
Hardware Specialization

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸First reading assignment
– A. Boutros and V. Betz, “FPGA Architecture:

Principles and Progression”, IEEE CAS-M 2021
– Complete reading before Thursday 9/5

▸Lab 1 and an HLS tool setup guide will be
released soon (by Monday)

Announcements

1

https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Exponential
in complexity (or Extreme scale)

Diverse
increasing system heterogeneity

Algorithmic
intrinsically computational

Recap: Our Interpretation of E-D-A

2

Exponential

AlgorithmicDiverse

3

Significance of EDA: Another Proof

© 2013 IBM Corporation

Productivity Innovation : Reduce Custom Design (Structured Synthesis)

0
0.1

0.2
0.3

0.4
0.5

0.6

0.7
0.8

0.9
1

of Customs over Time

Synthesis
results w/
custom-like
data flow
alignment.

>10x reduction over 5 generation

*ISPD 2013 Best Paper Award: “Network Flow Based Datapath Bit Slicing” H.Xiang et al.

Milestone:
Digital Logic

in 22nm server class
Microprocessors
99% synthesized
and signed-off by
Gate Level signoff

Ruchir Puri, High Performance Microprocessor Design, and
Automation: Challenges and Opportunities, TAU’2013 keynote.

Agenda

▸Motivation for hardware specialization
– Key driving forces from applications and technology
– Main sources of inefficiency in general-purpose

computing

▸A taxonomy of common specialization
techniques

▸ Introduction to fixed-point types

4

5

▸ Higher demand on efficient compute acceleration,
esp. for machine learning (ML) workloads

▸ Lower barrier with open-source hardware &
accelerators in cloud coming of age

A Golden Age of Hardware Specialization

AlexNet

LeNet
LSTM

Decision tree
NPLM

ResNet

GPT-3
PaLM

Transformer

AlphaGo

NVIDIA
H100

Intel SPR
60-Core

Intel Pentium 4Intel 386

NVIDIA Kepler
Intel Haswell

18-Core

Minerva

Figure source: Cornell Zhang Research Group

Rising Computational Demands of Emerging
Applications

6

▸ Deep neural networks (DNNs) require enormous amount of compute
– Consider ResNet50, a 70-layer model that performs 7.7 billion operations

to classify an image (a relatively small model by today's standards)

7

On Crash Course with the End of “Cheap”
Technology Scaling

8

Dennard Scaling in a Nutshell

Dennard scaling
Transistor (trans.) # S2

Capacitance / trans. 1/S
Voltage (Vdd) 1/S
Frequency S
Total power 1

▸ Classical Dennard scaling
– Frequency increases at constant power profiles
– Performance improves “for free"!

Note: Dynamic power ∝ CV2F

▸ Power limited scaling
– Vth scaling halted due to exponentially increasing leakage power
– VDD scaling nearly stopped as well to maintain performance

▸ Implication: “Dark silicon”?
– Power limits restrict how much of the chip can be activated simultaneously
– No longer 100% without more power

9

End of Dennard Scaling and its Implications

Note: Dynamic power ∝ CV2F

Leakage limited scaling
Transistor (trans.) # S2

Capacitance / trans. 1/S
Voltage (Vdd) ~1
Frequency ~1
Total power S

10

Why are general-purpose
CPUs less energy efficient?

EFFICIENCYFLEXIBILITY

Contr
ol

Unit
(CU)

Register
s

Arithmet
ic Logic

Unit
(ALU)

CPUs GPUs ASICsFPGAs

Trade-off Between Flexibility and Efficiency

11

CPU Core Architecture

▸ Core = complex control + limited # of
compute units + large caches
– Scalar & vector instructions

• Backward compatible ISA
– Complex control logic: decoding, hazard

detection, exception handling, etc.

▸ Mainly optimized to reduce latency of running serial code
– Shallow pipelines (< 30 stages)
– Superscalar, OOO, speculative execution, branch prediction,

prefetching, etc.
– Low throughput, even with multithreading

Cache

Control
ALU

ALU ALU

ALU

12

Poll & Discussion

Shallow vs. Deep Pipelining in context of CPU design

Sign in or register using your Cornell email
http://pollev.com/ece6775

http://pollev.com/ece6775

Multi-Core Architecture

13

With four cores, should we expect a 4x speedup
on an arbitrary application?

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Shared Last-Level Cache (LLC)

14

Graphics Processing Unit (GPU)
▸ GPU has thousands of cores to run

many threads in parallel
– Cores are simpler (compared to CPU)

• No support of superscalar, OOO,
speculative execution, etc.

• ISA not backward compatible
– Amortize overhead with SIMD + single

instruction multiple threads (SIMT)

▸ Optimized to increase throughput of
running data-parallel applications
– Initially targeting graphics code
– Latency tolerant with many

concurrent threads

Cache

Control
ALU

ALU ALU

ALU

CPU

GPU

15

It’s Not Just About Performance: Computing’s
Energy Problem

Reading two 32b words from Energy

DRAM 1.3 nJ
Large SRAM (256MB) 58 pJ
Small SRAM (8KB) 5 pJ

Moving two 32b words by Energy

40mm (across a 400mm2 chip) 77 pJ
1mm (local communication) 1.9 pJ

Arithmetic on two 32b words Energy

FMA (float fused multiply-add) 1.2 pJ
IADD (integer add) 0.02 pJ

250x

65,000x

[1] William Dally and Uzi Vishkin, On the Model of Computation, CACM’2022.

