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Announcements

> First reading assignment

— A. Boutros and V. Betz, “FPGA Architecture:
Principles and Progression”, IEEE CAS-M 2021

-~ Complete reading before Thursday 9/7

» Hands-on tutorial on HLS next Tuesday
— Bring your laptop


https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Agenda

> Motivation for hardware specialization
— Key driving forces from applications and technology

— Main sources of inefficiency in general-purpose
computing

» Essential specialization techniques

> Roofline-based performance modeling
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A Golden Age of Hardware Specialization

> Higher demand on efficient compute acceleration, esp.
for machine learning (ML) workloads
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> Lower barrier with open-source hardware & cloud
FPGAs coming of age
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Modern ML Models are Computationally
Demanding

» Deep neural networks (DNNs) require enormous amount of compute

— Consider ResNet50, a 70-layer model that performs 7.7 billion operations
to classify an image (a relatively small model by today's standards)
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X. Xu, et al. Scaling for Edge Inference of Neural Networks. Nature Electronics, 2018.
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On Crash Course with the End of “Cheap”
Technology Scaling

End of the Line = 2X/20 years (3%/yr) ¢
Amdahl's Law = 2X/6 years (12%/year) ¢
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)| ¢

¢ CISC 2X/2.5 years ? RISC 2X/1.5 years
(22%/year) (52%/year)
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John Hennessy, David Patterson, “A New Golden Age for Computer Architecture”,
CACM 20109.



End of Dennard Scaling and its Implications

> Classical Dennard scaling Dennard scaling
~ Frequency increases at constant | Transistor (trans.) # | S°
power profiles Capacitance / trans. | 1/S
~ Performance improves “for free"! | Yoltage (Vag) 1/3
Frequency S
Total power 1

> Leakage limited scaling

- Vi, scaling halted due to exponentially
increasing leakage power

— Vpp scaling nearly stopped as well to Leakage limited scaling

maintain performance Transistor (trans.) # | S2
Capacitance / trans. | 1/S

> Implication: “Dark silicon™? \_F/0|tage (Vda) ~1
— Power limits restrict how much of the crequency ~
Total power S

chip can be activated simultaneously

— No longer 100% without more power

Note: dynamic power = CV2F
(assuming switching activity factor is 1)



Trade-off Between Compute Efficiency and
Flexibility

<=LEXIBILITY EFFICIENC>

ASICs

General-purpose CPUs WHY?
are less energy efficient



Rough Energy Breakdown for an Instruction

Estimated energy costs for various integer, floating-point (FP), and
memory operations on CPU with a 45nm target node at 0.9V

integer | JNFP | [ Memory |
Add

FAdd Cache (64bit)
8 bit 0.03pJ 16 bit 0.4pJ 8KB 10pJ
32 bit 0.1pJ 32 bit 0.9pJ 32KB 20pJ
Mult FMult 1MB 100pJ
8 bit 0.2pJ 16 bit 1.1pJ DRAM 1.3-2.6nJ
32 bit 3.1pJ 32 bit 3.7pJ
25pJ 6pJ Control I
I-Cache  Register Control overheads 32-bit
access file access (clocking, decoding,  ALU

pipeline control, ....)

M. Horowitz, Computing's energy problem (and what we can do about it), ISSCC’2014.



Reducing Compute Energy Overhead

A sequence of energy-inefficient instructions

I-Cache RF Control l—ArithmetiC
I-Cache RF Control I
I-Cache RF Control I

Single instruction multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control ll . ll

Further specialization (what we achieve using accelerators)

Cache  FF Control MR - rercress . IR

[Figure credit] W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in Specialized 10
Computing, ISCA’2013.



