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Agenda

▸ Important logistics

▸Course motivation

▸More course organization
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▸Course website
– https://www.csl.cornell.edu/courses/ece6775
– Lectures slides, handouts, and other readings

▸Ed Discussion
– Announcements and Q&A 

▸CMSX: course management system
– Assignments and grades
– Electronic submissions required
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Class Resources

https://www.csl.cornell.edu/courses/ece6775


Course Texts
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e-book available online

Selected papers & 
software manuals

Get 1st edition
Overhead slides 
available online

https://kastner.ucsd.edu/hlsbook/
http://si2.epfl.ch/~demichel/publications/mcgraw/
http://si2.epfl.ch/~demichel/publications/mcgraw/


▸Ed Discussion
– Questions on lectures, assignments, projects, etc.
– Monitored by course staff

▸ Instructor office hours (online)
– Thursday 4:30-5:30pm, Zoom link posted on Ed

▸Email instructor for personal issues/appointment

▸PhD TAs:
– Yixiao Du (yd383), Head TA
– Andrew Butt (atb78), part-time 
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Seeking Help After Class



Grading Scheme
▸ Class participation (4%)

– Asking & answering questions during lectures
– Contributing to discussions on Ed

▸ Paper readings (5%)

▸ Quizzes (6%)

▸ Midterm exam (20%)

▸ Assignments (30%)

▸ Final project (35%)
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▸ Specify applications/algorithms in software programs

▸ Synthesize software descriptions into special-purpose 
hardware components, namely, accelerators 
– Perform manual source-level code optimizations
– Utilize automatic compilation & synthesis optimizations
– Explore performance-cost trade-offs

▸ Realize the synthesized accelerators on FPGAs
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What this Course is About

Hardware/Software Co-Design



This Course Dives into EDA

▸ A general methodology for refining a high-level description 
down to a detailed physical implementation for designs 
ranging from 
– integrated circuits (including system-on-chips), 
– printed circuit boards (PCBs), 
– and electronic systems

▸ Modeling, synthesis, and verification at every level of 
abstraction
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Electronic Design Automation
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Significance of EDA

Patrick Gelsinger, Desmond Kirkpatrick, Avinoam 
Kolodny, and Gadi Singer. “Such a CAD!” 
IEEE Solid-State Circuits Magazine, 2010.

   IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 10 33

circuit, logic, and architecture. At 
each abstraction level, the verifica-
tion problem was typically the most 
painful; hence it was addressed first. 
The synthesis problem at that level 
was addressed much later.

This article is the story of the 
coevolution of design methodolo-
gies, practices, and CAD tools in 
Intel’s design environment as it 
coped with increasing complexity in 
the turbulent 1980s and up through 
recent years. It is interesting to note 
that at the beginning of this process 
the engineering culture was advo-
cating a tall, thin design. Nowadays, 
very large scale integration (VLSI) 
engineers are highly specialized in 
different areas of the design disci-
pline, where specialized tools are 
used in each area. This is analogous 
to the restructuring of the whole 
computer industry from vertical to 
horizontal.

In the 1980s, the CAD industry 
itself was nascent at best. While 
some areas like schematic or layout 
entry had solid commercial offer-
ings, the rapidly evolving complex-
ity of this young industry meant 
there could be little hope from 
 commercial tool offerings. There-
fore most tools emerged from inter-
nal development, external university 
research, or often a coevolving blend 
of internal work with external tools 
and research. While there were a 
number of corporate-university 
relationships at that time, none was 
as prolific as that of Intel with the 
University of California, Berkeley. 
In particular, Alberto Sangiovanni-
Vincentelli and his collaborative 
research team, which consisted of 
Robert Brayton, Richard Newton, and 
many graduate students, had devel-
oped a strong partnership with Intel 
and its microprocessor teams. This 
long partnership with Intel stands 
as one of the most fruitful relation-
ships in EDA, bringing fundamental 
breakthroughs in multiple elements 
of microprocessor logic, synthesis, 
and layout. Many of these early suc-
cesses resulted in enormous ben-
efits to Intel and eventually made 

their way into the EDA industry as 
key enablers of many EDA tools and 
today’s fabless ASIC/SOC semicon-
ductor industry.

