ECE 6775
High-Level Digital Design Automation
Fall 2024

Hardware Specialization

_UNJp
B
© =\ . .
L C2=))] Cornell University C S .=
o < I =
& -
iy "

Announcements

> First reading assignment

— A. Boutros and V. Betz, “FPGA Architecture:
Principles and Progression”, IEEE CAS-M 2021

— Complete reading before Thursday 9/5

> Lab 1 and an HLS tool setup guide will be
released soon (by Monday)

https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1109/MCAS.2021.3071607

Recap: Our Interpretation of E-D-A

Exponential
in complexity (or Extreme scale) Exponential
HE NN
_ H B

Diverse |
increasing system heterogeneity

I:E;:I
Algorithmic T
I . [
intrinsically computational

Diverse «, 0 Algorithmic

0.9 -
0.8 -
0.7 -
0.6 -
0.5
0.4 -
0.3
0.2
0.1

NEAVNANAVNA AN AN

Significance of EDA: Another Proof

of Customs over Time

>10x reduction over 5 generation

N

Ruchir Puri, High Performance Microprocessor Design, and
Automation: Challenges and Opportunities, TAU2013 keynote.

in 22nm server class

Milestone:
Digital Logic

Microprocessors
99% synthesized
and signed-off by
Gate Level signoff

Agenda

> Motivation for hardware specialization
— Key driving forces from applications and technology

— Main sources of inefficiency in general-purpose
computing

> A taxonomy of common specialization
techniques

> Introduction to fixed-point types

A Golden Age of Hardware Specialization

> Higher demand on efficient compute acceleration,
esp. for machine learning (ML) workloads

S —~
. =§itt 5G & -5
SQL ‘

> Lower barrier with open-source hardware &
accelerators in cloud coming of age

L2

P

L1

A

/ \ TOR TOR
[

Network switch (top of rack, cluster)
—— FPGA - switch link
£=7 FPGA acceleration board

—— NIC—FPGA link

«—7 2-socket CPU server 2-socket server blade

/ \) DRAM DRAM AT J
\ Datacenter hw acceleration plane
TOR TOR._)
A Dﬁzw;t;;al %" Expensive CPU an CPU
Gen3 x8
i 4

Web search — f

A . e o Gen32x8
> ioinformatics v 5
ranking - /%LE: o ;! g
1 2in% % i T g FPGA _ >
- <
Y E Dz L QSFP @ QSFP
anking i 40Gb/s 40Gb/s
T

Traditional sw (CPU) server plane

Rising Computational Demands of Emerging
Applications

» Deep neural networks (DNNs) require enormous amount of compute

— Consider ResNet50, a 70-layer model that performs 7.7 billion operations
to classify an image (a relatively small model by today's standards)

1022 { === CPU scaling Minerva
- == GPU scaling PaLM —\\«;.
- == H /\ e
1020 élptllodel scaling GPT-3 Lo oo .%‘:.
+* o 0 °
AlphaGo A
" 108 { A GPU p \,'.. A5
O Al Model Transformer o 000 ‘%
™ 1016 4 ® (training OPs/hour) \\.},’{u S
] ()
£ ResNet oD% .‘::/
"5' 1014] NPLM
= Decision tree \
D 112
3 10 LSTM
<
— 1010
108 4] | — NVIDIA Intel SPR
, e i t R
B \VIDIA Kepler e o 1100 60-Core
106 - i ot
Intel 386 Intel Pentium 4
1990 1995 2000 2005 2010 2015 2020 6

Figure source: Cornell Zhang Research Group

On Crash Course with the End of “Cheap”
Technology Scaling

107

10°

Hennessy/Patterson
42 Years of Processor Data Koy
! ! ' H. Sutter ' * Transistors
= “Free Lunch is Over” : rl (1000s)
A A
“First Reconfigurable Wave” PR
| % Adaptive Silicon, Elixent, Triscend,]
Morphics, Chameleon Systems,
Quicksilver Technology, Mathstar Single-Thread
& —| Performance
(SpecINT x 103)
B F. Brooks A 4
" ”
No Silver Bullet Frequency
* (MHz)
B Moore’s 1
Law Typical Power
2 * A _ (WlttS)
Number of
A Logical Cores
b i K e 4
a u 3
A = -
= ‘ - P'S
e

1970 1 980 1 990 2000 201 0 2020

Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Dennard Scaling in a Nutshell

» Classical Dennard scaling
- Frequency increases at constant power profiles
— Performance improves “for free"!

