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▸First reading assignment
– A. Boutros and V. Betz, “FPGA Architecture: 

Principles and Progression”, IEEE CAS-M 2021 
– Complete reading before Thursday 9/5

▸Lab 1 and an HLS tool setup guide will be 
released soon (by Monday)

Announcements
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https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607


Exponential
in complexity (or Extreme scale)

Diverse
increasing system heterogeneity 

Algorithmic
intrinsically computational

Recap: Our Interpretation of E-D-A
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Significance of EDA: Another Proof

© 2013 IBM Corporation 

Productivity Innovation : Reduce Custom Design (Structured Synthesis) 
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Synthesis 
results w/ 
custom-like 
data flow 
alignment. 

>10x reduction over 5 generation 

*ISPD  2013  Best  Paper  Award:  “Network  Flow  Based  Datapath  Bit  Slicing”  H.Xiang  et  al. 

Milestone: 
Digital Logic 

in 22nm server class 
Microprocessors 
99% synthesized 
and signed-off by 
Gate Level signoff 

Ruchir Puri, High Performance Microprocessor Design, and 
Automation: Challenges and Opportunities, TAU’2013 keynote.



Agenda

▸Motivation for hardware specialization
– Key driving forces from applications and technology
– Main sources of inefficiency in general-purpose 

computing 

▸A taxonomy of common specialization 
techniques

▸ Introduction to fixed-point types
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▸ Higher demand on efficient compute acceleration, 
esp. for machine learning (ML) workloads

▸ Lower barrier with open-source hardware & 
accelerators in cloud coming of age

A Golden Age of Hardware Specialization
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Figure source: Cornell Zhang Research Group

Rising Computational Demands of Emerging 
Applications
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▸ Deep neural networks (DNNs) require enormous amount of compute 
– Consider ResNet50, a 70-layer model that performs 7.7 billion operations 

to classify an image (a relatively small model by today's standards)
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On Crash Course with the End of “Cheap” 
Technology Scaling
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Dennard Scaling in a Nutshell

Dennard scaling 
Transistor (trans.) #     S2

Capacitance / trans. 1/S
Voltage (Vdd)   1/S
Frequency   S
Total power   1

▸ Classical Dennard scaling
– Frequency increases at constant power profiles
– Performance improves “for free"!

Note: Dynamic power ∝ CV2F



▸ Power limited scaling
– Vth scaling halted due to exponentially increasing leakage power
– VDD  scaling nearly stopped as well to maintain performance

▸ Implication: “Dark silicon”? 
– Power limits restrict how much of the chip can be activated simultaneously 
– No longer 100% without more power

9

End of Dennard Scaling and its Implications

Note: Dynamic power ∝ CV2F

Leakage limited scaling
Transistor (trans.) #     S2

Capacitance / trans. 1/S
Voltage (Vdd)   ~1
Frequency   ~1
Total power   S
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Why are general-purpose 
CPUs less energy efficient?

EFFICIENCYFLEXIBILITY

Contr
ol 

Unit 
(CU)

Register
s

Arithmet
ic Logic 

Unit 
(ALU)

CPUs GPUs ASICsFPGAs

Trade-off Between Flexibility and Efficiency
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CPU Core Architecture

▸ Core = complex control + limited # of 
compute units + large caches
– Scalar & vector instructions

• Backward compatible ISA
– Complex control logic: decoding, hazard 

detection, exception handling, etc.

▸ Mainly optimized to reduce latency of running serial code
– Shallow pipelines (< 30 stages) 
– Superscalar, OOO, speculative execution, branch prediction, 

prefetching, etc.
– Low throughput, even with multithreading

Cache

Control
ALU

ALU ALU

ALU
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Poll & Discussion

Shallow vs. Deep Pipelining in context of CPU design

Sign in or register using your Cornell email
http://pollev.com/ece6775

http://pollev.com/ece6775


Multi-Core Architecture
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With four cores, should we expect a 4x speedup 
on an arbitrary application?

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU
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Private L1/L2 Cache

Control
ALU

ALU ALU
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Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Shared Last-Level Cache (LLC)
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Graphics Processing Unit (GPU)
▸ GPU has thousands of cores to run 

many threads in parallel
– Cores are simpler (compared to CPU)

• No support of superscalar, OOO, 
speculative execution, etc.

• ISA not backward compatible 
– Amortize overhead with SIMD + single 

instruction multiple threads (SIMT)

▸ Optimized to increase throughput of 
running data-parallel applications
– Initially targeting graphics code
– Latency tolerant with many 

concurrent threads

Cache

Control
ALU

ALU ALU

ALU

CPU

GPU
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It’s Not Just About Performance: Computing’s 
Energy Problem

Reading two 32b words from Energy

DRAM 1.3 nJ
Large SRAM (256MB) 58 pJ
Small SRAM (8KB) 5 pJ

Moving two 32b words by Energy

40mm (across a 400mm2 chip) 77 pJ
1mm (local communication) 1.9 pJ

Arithmetic on two 32b words Energy

FMA (float fused multiply-add) 1.2 pJ
IADD (integer add) 0.02 pJ

250x

65,000x

[1] William Dally and Uzi Vishkin, On the Model of Computation, CACM’2022.