Design Environment for 
the Early X86 Processors

Inherited Tools from Memory Chips
Intel’s initial design environment 
was formed to serve the needs of 
memory chips. During the 1970s, 
the primary CAD tools were layout 
capture and verification tools, used 
by draftsmen to generate and check 
mask layouts. These tools were put 
in place because the layouts were 
already too complicated to develop 
and maintain solely on paper or 
Mylar. Polygon-based layout repre-
sentations therefore had to be stored 

and handled by computerized tools, 
initially on dedicated systems such 
as the Calma or Applicon.

Engineers were doing circuit and 
logic designs at the transistor level, 
usually by hand, producing hand-
drawn schematics at the transistor 
level for the layout designers. The 
engineers did most of their design 
work using pencil and paper, but 
they also had circuit simulation 
tools derived from the industry-
standard SPICE [3] program. SPICE 

originated in Don Pederson’s group 
at Berkeley and later on was refined 
by Richard Newton, Alberto, and 
their students (Intel’s version was 
known as ISPEC). It was possible to 
simulate and check logic behavior 
and timing waveforms for small cir-
cuits that incorporated up to a few 
hundred transistors. 

As Intel started designing logic 
products, including the first micro-
processors (the Intel 4004, 8008, 
and 8080), design engineers inher-
ited all of those tools and methods, 
which had initially been conceived 
for memory chip design. Some engi-
neers preferred to perform logic 
design using gate-level schemat-
ics, but this generated some resis-
tance from the layout designers. 
They were familiar with  transistor 

 representations, which directly 
matched the layout. Translating logic 
gate symbols into transistor struc-
tures was not a trivial task because 
the early microprocessors and 
numeric coprocessors (8087, 80387) 
were designed in NMOS technology. 
Circuit operation relied on device 
strength ratios, so each gate symbol 
had to be accompanied by specific 
transistor sizes. In addition, the pre-
vailing design style supported many 
complex gate pull-down devices, 

TABLE 1. INTEL PROCESSORS, 1971–1993.

PROCESSOR INTRO DATE PROCESS TRANSISTORS FREQUENCY

4004 1971 10 mm 2,300 108 KHz

8080 1974 6 mm 6,000 2 MHz

8086 1978 3 mm 29,000 10 MHz

80286 1982 1.5 mm 134,000 12 MHz

80386 1985 1.5 mm 275,000 16 MHz

Intel 486 DX 1989 1 mm 1.2 M 33 MHz

Pentium 1993 0.8 mm 3.1 M 60 MHz

This article is the story of the coevolution of 
design methodologies, practices, and CAD tools 
in Intel’s design environment as it coped with 
increasing complexity in the turbulent 1980s 
and up through recent years.

This incredible growth rate could not be achieved by 
hiring an exponentially growing number of design 
engineers. It was fulfilled by adopting new design 
methodologies and by introducing innovative design 
automation software at every processor generation.

“
”



Exponential
in complexity (or Extreme scale)

Diverse
increasing system heterogeneity 
multi-disciplinary

Algorithmic
intrinsically computational

E-D-A: My Other Interpretation

9

Exponential

AlgorithmicDiverse



10

Exponential: Moore’s Law
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Era of Billion-Transistor Chips

AMD (Xilinx) Versal Premium
~92B transistors

Intel Sapphire Rapids 
(quad-chip module) 

~48B transistors

Apple A16
~16B transistors

Apple M2 Pro
~40B transistors

AMD EPYC Bergamo
(9-chip module) 
~82B transistors

NVIDIA Blackwell B200 
~208B transistors
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End of Dennard Scaling: 
Power Becomes the Limiting Factor
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Power-Constrained Modern Computers

Power = Energy
Second

=
Energy
Op

×
Ops

Second

To increase performance (Ops/sec) in a power-constrained 
regime, energy per operation must decrease—in other 
words, energy efficiency (Ops/Joule) needs to improve!