Additional Energy Savings from Specialization

» Customized data types

— Exploit accuracy-efficiency trade-off to simplify arithmetic
operations and reduce memory accesses

» Customized memory hierarchy

- Exploit regular memory access patterns to minimize energy per
memory read/write

» Customized communication architecture

— Exploit data movement patterns to optimize the
structure/topology of on-chip interconnection network

These techniques combined can lead to another 10-100X energy
efficiency improvement over general-purpose processors
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Customized Data Types

» Using custom numeric types tailored for a given
application/domain improves performance & efficiency

Sign Exponent Mantissa

Halffloat(fp1e) | L
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blockefp [
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Covered in lectures & labs 12

bfloat16

fixed<9,4>

int4

uint256

uinti



Binary Representation — Positional Encoding

Unsighed number
> MSB has a place value

(weight) of 2n-1

Most

Two’s complement
» MSB weight = -2n-1

. . Binary Point
significant bit Y
(MSB) N / (implicit)
o
23 22 21 920 unsigned 23 22 21 920 2'c
1 0 1 1[=11 1 01 1|=-5
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Fixed-Point Representation of Fractional Numbers

» The positional binary encoding can also represent
fractional values, by using a fixed position of the binary
point and place values with negative exponents

(—) Less convenient to use in software, compared to floating point
(+) Much more efficient in hardware

Integer part (4 bits) Fractional part (2 bits)
|

A
f 1 |

Unsigned 28 22 21 20 21 22 ynsigned

fixed-point 1 0 1 140 1 =11.25
number A

Binary point
Signed 2°c
fixed-point

number 1T 0 1 140 =77

14



Overflow and Underflow

> Overflow occurs when a number is larger than the
largest number that can be represented using a given
number of bits

23 22 21 20 271 22 unsigned
10 11 0 1 =125

\
0 1 1 0 1 =325

Overflow with 3 integer bits

N\

> Underflow occurs when a number is smaller than the
smallest number that can be represented

15



Handling Overflow

> One common & efficient way of handling overflow is to

drop the MSB(s) of the original number
— This is commonly called wrapping

23 22 21 20 21 22 2'C

(Do 1 1 0 1 =-475

Dropping MSB ’
when integer 2¢C
width is reduced O 1 1 0 1 = ?7?

Wrapping can cause a negative number to
become positive, or a positive to negative
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Custom Memory Hierarchy:
A Case Study on Convolution

» Convolution is pervasive in image/video processing and
ML — performed over overlapping windows (aka stencils)

k—1k—-1
(Img ®f)[n+k—1 Zlmg[nﬂ 1[m+j] f[l]
2 ’ — :
o — B
dot
1211 product
0(0]0
11211
Input image KxK convolution Output image

frame (K=3 here) frame
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Example Application: Edge Detection

> |dentifies discontinuities in an image where brightness
(or image intensity) changes sharply
— Very useful for feature extractions in computer vision

—

Sobel operator
G = (GX 1GY)

18



CPU Implementation of a 3x3 Convolution

for(r=1;r<H;r++)
for(c=1;c<W; c++)
for (i=0;i<K;i++)
for (=0;j<K;j++)
out[r][c] += img[r+i-1][c+j-1] * f[i][i];

Cache
SO =

19



General-Purpose Cache for Convolution

> A general-purpose cache can effectively reduce external

memaory aCCesSses

— but is expensive in cost and incurs nontrivial energy overhead

Address

A subset of image data
stored in cached

3130---12111098---3210

[ ]

Tog | +22

Index

48

x V Tag Data V Tag Data V Tag Data

V Tag Data

J22 Ja2

Sl

:

Hit

Data
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Line Buffer: Customized “Cache” for Convolution

» “Cache” the input pixels in a line buffer

- Each time we move the KxK window (in yellow) to the right and
push in a new pixel (in orange) to the specialized “cache”

|
3 =2(-1{0 1[2(3|4
iImage Bl [l
frame
> W >

Line Buffer: simple addressing, simple
-3 replacement policy (first in, first out)

old «—a|.i|{o|1|2]|3|4]|5|6|7|8|9|A|B|C|D|E]|F ="
pixel out pixel in

(K-1)*W+K pixels in flight, K=3 and W=8 here
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A More Complete Picture:
Customized On-Chip Memory Hierarchy

1] Pixels in line buffer
T — 8/9 (stores 2 lines using on-chip SRAM)
gs 0% F
gy gisfer
L] e Push 3 pixels into shift & ™~ g re n\/)
e rogisters — 1 new pixel " 8110
1 e egisters — 1 new pixe 0
L m? plus 2 from line buffer ol {6
! 5o e
Q1 e
New pixel read from F'It
frame buffer in main o
memory (DRAM) :E:: Output
:/:: pixel
/:/: produced
j:j/ by conv
u . . 1L
Line Buffer + Shift Registers: ™

a custom “cache” + a custom “register file”
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<
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Custom Communication Architecture

