪 = 𝑨×𝑩

▸ How do we model the performance of an application
running on a compute device (e.g., an accelerator)?
– What’s the maximum (peak) throughput of the device?
– What’s the actual attainable throughput?
– Where’re the bottlenecks?

▸ It requires characterization of both application and
hardware

19

Accelerator Performance Modeling

Key Metrics to Consider

...
Computation Resource

PE-1 PE-2 PE-n

Inter-
connect

buffer1
On-chip memory

buffer2

External Memory

Off-chip Bus

* OI is also known as computation to communication ratio (CTC)
or arithmetic intensity (AI)

20

Computational Throughput

(OPs / Sec)

=
Total	number	of	operations

Total	execution	time	

Operational Intensity*
(OI)

(OPs / Byte Accessed)

=
Total	number	of	operations

Total	external	memory	accesses

Memory Bandwidth
(Bytes / Sec)

Accelerator (often called a “device”)

21

Estimating OI: Matrix Matrix Multiplication

Number of operations: 2n3 (multiply & add counted as two ops)
External mem accesses: 3n2 x 4 bytes read or written

A ×n

n

B = C

OI = #	of	operations
#	of	bytes	read/written =

2n3
12n2 =

n
6

(with perfect data reuse)

A, B, C are in single-precision float (32-bit per element)

Roofline Model [1]
Co

m
pu

ta
tio

na
l T

hr
ou

gh
pu

t

Operational Intensity (OI)

Required
Bandwidth

OPs/Sec

OPs/
Byte

A Design Point

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

𝑂𝑃𝑠/𝑆𝑒𝑐
𝑂𝑃𝑠/𝐵𝑦𝑡𝑒	𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑 =

𝐵𝑦𝑡𝑒𝑠
𝑆𝑒𝑐

=
Computational	Throughput

OI

22

The Roofline Model visualizes a system's
performance limits, showing how an application’s
throughput compares to the theoretical maximums
for computation and memory. It helps identify
performance bottlenecks and guides optimization.

Roofline Model [1]
Co

m
pu

ta
tio

na
l T

hr
ou

gh
pu

t

Operational Intensity (OI)

OPs/
Byte

Bandwidth Roof
(Device memory

bandwidth)Computational Roof
(Max device throughput)

“The Roofline”

Exceeds On-Chip Resources

Bandwidth-Bottlenecked

Theoretical
Throughput

Attainable
Throughput

OPs/Sec

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

23

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Design Space Exploration with Roofline

Computational Roof
B

Bandwidth Roof

A

Co
m

pu
ta

tio
na

l T
hr

ou
gh

pu
t

Operational Intensity (OI)
24

Design points A & B
achieve same throughput

But which one would you
prefer?

Exercise: OI Analysis of 2D Convolution

25

Input
image
frame

Estimate the OI for the 2D convolution kernel both
without and with the use of a line buffer

W

H

Summary

▸ End of Dennard scaling leads to increasing hardware
specialization to sustain improvement in hardware
performance and energy efficiency

▸ Special-purpose hardware accelerators commonly
leverage customized (1) compute units, (2) numeric
types, (3) memory hierarchy, and (4) communication
architecture

▸ Roofline modeling is a useful tool for first-order
analysis of the accelerator performance

26

▸Field-programmable gate arrays (FPGAs)
– Read this paper before class

27

Next Lecture

https://doi.org/10.1109/MCAS.2021.3071607

▸These slides contain/adapt materials developed
by
– Prof. Jason Cong (UCLA)

28

Acknowledgements