<<1W/chip ~1W/chip ~15W/chip ~50W/chip ~100W/chip >100W/chip
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Inefficiency of General-Purpose Computing

6%

24%
28%

42%
70%

Embedded Processor 
Energy Breakdown

Arithmetic Clock and control
Data supply Instruction supply

[source: Dally et al. Efficient Embedded Computing, IEEE’08]

▸ Typical energy overhead 
(or “tax”) for every 10pJ 
arithmetic operations
– 70pJ on instruction supply
– 47pJ on data supply

Also, only 59% of the 
instructions are arithmetic



Advance of Civilization

?
▸For humans, Moore’s Law scaling of the brain has 

ended a long time ago
– Number of neurons and their firing rate did not change 

significantly 
▸Remarkable advancement of civilization via 

specialization

15
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Diverse: Era of Hardware Heterogeneity

Apple 12 (iPhone X)
Apple M1 Pro 

Special-purpose accelerators are increasingly used to improve 
performance & energy efficiency both in datacenters and at the edge

Google TPUv3
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Hardware Specialization in Mobile Chips

▸ Modern SoCs integrate a 
rich set of special-purpose 
accelerators 
– Speed up critical tasks 
– Reduce power 

consumption and cost
– Increase energy 

efficiency

System on chip (SoC)

Apple 12 (iPhone X)
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Hardware Specialization in Datacenters 

Application- and domain-specific accelerators are being deployed for a 
rich mix of compute-intensive applications in cloud datacenters

Google TPUs
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Hardware Specialization in Datacenters 

Microsoft Cloud FPGA Platforms

Application- and domain-specific accelerators are being deployed for a 
rich mix of compute-intensive applications in cloud datacenters



▸Target of specialization is moving rapidly

20

Increasing Specialization Demands (Even) Higher 
Design Productivity Can custom hardware evolve 

fast enough to keep up?

Number of machine learning papers published 
on arXiv has outpaced Moore’s Law 
[Dean et al., IEEE Micro 2018]

WORKSHOPS ON EXTREME SCALE DESIGN AUTOMATION (ESDA) CHALLENGES AND OPPORTUNITIES FOR 2025 AND BEYOND
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Of the many technology challenges solved by EDA, the 
80nm barrier was predicted at one point to be the physical 
fabrication limit. Today, projections are that beyond 5nm 
feature sizes do not look compelling, and even more 
near-term technologies require major changes such as 
FinFET transistors and relevant infrastructure. While 
many technology barriers have been overcome, each 
such leap aggravated the challenges for designers and 
EDA tools. The priority for the earliest EDA tools was to 
maximize what could be realized in a small die area. At 
some point, performance became the dominant metric. 
Sub-80nm technologies required careful control of power 
dissipation, especially due to current leakage. Technologies 
below 32nm add reliability concerns for transistors and 
interconnect. Such increasing design considerations 
(power, performance, cost, reliability), coupled with design 
complexity, have exacerbated the already widening 
productivity gap between tools and technology.

While EDA is faced with the challenges of new CMOS 
technology nodes, many new and emerging technologies 
are competing to augment and potentially replace silicon 
in an effort to continue Moore’s Law. These devices 
and technologies require research investment into 
device models, abstractions, design tools, and validation 
mechanisms to enable their integration into hybrid CMOS 
flows. However, the EDA field itself has lost much of the 
excitement of the early years of continued innovation. 
The three largest EDA companies hold a dramatically high 
percentage of the $4 billion market while also having 
dramatically reduced their investment in research. 
Moreover, the naturally cyclic IC market experiences 
particularly severe peaks and valleys compared to other 
technology fields. Such market trends tend to disrupt the 
workforce pipeline severely. Ongoing hiring is focused 
on established and near-term expertise in areas such as 
place-and-route, low-power optimizations, hardware and 
software security, and cloud computing [5]. Furthermore, 
start-up companies no longer thrive in the EDA realm. 
Those few with useful technologies are often starved 
and eventually assimilated into one of the top-3 

companies, without providing rewards for new ideas and 
encouragement for further innovation.

