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▸First reading assignment
– A. Boutros and V. Betz, “FPGA Architecture: 

Principles and Progression”, IEEE CAS-M 2021 
– Complete reading before Thursday 9/7

▸Hands-on tutorial on HLS next Tuesday
– Bring your laptop

Announcements
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https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607


Agenda

▸Motivation for hardware specialization
– Key driving forces from applications and technology
– Main sources of inefficiency in general-purpose 

computing 

▸Essential specialization techniques

▸Roofline-based performance modeling
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Exponential
in complexity (or Extreme scale)

Diverse
increasing system heterogeneity 

Algorithmic
intrinsically computational

Recap: Our Interpretation of E-D-A
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▸ Higher demand on efficient compute acceleration, esp. 
for machine learning (ML) workloads

▸ Lower barrier with open-source hardware & cloud 
FPGAs coming of age

A Golden Age of Hardware Specialization



Modern ML Models are Computationally 
Demanding
▸ Deep neural networks (DNNs) require enormous amount of compute 

– Consider ResNet50, a 70-layer model that performs 7.7 billion operations 
to classify an image (a relatively small model by today's standards)
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X. Xu, et al. Scaling for Edge Inference of Neural Networks. Nature Electronics, 2018.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the interconnect. Neurocube44 stacked the hybrid memory cube 
die on a single-instruction multiple-data processor, while TETRIS45 
combined a hybrid memory cube with a spatial architecture. Unlike 
general DNN accelerators, near-data processing achieves optimal 
efficiency by using more area for computing. In order to achieve 
higher efficiency, some works have even moved the DRAM on 
chip. DaDianNao23 adopted embedded DRAM for high-density 
on-chip memory, which achieves a 150-fold reduction in energy at 
the cost of larger chip size. There are also some works that moved 
computing units to sensors, thereby further reducing the cost of 
memory access. ShiDiannao26 put vision processing in the sensor 
with no DRAM, yielding a 63-fold improvement in energy effi-
ciency. RedEye46 even omitted analogue-to-digital conversion and 
performed DNN computation in the analogue domain at the sensor.

Non-von Neumann architectures have also been explored to 
reduce computation and memory consumption. One such approach 
adopts non-volatile resistive memories as programmable resis-
tive elements. Because computation is performed in the analogue 
domain, it can be extremely fast with ReRAM arrays47. The approach 
also brings high density and high energy efficiency as computation 
and memory are packed in the same chip area, thereby involving 
minimal data movement. ISAAC48 adopted multicycle approach to 
perform high-precision calculations with limited memory using 

25.1 million memristors. PRIME49 employed a large memristor 
array for multi-level computation. Jain et al.50 and Wang et al.51  
proposed the use of spin-transfer torque magnetic RAM for  
DNN computation.

Recently, representative array-level demonstrations have been 
reported. These include IBM’s 500 ×  661 phase change mem-
ory array for handwritten-digit recognition using the Modified 
National Institute of Standards and Technology (MNIST) data-
base52, Tsinghua’s 128 ×  8 analogue resistive RAM array for face rec-
ognition53, UCSB’s 12 ×  12 crossbar array for pattern recognition54, 
and UCSB’s floating-gate array for MNIST image recognition55. 
Non-von Neumann architectures with memristors have several 
drawbacks: a large analogue-to-digital/digital-to-analogue conver-
sion overhead, limited size of the memristor array, and energy and 
time overheads for memristor writing. It was recently shown that 
the analogue-to-digital conversion overhead can be eliminated by 
training the networks in the analogue domain54, and memristor 
writing can also be mitigated56. Although non-von Neumann archi-
tectures with non-volatile resistive memories have considerable 
potential in both performance and energy efficiency, a number of 
requirements are yet to be met: special materials and device engi-
neering to support the requirements of synaptic devices, increased 
array size, DNN mapping and EDA tools, and large-scale prototype 
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Compute Density
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On Crash Course with the End of “Cheap” 
Technology Scaling

John Hennessy, David Patterson, “A New Golden Age for Computer Architecture”, 
CACM 2019. 



▸ Classical Dennard scaling
– Frequency increases at constant 

power profiles
– Performance improves “for free"!