Example: Systolic Arrays

> An array of processing elements (PEs) that process data in a
systolic manner using nearest-neighbor communication

Systolic Arrays (for VLSI)

H. T. Kungt and Charles E. Leisersont

And now I see with eye serene
The very pulse of the machine.
~=William Wordsworlh

Absiract

A syslolic system is a nelwork of processors which rhylhmically compute and pass
data through the system. Physiologislts use the word "systole” to refer to the
rhythmically recurrent conlraclion of the heart and arleries which pulses blood
through the body. In a syslolic compuling system, the funclion of a processor is
analogous 1o thal of the hearl. Every processor regularly pumps data in and oul,
each lime performing some shorl compulation, so that a regular flow of data is kept
up in the nelwork,

Many basic matrix computations can be pipelined elegantly and efficiently on
asystolic nelworks having an array slructure. As an example, hexagonally connected
processors can oplimally perform malrix multiplication.  Surprisingly, a similar
syslolic array can compule the LU-decomposition ol a matrix. These syslolic arrays
enjoy simple and regular communication paths, and almos! all processors used in the
networks are idenlical. As a resull, special purpose hardware devices based on
syslolic arrays can be buill inexpensively using the VLSI technology.

1. Introduction

Developments in microelectronics have revolutionized compuler design. Integrated
circuit technology has increased the number and complexily of components that can
fit on a chip or a printed circuit board. Component densily has been doubling every

one-lo-two vears and alreadv. a mulliplier can fit on a very large scale integrated

In Sparse Matrix Proceedings, 1978

+ Simple & regular design

+ Massive parallelism

+ Short nearest-neighbor
interconnection

+ Balancing compute with 1/0

23



Matrix Multiplication on a Systolic Array

> An array of processing elements that process data in a
systolic manner

Computation
Finished

A[2][2]
t=0
C =AXB
. To be : :B[Z][O]:B[l][o]:B[O][O]:
computed : : | | |
Being i i i i E
Comouted : B[Z][l]: 3[1][1]:3[0][1]: i

B[2][2) B[1][2]: B[0][2]
t < | 1




Accelerator Performance Modeling

Accelerator (often called a “device”)

Computation Resource

)

Computational Throughput

Total number of operations

Total execution time

(OPs / Sec)

Inter- \\<" >< ><
connect [

/

On-chip memory

bufferl buffer?2

J

Operational Intensity”
(O1)

Total number of operations

Total external memory access

(OPs / Byte Accessed)

Off-chip Bus O.\
External Memory ~

Memory Bandwidth
(Bytes / Sec)

* Ol is also known as computation to communication ratio (CTC)
or arithmetic intensity (Al)

25




Roofline Model [1]
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Required Ol

Bandwidth OPs/Sec _ Bytes

OPs/Byte Accessed Sec

OPs/
Byte

Operational Intensity (Ol)

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance 26
model for multicore architectures, CACM, 2009.



Roofline Model [1]

OPs/Sec
A Exceeds On-Chip Resources

Computational Roof X
(Max device throughput)

Bandwidth-Bottlenecked “The Roofline”

Theoretical @
Throughput ! o

Attainable
Throughput @
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[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

OPs/
Byte
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Design Space Exploration with Roofline

Bandwidth Roof

Computational Roof /

Design points A & B
achieve same throughput

But which one would you
prefer?
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Summary

> End of Dennard scaling leads to increasing hardware
specialization to sustain improvement in hardware

performance and energy efficiency

» Special-purpose hardware accelerators commonly
leverage customized (1) processing engines, (2) data
types, (3) memory hierarchy, and (4) communication
architectures

> Roofline modeling is a useful tool for first-order
analysis of the accelerator performance
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Reading Assignment

» Before next Thursday (9/7)

— A. Boutros and V. Betz, “FPGA Architecture:
Principles and Progression”, IEEE CAS-M 2021
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https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Acknowledgements

> These slides contain/adapt materials developed

by
— Prof. Jason Cong (UCLA)

31