As part of this process, the workshops examined both 
the successes and open challenges for EDA. Further, 
EDA needs were considered in the context of technology 
scaling and hybrid technology electronic systems. From 
these discussions, it became evident that the EDA field 
has and continues to develop a powerful and scalable 
toolkit of abstractions, algorithms, and design flows 
relevant to support and enable the design of current 
and future electronic ICs. However, this toolkit can be 
applied more broadly in the context of similarly complex 
problem domains in which abstractions are possible and 
algorithms for efficient design require heuristic solutions. 
In particular, the workshop series identified three key 
directions to achieve effective EDA development to the 
year 2025 and beyond:

Extreme-Scale EDA: EDA is perceived as a technically 
mature field where continued dedicated effort will only 
lead to modest progress in the field with limited impact. 
In contrast, the analysis suggests that critical and deep 
problems remain primarily unsolved. A focused effort to 
address the most relevant challenges has an opportunity 
for transformative impact. For example, verification of 
designs with billions of transistors is a grand challenge 
for EDA in the coming decade. Further, as scaling slows, 
there is an opportunity for EDA to explore methods to 
extract better results from existing technology nodes. 
The driver of Moore’s law can be shifted from leveraging 
scaling to dramatic advancements from improved tools.

EDA for Hybrid Post-CMOS Electronics: Integration 
of a particular emerging technology may or may not 
bring about new ways of computing. For instance, 

Figure 1: The design productivity gap [6]

The purpose of this workshop series was to take an 
introspective look at the EDA field while crystalizing 
a vision for both the near and long term. 
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Evolution of Design Abstraction 
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Design productivity

EDA tool effortMcKinsey S-Curve

Transistor-level entry

Gate-level entry

Register-Transfer-Level (RTL)

What’s next?

[source: Kurt Keutzer, UCB]



Motivation for High-Level Synthesis (HLS)
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An 8-bit counter

+1    0

clk

rst

c 8

1

0
q

module dut(rst, clk, q); 
  input rst; 
  input clk; 
  output q; 
  reg [7:0] c; 

  always @ (posedge clk) 
  begin 
    if (rst == 1b’1) begin
      c <= 8'b00000000; 
  end
  else begin
    c <= c + 1; 
  end

  assign q = c;
endmodule

RTL Verilog

vs.

Automated 
with HLS

uint8 dut() { 
  static uint8 c; 
  c+=1; 
}



Algorithms Drive Automation
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Key Algorithms in EDA 
[source: Andreas Kuehlmann, Synopsys Inc.]

subject matter are lost to other disciplines. The work-

shop attendees agreed that a good design back-

ground is important in EDA, and for the most part,

such courses are being offered; however, these mainly

teach the use of canned CAD tools and cannot cover

EDA algorithm topics in any depth. Workshop

attendees felt that a good senior-level introductory

CAD class could be developed and offered more

broadly in the US.

Exactly what subset to teach is a challenge be-

cause EDA is a broad, interdisciplinary field that con-

tinues to expand; for example, embedded systems is

a relatively new EDA topic. An ideal undergraduate

course should develop this breadth but avoid being

just an enumeration of disparate topics; it should em-

phasize a set of problem areas containing common

underlying algorithmic themes. This would allow in-

depth exposure to some algorithms and also introduce

the algorithmic and theoretic foundations of EDA.

At the graduate level, few universities have the

manpower to address all possible EDA topics. Figure 1

illustrates the skill sets an employer in the EDA field

needs and that delineate the kinds of skills and

knowledge that should be taught. The top layer lists

the set of products that are part of an EDA company’s

current offerings. These include extraction, simula-

tion, static timing analysis, place and route, synthesis,

engineering change, and formal verification. The

next layers of the graph (oval nodes) show software

that is used in these tools. For instance, synthesis

needs timing analysis, placement, logic synthesis,

and model checking. Extraction needs function-

approximation methods, PDE solvers, model-order

reduction, and machine learning. The next layer

lists the academic disciplines required by the people

who implement state-of-the-art tools in the listed

areas. For example, discrete optimization is used in

machine learning, placement, routing, search, and

logic optimization. The bottom layer categorizes

the underlying mathematics as either continuous

or discrete.

