ECE 6775
High-Level Digital Design Automation
Fall 2024

More Hardware Specialization

L UMD D
R
Il [==] JJ Cornell University -
@@ 7@ E
e I

Announcements

> Lab 1 and Vivado HLS setup guide released
— Complete the tool setup this week

» Paper reading this Thursday

— A. Boutros and V. Betz, “FPGA Architecture:
Principles and Progression”, IEEE CAS-M 2021

https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Agenda

» Common hardware specialization techniques
— More on fixed point types
— Case study on customized memory hierarchy
-~ An example of customized communication architecture

> Roofline-based performance modeling
— Operational intensity (Ol) analysis

Recap: Principles for Improving Energy Efficiency

Do less work!

-~ Amortize overhead in control and data supply across
multiple instructions

Do even less work!

— Use smaller (or simpler) data => cheaper operations,
lower storage & communication costs

- Move data locally and directly

- Store data nearby in simpler memory (e.g., scratchpads are
cheaper than cache)

« Wire compute units for direct (or even combinational)
communication when possible

Recap: Common HW Specialization Techniques

Lab1 Custom Compute Units: Use complex instructions
to amortize overhead (e.g., SIMD, “ASIC”-in-an-
instruction)

Lab 2

Custom Numeric Types: Balance accuracy and
efficiency with data types that use smaller bit widths
or simpler arithmetic

Lab3 |
Lab4 | Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

 Custom Communication Architecture: Tailor on-
chip networks to data movement patterns

Recap: Fixed-Point Representation

» The positional binary encoding can also represent
fractional values, by using a fixed position of the binary
point and place values with negative exponents

(—) Less convenient to use in software, compared to floating point
(+) Much more efficient in hardware

Integer part (4 bits) Fractional part (2 bits)
|

A

f 1 |

Signed (2c) 23 22 21 20 21 92 2'C
fixed-point

number 1T 0 1 140 1 =-4.75

A
Binary point

Overflow and Quantization Issues

> When working with fixed-point types, quantization and
overflow issues often arise due to the limited precision
and range of representation

> Overflow occurs when a value exceeds the maximum
representable range for the fixed-point format

- In our class, overflow mainly concerns the integer part of the
fixed-point number

> Quantization is needed when converting real numbers
from a higher-precision format (like float) to fixed point

Common Modes for Handling Overflow (1)

> Wrapping or wraparound: The value wraps around
within the range using modulo arithmetic

— Efficient in hardware, as it involves simply dropping the MSB(s)
of the original number

23 22 21 20 21 22 2'C

(1o 1 1 0 1 =-475

Dropping MSB o’

when integer width C

is reduced O 1 1 0 1 = 7?7
Wrapping can cause a negative number to become
positive, or a positive to negative

Common Modes for Handling Overflow (2)

> Saturation: The closest representable value (either
maximum or minimum) is used, preventing wraparound

- Implementing saturation in hardware requires additional logic to
check for overflows and apply the clamping

23 22 21 20 21 22 2'C
1 0 1 1 0 1 =-475

Saturation < 2°C
? 7?7 7?2 7?7 9 = 77

What is the saturated result for the example above?

Common Quantization Modes

» Truncation: Cuts off the excess bits that don't fit in the
target precision

— Efficient in hardware, as it involves simply dropping the LSB(s)
of the original number

> Rounding: Rounds the value to a representable fixed-
point number, potentially reducing quantization error
compared to truncation

— Round to Nearest: The most common method, where the value
is rounded to the nearest fixed-point representation

- Round Toward Zero: Rounds towards zero, effectively
truncating the fractional part

-~ Round Toward Infinity: Rounds away from zero, towards
positive or negative infinity

Fixed-Point Types in Vivado HLS

» ap_fixed is a templated C++ data type used for
representing fixed-point numbers
— Signed: ap_fixed; Unsigned: ap_ufixed

- Template parameters ap_(u)fixed<W, |, Q, O>
- W: total bitwidth
» |: integer bitwidth
+ Q: quantization mode (optional, default is AP_TRN)
* O: overflow mode (optional, default is AP_WRAP)

| Binary point
10

Custom Memory Hierarchy: Case Study on
Convolution

» Convolution is pervasive in image/video processing and
ML — performed over overlapping windows (aka stencils)
k—1k-1