Data from [1], based on a 14nm process

Data supply far outweighs arithmetic operations in energy cost

16

Rough Energy Breakdown for an Instruction

>20pJ 5pJ Control

Control overheads
(clocking, decoding,
pipeline control, ….)

I-Cache
access

Register
file access

32-bit
ALU

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in
Specialized Computing, ISCA’2013.

– Amortize overhead in control and data supply across
multiple instructions

17

Principles for Improving Energy Efficiency

Do less work!

18

Amortizing the Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds
or more

… …

…

Further specialization (what we achieve using accelerators)

Single instruction multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control

…
I-Cache RF Control

A sequence of energy-inefficient instructions
Arithmetic

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in
Specialized Computing, ISCA’2013.

– Amortize overhead in control and data supply across
multiple instructions

– Use smaller (or simpler) data => cheaper operations,
lower storage & communication costs

– Move data locally and directly
• Store data nearby in simpler memory (e.g., scratchpads are

cheaper than cache)
• Wire compute units for direct (or even combinational)

communication when possible

19

Principles for Improving Energy Efficiency

Do even less work!

Do less work!

20

Tensor Processing Unit (TPU)

▸ A domain-specific accelerator specialized for deep learning
– Main focus: accelerating matrix multiplication (MatMul) with a systolic array

• Use CISC instructions: MatMul Unit may take thousands of cycles
– TPUv1 does 8-bit integer (INT8) inference; TPUv2 supports a customized floating-

point type (bfloat16) for training

Google TPU v1

Source: Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017

A 256x256 Systolic Array

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE

PE

PE

PE

… … … …
…

…

…

…

21

Common Hardware Specialization Techniques:
A Taxonomy
▸ Custom Compute Units: Use complex instructions to

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

22

Common Hardware Specialization Techniques:
A Taxonomy
▸ Custom Compute Units: Use complex instructions to

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

23

Customizing Compute Units: An Intuitive View

A simple single-cycle CPU

PC

 RF

LD
SA
SB
DR
D_in

ALU Data
RAM

DataA

DataB

V C Z N

Fm … F0

SE

IMM
MB

M_address

Data_in

MW MD

0
1

0
1

Inst. R
AM

SE(OFF,0) Adder
MP

0
1

+2

D
ecoder

DR
SA
SB
IMM
MB
FS
MD
LD
MW
BS

24

Evaluating a Simple Expression on CPU
Cycle-by-cycle
CPU activities

R5 <= R1 * R3

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

25

“Unrolling” the Instruction Execution

R5 <= R1 * R3

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

Space

1. Replicate the
CPU hardware

CPU2

CPU3

CPU4

CPU1

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

P
C

R
F ALU RAM

+

D
ecode

Instruction fixed
=> disable fetch
& decode logic

26

Removing Unused Logic

R5 <= R1 * R3

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

R
F x

Space

2. Removing
unused logic
=> ALU also
simplified

R
F x

R
F –

R
F +

27

An Application-Specific Compute Unit

3. Wire up registers and
functional units

R9

+

–

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

R5 <= R1 * R3

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

R5

R1

x

R3

R6

R2

x

R4

R7

R8

Use combinational connections
when timing constraints allow
(e.g., R7)

28

Common Hardware Specialization Techniques:
A Taxonomy
▸ Custom Compute Units: Use complex instructions to

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

29

Customized Data Types

▸ Using custom numeric types tailored for a given
application/domain improves performance & efficiency

Sign Exponent Mantissa

Half float (fp16)

bfloat16

int4

uint1

uint256

block-fp

…

fixed<9,4>

Covered in lectures & labs

▸ MSB weight = -2n-1

30

Binary Representation – Positional Encoding

23 22 21 20 unsigned

1 0 1 1 = 11
-23 22 21 20 2’c

1 0 1 1 = -5

Two’s complement
▸ MSB has a place value

(weight) of 2n-1

Unsigned number

Binary Point
(implicit)

Most
significant bit

(MSB)

▸ The positional binary encoding can also represent fractional values,
by using a fixed position of the binary point and place values with
negative exponents
(–) Less convenient to use in software, compared to floating point
(+) Much more efficient in hardware

31

Fixed-Point Representation of Fractional Numbers

23 22 21 20 2-1 2-2 unsigned
1 0 1 1 0 1 = 11.25

Binary point

2’c
1 0 1 1 0 1 = ??

Unsigned
fixed-point
number

Signed
fixed-point
number

Integer part (4 bits) Fractional part (2 bits)

▸More Hardware Specialization

32

Next Lecture

▸These slides contain/adapt materials developed
by
– Bill Dally, NVIDIA
– System for AI Education Resource by Microsoft

Research

33

Acknowledgements