It was informative to look at a similar graph (not

included in this article) for some of the adjacent or

emerging technologies that might be part of the fu-

ture. That graph differed only in the first layer and

the interdependencies. Some of the future technolo-

gies listed were multidomain microsystems (such as

micromechanics), new device and process model-

ing, software verification, systems biology, parallel

computation, and so on. In addition, the types of

complexities to be met, and the problem scale to

be addressed, will be similar to those already encoun-

tered in EDA and so have already been solved to

some extent.

Perspectives

Machine
learning

Discrete mathematics 

Logic and
semantics

F. Lang.,
automata and
concurrency

Combinatorial
algorithms

Discrete
optimization

Continuous mathematics 

Continuous
optimization

Fast
linear

solvers

Nonlinear
solvers

Decision
procedures

Compilers Concurrency

Model
reduction

Model
checking

Logic
optimization

RoutingPlacementCircuit
analysis

Extraction Timing
analysis

Search

PDE
solvers

DAE
solvers

Function
approximations

FormalSynthesis ECPlace and
route

STASimToolExtTool

Figure 1. Fundamental areas and domain knowledge in EDA. (Courtesy Andreas Kuehlmann, Cadence

Design Systems, Inc.)
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Topics touched on in 6775



Course Organization 

▸ Refer to syllabus for course organization details
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Course Syllabus
ECE 6775 High-Level Digital Design Automation

Fall 2024, Tuesday and Thursday 11:40am-12:55pm, Phillips 407

1. Course Information

Lectures: TuTh 11:40am-12:55pm, 407 Phillips Hall
Website: http://www.csl.cornell.edu/courses/ece6775
CMS: https://cmsx.cs.cornell.edu
Ed: https://edstem.org/us/courses/62024

Instructor: Zhiru Zhang, zhiruz@cornell.edu
Office Hours: Thursday 4:30-5:30pm, Online

Course Texts:
� Lecture slides/notes on course website
� R. Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, arXiv, 2018.
� G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

Supplementary Materials:
� S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani, Algorithms, McGraw-Hill, 2007.
[link to online draft]
� Additional reference papers will be posted as a course reader.

2. Course Description and Objectives

Targeted specialization of functionality in hardware has become arguably the best means to
achieving improved compute performance and energy efficiency for a plethora of emerging
applications. Unfortunately, it is a very unproductive practice to design and implement special-
purpose accelerators using the conventional register transfer level (RTL) methodology. For this
reason, both academia and industry are seeing an increasing use of high-level synthesis (HLS)
to automatically generate hardware accelerators from software programs.

The course offers an introductory exploration into hardware accelerator design principles, con-
temporary HLS design techniques, and tools, with a specific emphasis on FPGA-based com-
pute acceleration. Specific topics include C-based HLS design methods, hardware specializa-
tion, scheduling, pipelining, resource sharing, and case studies on deep learning acceleration.
This course also discusses the applications of several important optimization techniques within
the context of HLS, such as graph algorithms, dynamic programming, and linear program-
ming. In addition, commercial C-to-FPGA tools will be provided to the students to implement
real-life image/video processing and machine learning applications on programmable system-
on-chips that tightly integrate CPU and FPGA devices.

2.1. Prerequisites
This course assumes the student has a working knowledge of C/C++ and familiarity with basic
concepts of digital logic and computer architecture, such as sequential circuits, timing analysis,
pipelining, etc. A knowledge of basic algorithms and data structures is preferred. Experiences
with RTL design for either ASICs or FPGAs would be helpful, although not required.