Dennard scaling
Transistor (trans.) # | S?
Capacitance / trans. | 1/S

_/oltage (Vdd) 1/S
Frequency S
Total power 1

Note: Dynamic power « CV2F

End of Dennard Scaling and its Implications

> Power limited scaling
-V, scaling halted due to exponentially increasing leakage power
- Vpp scaling nearly stopped as well to maintain performance

Leakage limited scaling
Transistor (trans.) # | S
Capacitance / trans. | 1/S

_/oltage (Vdd) ~1
Frequency ~1
Total power S

Note: Dynamic power « CV2F

> Implication: “Dark silicon™?
— Power limits restrict how much of the chip can be activated simultaneously

— No longer 100% without more power

Trade-off Between Flexibility and Efficiency

ASICs

<=LEXIBILITY EFFICIENC>

Why are general-purpose
CPUs less energy efficient?

10

CPU Core Architecture

> Core = complex control + limited # of ALU
compute units + large caches Control

— Scalar & vector instructions

* Backward compatible ISA

— Complex control logic: decoding, hazard
detection, exception handling, etc.

ALU
ALU ALU

Cache

> Mainly optimized to reduce latency of running serial code
— Shallow pipelines (< 30 stages)

— Superscalar, OOQ, speculative execution, branch prediction,
prefetching, etc.

-~ Low throughput, even with multithreading

11

Poll & Discu_ssion

@ http://pollev.com/ece6775
Sign in or register using your Cornell email

12

http://pollev.com/ece6775

Multi-Core Architecture

ALU ALU ALU ALU ALU ALU

Control Control Control
ALU ALU ALU ALU ALU ALU

Private L1/L2 Cache Private L1/L2 Cache Private L1/L2 Cache

Shared Last-Level Cache (LLC)

ALU ALU
Control

ALU ALU
Private L1/L2 Cache

With four cores, should we expect a 4x speedup

on an arbitrary application?

13

Graphics Processing Unit (GPU)

» GPU has thousands of cores to run
many threads in parallel Control

— Cores are simpler (compared to CPU)

» No support of superscalar, OOO,
speculative execution, etc.

* ISA not backward compatible

— Amortize overhead with SIMD + single
instruction multiple threads (SIMT)

> Optimized to increase throughput of
running data-parallel applications

— Initially targeting graphics code

- Latency tolerant with many
concurrent threads

ALU
ALU

Cache

CPU

GPU

ALU
ALU

14

It’'s Not Just About Performance: Computing’s
Energy Problem

Reading two 32b words from Energy
DRAM 1.3 nd
Large SRAM (256 MB) 58 pJ
Small SRAM (8KB) 5 pJd
Moving two 32b words by Ener
65,000x ° o
40mm (across a 400mm2 chip) 77 pJd
1mm (local communication) 1.9 pd 250X
Arithmetic on two 32b words Energy
FMA (float fused multiply-add) 1.2 pd
IADD (integer add) 0.02 pJ

Data from [1], based on a 14nm process

Data supply far outweighs arithmetic operations in energy cost

15
[1] William Dally and Uzi Vishkin, On the Model of Computation, CACM’2022.

Rough Energy Breakdown for an Instruction

>20pJ 5pJ Control I

! ! ! !
l-Cache Register Control overheads 32-bit

access file access (clocking, decoding, ALU

pipeline control,)

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in
Specialized Computing, ISCA’2013.

Principles for Improving Energy Efficiency

Do less work!

-~ Amortize overhead in control and data supply across
multiple instructions

17

Amortizing the Overhead

A sequence of energy-inefficient instructions

I-Cache RF Control l—ArithmetiC
I-Cache RF Control I
I-Cache RF Control I

Single instruction multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control ll . ll

Further specialization (what we achieve using accelerators)

Cache FF Control MR - rercress . IR

Diagram adapted from W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in 18
Specialized Computing, ISCA’2013.

Principles for Improving Energy Efficiency

Do less work!

-~ Amortize overhead in control and data supply across
multiple instructions

Do even less work!

— Use smaller (or simpler) data => cheaper operations,
lower storage & communication costs

- Move data locally and directly

- Store data nearby in simpler memory (e.g., scratchpads are
cheaper than cache)

« Wire compute units for direct (or even combinational)
communication when possible

19

Tensor Processing Unit (TPU)

» A domain-specific accelerator specialized for deep learning
-~ Main focus: accelerating matrix multiplication (MatMul) with a systolic array
+ Use CISC instructions: MatMul Unit may take thousands of cycles

— TPUv1 does 8-bit integer (INT8) inference; TPUv2 supports a customized floating-
point type (bfloat16) for training