(Img ®f)[n+k—1 Zlmg[nﬂ 1[m+j] f[l]
2 ’ -— :

e — m [

112]1

A K by K dot product is performed
for each output pixel (K=3 here)

Input image Output image
frame frame

11

An Application of Convolution: Edge Detection

> |dentifies discontinuities in an image where brightness

(or image intensity) changes sharply
— Very useful for feature extractions in computer vision

—

Sobel operator
G = (GX 1GY)

12

CPU Implementation of a 3x3 Convolution

for (r=1;r<R; r++)
for (c=1;c<C;c++)
for (i=0;i<K; i++)
for (j=0;j <K, j++)
out[r][c] += img][r+i-1][c+j-1] * f[i][j];

1

()

cru | <mm)

Cache

13

General-Purpose Cache for Convolution

> A general-purpose cache can significantly reduce
external memory accesses, but it is costly and incurs
high energy overhead

Address
3130---12111098:::3210

l

I
+22 Jds
Tag

Index

Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1

2

253
254
255

* n
A subset of image data

stored in cached EH

J22 Ja2

14

Line Buffer: Customized “Cache” for Convolution

» “Cache” the input pixels in a line buffer: Each time we move the

KxK window (in yellow) to the right and push in a new pixel (in orange) to
the specialized “cache” |

-3 -2(-110 1(2|3|4
56|7(8 9 A|B|C
D E|F

\ J
C (number of columns or width)

Line Buffer: simple addressing, simple

-3 replacement policy (first in, first out)
old pixel new pixel
. d4— 2(-1|10(1|2|3|4|5/6|7|8|9/A|B|C|D|E|F pushed

(K-1)*C+K pixels in flight, K=3 and C=8 here

15

A More Complete Picture of the Customized On-Chip
Memory Hierarchy

Pixels in line buffer
89 (stores 2 lines using on-chip SRAM)
P I A F
L] 91 L1
;/ ;/ ﬂ |5ter
/; /; /a/me Push 3 pixels into shift ift (69 on\/)
P registers — 1 new pixel . gh ol (©
; - Irf‘ag plus 2 from line buffer OIU"| nts
|f'|pLJ ﬂﬂ ®00n of V\’elg
New pixel read from Filt
frame buffer in main T
memory (DRAM) T 4 Output
:/:j pixel
gnls produced
T by conv
4P
Line Buffer + Shift Registers: oo™

a custom “cache” + a custom “register file”

QS
<
—ie
e
<

16

Custom Communication Architecture: Systolic

Arrays as an Example

> An array of processing elements (PEs) that process data in a
systolic manner using nearest-neighbor communication

Systolic Arrays (for VLSI)

H. T. Kungt and Charles E. Leisersont

And now I see with eye serene
The very pulse of the machine.
~=William Wordsworlh

Absiract

A syslolic system is a nelwork of processors which rhylhmically compute and pass
data through the system. Physiologislts use the word "systole” to refer to the
rhythmically recurrent conlraclion of the heart and arleries which pulses blood
through the body. In a syslolic compuling system, the funclion of a processor is
analogous 1o thal of the hearl. Every processor regularly pumps data in and oul,
each lime performing some shorl compulation, so that a regular flow of data is kept
up in the nelwork,

Many basic matrix computations can be pipelined elegantly and efficiently on
asystolic nelworks having an array slructure. As an example, hexagonally connected
processors can oplimally perform malrix multiplication. Surprisingly, a similar
syslolic array can compule the LU-decomposition ol a matrix. These syslolic arrays
enjoy simple and regular communication paths, and almos! all processors used in the
networks are idenlical. As a resull, special purpose hardware devices based on
syslolic arrays can be buill inexpensively using the VLSI technology.