1
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Course Roadmap
▸Lectures and paper* discussions

– Background
• Introduction
• Hardware specialization
• Algorithm basics
• FPGA*

– High-level synthesis (HLS)
• C-based HLS
• Front-end compilation
• Scheduling
• Resource sharing
• Pipelining

– Advanced topics
• Deep learning acceleration*
• Domain-specific programming*

25



Preferred Background

▸Working knowledge of the following at 
undergraduate level
– C/C++ 
– Digital logic and basic computer architecture concepts 

(e.g., adders, clock, registers, pipelining)

▸Experiences with the following would increase 
appreciation & productivity
– Algorithms and data structures
– RTL design for FPGA or ASIC

26



Sign in or register using your Cornell 
email (NetID@cornell.edu)

Don't respond as a guest, or your answer won't 
be graded

27

A Quick Poll

http://pollev.com/ece6775

mailto:NetID@cornell.edu
http://pollev.com/ece6775


Learning Outcomes: The Tangibles

▸ High-level digital design methodologies
– Design realistic accelerators above RTL using HLS design flow
– Optimize accelerator performance using both manual source-level 

transformations and automatic HLS compiler optimizations

▸ High-level design automation algorithms
– Fundamental compilation & synthesis techniques in HLS

• e.g., SSA, scheduling, pipelining, resource sharing
– Useful combinatorial optimization algorithms

• e.g., graph algorithms, dynamic programming, greedy algorithms, 
integer linear programming

28



▸ Develop a principled approach to analyzing accelerator 
design process and essential design factors (e.g., 
parallelism, resources, precision)

▸ Gain comprehensive insights into accelerator design 
from the perspective of an HLS compiler

We aim to achieve these objectives through a balanced 
mix of theoretical foundations (lectures & homework) 

and practical applications (labs & project)

29

Learning Outcomes: The Intangibles



▸ Teach you the design of microprocessors

▸ Cover the whole breadth of EDA

▸ Write RTL code
– but this course will still improve your hardware design skills

▸ Make you an expert FPGA programmer
– we use FPGA as a platform to prototype the accelerators

30

NOT Our Goals



▸Two problem sets (8%)

▸Four lab assignments (22%)
– Design & programming assignments leveraging high-

level synthesis tools and software compilers
– Experiments to be conducted on ecelinux servers

• % ssh -X <netid>@ecelinux-01.ece.cornell.edu
• Necessary tools will be installed in common directories

31

Assignments



▸Quizzes (6%)
– You will need to answer pop quiz questions in most 

lectures
– TWO lowest scores will be dropped

▸Paper Readings (5%)
– Two reading sessions 
– You are expected to read the paper or book chapter 

before the lecture, answer (more) quiz questions, and 
participate in discussions

– Reading assignment will be announced at least one 
week in advance

32

Quizzes and Paper Readings



▸ In-class midterm (20%) 
– Open notes & open book
– When: Thursday October 17th
– No sit-down final

33

Exam



▸ In-depth exploration of a research topic
– (1) Designing new application-specific accelerators 

with HLS; OR 
(2) Devising new automation algorithms/tools

– 3-4 students / team, depending on class size

▸Timeline
– Proposal due after midterm
– Weekly meeting with the instructor to track progress
– Demo before the final week
– Final report due by the final exam date

34

Final Project – 35%



High-Level Synthesis Tool
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Tutorial on AMD Xilinx Vivado HLS v2019.2, Tuesday 9/10
(we will be using the command-line interface in this course)
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Local Cluster of Embedded FPGAs

▸For labs and project, we will use 
Zynq-based FPGA development 
boards (ZedBoard)
– An FPGA SoC with a dual-core 

ARM CPU, which boots Linux



▸ For the final project, students can also choose to explore 
datacenter FPGA platforms such as AMD Xilinx Alveo 
U280 and AWS F1 cloud instances
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Datacenter FPGA Platforms

Amazon 
Machine 
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CPU 
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Attached 
Memory
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FPGA Link
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DDR
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and Load AFI



Takeaway Points

▸ End of Dennard scaling leads to increasing hardware 
specialization to sustain improvement in performance 
and energy efficiency

▸ Increasing specialization and continued exponential 
growth in silicon capacity demands higher level of 
design abstraction 

▸ HLS is a promising next step for EDA, which is fueled by 
sophisticated and yet scalable algorithms
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▸Action items
– Check out the course website
– Read through the course syllabus
– Verify your login on ecelinux

• ssh -X <netid>@ecelinux-01.ece.cornell.edu
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Before Next Lecture



▸These slides contain/adapt materials developed by
– Prof. Jason Cong (UCLA)
– Prof. David Z. Pan (UT Austin)
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