30 GiBls ”
<f:> Interfaces I:'> (Weight Fetcher) 7’ e e .
rrpemy P PE PE PE PE
Control || 3 COntroI] @ ”
0 o] - C T T 1
5 3 Unified 167 Matrix Multiply .
_|8E) @ 10 GiB/s Buffer Systolic |GiB/s] Unit PE PE PE PE
14 GiB/s 3% 14 GiB/s é (|_.°ca.| Data (64K per cycle) -
SR e e I I I I
3
’ |6 =R PE [PE [PE || PE
\
T N
=] _ \
E 167 GiB/s \
- H o] N, [pE H pE H e || P
[[] off-chip i0 J \
Ko <;: <: + A 256x256 Systolic Array
omputation
DConIroI o

Google TPU v1

20
Source: Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017

Common Hardware Specialization Techniques:
A Taxonomy

>

Custom Compute Units: Use complex instructions to

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

21

Common Hardware Specialization Techniques:
A Taxonomy

» Custom Compute Units: Use complex instructions to
amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

» Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

» Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

» Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

22

Customizing Compute Units: An Intuitive View

M_address

i q jimm MW MD

A simple single-cycle CPU

y
od
y
NVY Isul

23

Evaluating a Simple Expression on CPU

Cycle-by-cycle
[+ | CPU activities

=) >
=

e

R5<=R1*R3 E

12222222

apo2aQ

ALU » RAM
LU

R6 <= R2 * R4

44

e

IE’ A > RAM

apo2aQ
12222222}

R7 <= R5 - R6

RAM

12222222

R

R8 <= R9 + R7

12222222

ALU RAM
ﬁ
v

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

24

“Unrolling” the Instruction Execution

1. Replicate the
| CPU1 CPU hardware
- — >) Instruction fixed

ALU RAM
%&—' => disable fetch
& decode logic
CPU2

apo2eq
12222222}

R5 <=R1*R3
c

R6 <= R2 * R4 o T
i
- Space
CPU3
R7 <= R5 - R6 > —"|aLu >|RAM @
2
CPU4
R8 <= R9 + R7

12222222

ALU »RAM
ﬂ

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

25

Removing Unused Logic

2. Removing
unused logic
R5 <=R1*R3 o — => ALU also
" g simplified

R6 <= R2 * R4 Q

r Space

R7 <= R5 - R6 B
E

R8 <= R9 + R7

44

51

-

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

26

An Application-Specific Compute Unit

R5 <=R1*R3
R6 <= R2 * R4
R7 <= R5 - R6
R8 <= R9 + R7

Source: Adapted from Desh Singh’s talk at HCP’14 workshop

|R1| [R3]| |R2| [Ra4]

3. Wire up registers and
functional units

Use combinational connections

when timing constraints allow
(e.g., R7)

27

Common Hardware Specialization Techniques:
A Taxonomy

>

Custom Compute Units: Use complex instructions to

amortize overhead (e.g., SIMD, “ASIC”-in-an-instruction)

Custom Numeric Types: Trade off accuracy and
efficiency with data types that use smaller bit widths or
simpler arithmetic

Custom Memory Hierarchy: Exploit data access
patterns to reduce energy per memory operation

Custom Communication Architecture: Tailor on-chip
networks to data movement patterns

28

Customized Data Types

» Using custom numeric types tailored for a given
application/domain improves performance & efficiency

Sign Exponent Mantissa

Halffloat(fp1e) | L
HEEEEEEEREEEEE.

blockefp [
HEETEEE TN Y.
HEE YR YEEN Yaa.

Covered in lectures & labs 29

bfloat16

fixed<9,4>

int4

uint256

uinti

Binary Representation — Positional Encoding

Unsighed number
> MSB has a place value

(weight) of 2n-1

Most

Two’s complement
» MSB weight = -2n-1

. . Binary Point
significant bit Y
(MSB) N / (implicit)
o
23 22 21 920 unsigned 23 22 21 920 2'c
1 0 1 1[=11 1 01 1|=-5

30

Fixed-Point Representation of Fractional Numbers

> The positional binary encoding can also represent fractional values,
by using a fixed position of the binary point and place values with
negative exponents
(—) Less convenient to use in software, compared to floating point
(+) Much more efficient in hardware

Integer part (4 bits) Fractional part (2 bits)
|

A

f |

21 22 unsigned

Unsigned 23 22 21 20
fixed-point 1.0 1 10 1 =11.25
number A

Binary point
Signed 2’
fixed-point

number 1T 0 1 140 =77

31

Next Lecture

> More Hardware Specialization

32

Acknowledgements

> These slides contain/adapt materials developed
by
— Bill Dally, NVIDIA

— System for Al Education Resource by Microsoft
Research

33