1. Introduction

Developments in microelectronics have revolutionized compuler design. Integrated
circuit technology has increased the number and complexily of components that can
fit on a chip or a printed circuit board. Component densily has been doubling every
one-lo-two vears and alreadv. a mulliplier can fit on a very large scale integrated

In Sparse Matrix Proceedings, 1978

+ Simple & regular design

+ Massive parallelism

+ Short nearest-neighbor
interconnection

+ Balancing compute with 1/0

17

Matrix Multiplication (MatMul) on a Systolic Array

Computation '

Finished

A[2][2]
t=0
C =AXB
To be I :B[Z][O]:B[l][o]:B[O] [0]:
computed : : | | |
Being E i E E
Computed : 3[21[1]: B[1][1] B[0][1] i

B(2][2) B[1][2] B[0][2]

t < | |

18

Accelerator Performance Modeling

» How do we model the performance of an application
running on a compute device (e.g., an accelerator)?
- What’s the maximum (peak) throughput of the device?
- What’s the actual attainable throughput?
— Where’re the bottlenecks?

> It requires characterization of both application and
hardware

19

Key Metrics to Consider

Computational Throughput

e - s Total number of operations
Accelerator (often called a “device”) = : p_
Total execution time
Computation Resource
(OPs / Sec)

PE-1 ji PE-2 ji PE-n)Si
Operational Intensity”

Total number of operations

Inter- I O I
connect r>_\\ >< >< / ()
J

On-chip memory Total external memory accesses

puien] buffer2 (OPs / Byte Accessed)
O chip B O.\
External Memory _ Memory Bandwidth
(Bytes / Sec)

* Ol is also known as computation to communication ratio (CTC)

or arithmetic intensity (Al)
20

Estimating Ol: Matrix Matrix Multiplication

A X B C

A, B, C are in single-precision float (32-bit per element)

Number of operations: 2n3 (multiply & add counted as two ops)

External mem accesses: 3n?x 4 bytes read or written
(with perfect data reuse)

- 3
Ol = # of operations _2n

n
~ # of bytes read/written ~ 12n%2 "~ 6

21

. The Roofline Model visualizes a system's
Roofline Model [1] performance limits, showing how an application’s
throughput compares to the theoretical maximums
for computation and memory. It helps identify

OPs/Sec performance bottlenecks and guides optimization.
A

A Design Point
——————————— ®

_ Computational Throughput
Required Ol

Bandwidth OPs/Sec _ Bytes

OPs/Byte Accessed Sec

el
>
(@X
-
(@)
-
O
| -
L
|_
©
C
O
-
©
e
>
(@
&
O
@)

OPs/
Byte

Operational Intensity (Ol)

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance 22
model for multicore architectures, CACM, 2009.

Roofline Model [1]

OPs/Sec
A Exceeds On-Chip Resources

Computational Roof X
(Max device throughput)

Bandwidth-Bottlenecked “The Roofline”

Theoretical @
Throughput ! o

Attainable
Throughput @

el
>
(@X
-
(@)
-
O
| -
L
|_
©
C
O
-
©
e
>
(@
&
O
@)

Operational Intensity (Ol)

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

OPs/
Byte

23

Design Space Exploration with Roofline

Bandwidth Roof

Computational Roof /

Design points A & B
achieve same throughput

But which one would you
prefer?

el
>
(@X
-
(@)
-
O
| -
L
|_
©
C
O
-
©
e
>
(@
&
O
@)

Operational Intensity (Ol)

24

Exercise: Ol Analysis of 2D Convolution

W
||
0 11234
image H
frame

Estimate the Ol for the 2D convolution kernel both
without and with the use of a line buffer

Summary

> End of Dennard scaling leads to increasing hardware
specialization to sustain improvement in hardware

performance and energy efficiency

» Special-purpose hardware accelerators commonly
leverage customized (1) compute units, (2) numeric
types, (3) memory hierarchy, and (4) communication
architecture

> Roofline modeling is a useful tool for first-order
analysis of the accelerator performance

26

Next Lecture

» Field-programmable gate arrays (FPGAS)
— Read this paper before class

27

https://doi.org/10.1109/MCAS.2021.3071607

Acknowledgements

> These slides contain/adapt materials developed

by
— Prof. Jason Cong (UCLA)

28