▸ Leakage limited scaling
– Vth scaling halted due to exponentially 

increasing leakage power
– VDD  scaling nearly stopped as well to 

maintain performance

▸ Implication: “Dark silicon”? 
– Power limits restrict how much of the 

chip can be activated simultaneously 
– No longer 100% without more power
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End of Dennard Scaling and its Implications

Dennard scaling 
Transistor (trans.) #     S2

Capacitance / trans. 1/S
Voltage (Vdd)   1/S
Frequency   S
Total power   1

    Leakage limited scaling
Transistor (trans.) #     S2

Capacitance / trans. 1/S
Voltage (Vdd)   ~1
Frequency   ~1
Total power   S

Note: dynamic power = CV2F
(assuming switching activity factor is 1)
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General-purpose CPUs 
are less energy efficient

EFFICIENCYFLEXIBILITY

Contr
ol 

Unit 
(CU)

Register
s

Arithmet
ic Logic 

Unit 
(ALU)

CPUs GPUs ASICsFPGAs

Trade-off Between Compute Efficiency and 
Flexibility

WHY?
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Rough Energy Breakdown for an Instruction

14 •  2014 IEEE International Solid-State Circuits Conference 978-1-4799-0920-9/14/$31.00 ©2014 IEEE

ISSCC 2014 / SESSION 1 / PLENARY / 1.1

Figure 1.1.7:  Power breakdown of an 8 core server chip. Figure 1.1.8:  Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.
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Estimated energy costs for various integer, floating-point (FP), and 
memory operations on CPU with a 45nm target node at 0.9V
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Reducing Compute Energy Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds 
or more 

… … 

… 

Further specialization (what we achieve using accelerators)

Single instruction multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control

… 

[Figure credit] W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in Specialized 
Computing, ISCA’2013.

I-Cache RF Control

A sequence of energy-inefficient instructions
Arithmetic
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Additional Energy Savings from Specialization

▸ Customized data types
– Exploit accuracy-efficiency trade-off to simplify arithmetic 

operations and reduce memory accesses

▸ Customized memory hierarchy
– Exploit regular memory access patterns to minimize energy per 

memory read/write

▸ Customized communication architecture
– Exploit data movement patterns to optimize the 

structure/topology of on-chip interconnection network

These techniques combined can lead to another 10-100X energy 
efficiency improvement over general-purpose processors
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Customized Data Types

▸ Using custom numeric types tailored for a given 
application/domain improves performance & efficiency

Sign Exponent Mantissa

Half float (fp16)

bfloat16

int4

uint1

uint256

block-fp

…

fixed<9,4>

Covered in lectures & labs



▸ MSB weight = -2n-1 
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Binary Representation – Positional Encoding

23 22 21 20 unsigned

1 0 1 1 = 11
-23 22 21 20 2’c

1 0 1 1 = -5

Two’s complement
▸ MSB has a place value 

(weight) of 2n-1 

Unsigned number

Binary Point
(implicit)

Most 
significant bit 

(MSB)



▸ The positional binary encoding can also represent 
fractional values, by using a fixed position of the binary 
point and place values with negative exponents
(–) Less convenient to use in software, compared to floating point  
(+) Much more efficient in hardware
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Fixed-Point Representation of Fractional Numbers

23 22 21 20 2-1 2-2 unsigned
1 0 1 1 0 1 = 11.25

Binary point

2’c
1 0 1 1 0 1 = ??

Unsigned 
fixed-point 
number

Signed 
fixed-point 
number

Integer part (4 bits) Fractional part (2 bits)



▸ Overflow occurs when a number is larger than the 
largest number that can be represented using a given 
number of bits

▸ Underflow occurs when a number is smaller than the 
smallest number that can be represented
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Overflow and Underflow

23 22 21 20 2-1 2-2 unsigned
1 0 1 1 0 1 = 11.25

0 1 1 0 1 = 3.25
Overflow with 3 integer bits 
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Handling Overflow

▸ One common & efficient way of handling overflow is to 
drop the MSB(s) of the original number
– This is commonly called wrapping 

-23 22 21 20 2-1 2-2 2’c
1 0 1 1 0 1 = -4.75

2’c
0 1 1 0 1 = ??