Data from [1], based on a 14nm process

Data supply far outweighs arithmetic operations in energy cost
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Rough Energy Breakdown for an Instruction

>20pJ 5pJ Control

Control overheads 
(clocking, decoding, 
pipeline control, ….) 

I-Cache 
access

Register 
file access

32-bit 
ALU

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in 
Specialized Computing, ISCA’2013.



– Amortize overhead in control and data supply across 
multiple instructions
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Principles for Improving Energy Efficiency

Do less work!
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Amortizing the Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds 
or more 

… … 

… 

Further specialization (what we achieve using accelerators)

Single instruction multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control

… 
I-Cache RF Control

A sequence of energy-inefficient instructions
Arithmetic

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in 
Specialized Computing, ISCA’2013.



– Amortize overhead in control and data supply across 
multiple instructions

– Use smaller (or simpler) data => cheaper operations, 
lower storage & communication costs

– Move data locally and directly
• Store data nearby in simpler memory (e.g., scratchpads are 

cheaper than cache)
• Wire compute units for direct (or even combinational) 

communication when possible
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Principles for Improving Energy Efficiency

Do even less work!

Do less work!
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Tensor Processing Unit (TPU)

▸ A domain-specific accelerator specialized for deep learning
– Main focus: accelerating matrix multiplication (MatMul) with a systolic array

• Use CISC instructions: MatMul Unit may take thousands of cycles
– TPUv1 does 8-bit integer (INT8) inference; TPUv2 supports a customized floating-

point type (bfloat16) for training

Google TPU v1

Source: Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017 

A 256x256 Systolic Array
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…
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Common Hardware Specialization Techniques: 
A Taxonomy
▸ Custom Compute Units: Use complex instructions to 

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and 
efficiency with data types that use smaller bit widths or 
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access 
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip 
networks to data movement patterns
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Common Hardware Specialization Techniques: 
A Taxonomy
▸ Custom Compute Units: Use complex instructions to 

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and 
efficiency with data types that use smaller bit widths or 
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access 
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip 
networks to data movement patterns
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Customizing Compute Units: An Intuitive View

A simple single-cycle CPU

PC

  RF

LD
SA
SB
DR
D_in

ALU Data
RAM

DataA

DataB

V C Z N

Fm … F0

SE

IMM
MB

M_address

Data_in

MW MD

0
1

0
1

Inst. R
AM

SE(OFF,0) Adder
MP

0
1

+2

D
ecoder

DR
SA
SB
IMM
MB
FS
MD
LD
MW
BS



24

Evaluating a Simple Expression on CPU
Cycle-by-cycle
CPU activities

R5 <= R1 * R3 

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop
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“Unrolling” the Instruction Execution

R5 <= R1 * R3 

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop
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Removing Unused Logic

R5 <= R1 * R3 

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

R
F x

Space

2. Removing 
unused logic 
=> ALU also 
simplified

R
F x

R
F –

R
F +
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An Application-Specific Compute Unit

3. Wire up registers and 
functional units 

R9

+

–

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

R5 <= R1 * R3 

R7 <= R5 - R6

R6 <= R2 * R4

R8 <= R9 + R7

R5

R1

x

R3

R6

R2

x

R4
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R8

Use combinational connections 
when timing constraints allow 
(e.g., R7)
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Common Hardware Specialization Techniques: 
A Taxonomy
▸ Custom Compute Units: Use complex instructions to 

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

▸ Custom Numeric Types: Trade off accuracy and 
efficiency with data types that use smaller bit widths or 
simpler arithmetic

▸ Custom Memory Hierarchy: Exploit data access 
patterns to reduce energy per memory operation

▸ Custom Communication Architecture: Tailor on-chip 
networks to data movement patterns
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Customized Data Types

▸ Using custom numeric types tailored for a given 
application/domain improves performance & efficiency

Sign Exponent Mantissa

Half float (fp16)

bfloat16

int4

uint1

uint256

block-fp

…

fixed<9,4>

Covered in lectures & labs



▸ MSB weight = -2n-1 
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Binary Representation – Positional Encoding

23 22 21 20 unsigned

1 0 1 1 = 11
-23 22 21 20 2’c

1 0 1 1 = -5

Two’s complement
▸ MSB has a place value 

(weight) of 2n-1 

Unsigned number

Binary Point
(implicit)

Most 
significant bit 

(MSB)



▸ The positional binary encoding can also represent fractional values, 
by using a fixed position of the binary point and place values with 
negative exponents
(–) Less convenient to use in software, compared to floating point  
(+) Much more efficient in hardware
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Fixed-Point Representation of Fractional Numbers

23 22 21 20 2-1 2-2 unsigned
1 0 1 1 0 1 = 11.25

Binary point

2’c
1 0 1 1 0 1 = ??

Unsigned 
fixed-point 
number

Signed 
fixed-point 
number

Integer part (4 bits) Fractional part (2 bits)



▸More Hardware Specialization
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Next Lecture



▸These slides contain/adapt materials developed 
by
– Bill Dally, NVIDIA
– System for AI Education Resource by Microsoft 

Research
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