Wrapping can cause a negative number to 
become positive, or a positive to negative

Dropping MSB 
when integer 
width is reduced



Custom Memory Hierarchy: 
A Case Study on Convolution

▸ Convolution is pervasive in image/video processing and 
ML – performed over overlapping windows (aka stencils)

-1 -2 -1

0 0 0
1 2 1

KxK convolution
(K=3 here)

Input image 
frame

Output image 
frame

17

dot 
product



Example Application: Edge Detection

▸ Identifies discontinuities in an image where brightness 
(or image intensity) changes sharply
– Very useful for feature extractions in computer vision

Figures: Pilho Kim, GaTech

Sobel operator 
G = (GX ,GY)
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CPU Implementation of a 3x3 Convolution

CPU Main
Memory

Cache

for (r = 1; r < H; r++) 
    for (c = 1; c < W; c++) 
      for (i = 0; i < K; i++) 
        for (j = 0; j < K; j++) 
          out[r][c] += img[r+i-1][c+j-1] * f[i][j];

19

W

H



▸ A general-purpose cache can effectively reduce external 
memory accesses
– but is expensive in cost and incurs nontrivial energy overhead

General-Purpose Cache for Convolution

A subset of image data 
stored in cached

20

W

H



Line Buffer: Customized “Cache” for Convolution

▸ “Cache” the input pixels in a line buffer  
– Each time we move the KxK window (in yellow) to the right and 

push in a new pixel (in orange) to the specialized “cache”

21

Input 
image
frame

Line Buffer: simple addressing, simple 
replacement policy (first in, first out)

old 
pixel out

new 
pixel in

(K-1)*W+K pixels in flight, K=3 and W=8 here

W



A More Complete Picture: 
Customized On-Chip Memory Hierarchy

Pixels in line buffer 
(stores 2 lines using on-chip SRAM)

New pixel read from 
frame buffer in main 
memory (DRAM)

Push 3 pixels into shift 
registers – 1 new pixel 
plus 2 from line buffer

22

Output 
pixel 
produced 
by conv

Line Buffer + Shift Registers: 
a custom “cache” + a custom “register file”



▸ An array of processing elements (PEs) that process data in a 
systolic manner using nearest-neighbor communication

23

Custom Communication Architecture
Example: Systolic Arrays

In Sparse Matrix Proceedings, 1978

PE PE PE

PE PE PE

PE PE PE

+ Simple & regular design 
+ Massive parallelism 
+ Short nearest-neighbor 
interconnection
+ Balancing compute with I/O
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Matrix Multiplication on a Systolic Array

▸ An array of processing elements that process data in a 
systolic manner

𝑪 = 𝑨×𝑩



Accelerator Performance Modeling

...
Computation Resource

PE-1 PE-2 PE-n

Inter-
connect

buffer1
On-chip memory

buffer2

External Memory

Off-chip Bus

* OI is also known as computation to communication ratio (CTC)
or arithmetic intensity (AI)
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Computational Throughput

(OPs / Sec)

=
Total	number	of	operations

Total	execution	time	

Operational Intensity*
(OI)

(OPs / Byte Accessed)

=
Total	number	of	operations
Total	external	memory	access

Memory Bandwidth
(Bytes / Sec)

Accelerator (often called a “device”)



Roofline Model [1]
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[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance 
model for multicore architectures, CACM, 2009.

𝑂𝑃𝑠/𝑆𝑒𝑐
𝑂𝑃𝑠/𝐵𝑦𝑡𝑒	𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑 =

𝐵𝑦𝑡𝑒𝑠
𝑆𝑒𝑐

=
Computational	Throughput

OI
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Roofline Model [1]
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Design points A & B 
achieve same throughput

But which one would you 
prefer?



Summary

▸ End of Dennard scaling leads to increasing hardware 
specialization to sustain improvement in hardware 
performance and energy efficiency

▸ Special-purpose hardware accelerators commonly 
leverage customized (1) processing engines, (2) data 
types, (3) memory hierarchy, and (4) communication 
architectures

▸ Roofline modeling is a useful tool for first-order 
analysis of the accelerator performance
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▸Before next Thursday (9/7)
– A. Boutros and V. Betz, “FPGA Architecture: 

Principles and Progression”, IEEE CAS-M 2021
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Reading Assignment

https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607


▸These slides contain/adapt materials developed 
by
– Prof. Jason Cong (UCLA)
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