ECE 6775
High-Level Digital Design Automation
Fall 2023

Course Overview

Zhiru Zhang
School of Electrical and Computer Engineering

3 Cornell University




Agenda

> Important logistics

» Course motivation

> More course organization



Class Resources

» Course website
— https://www.csl.cornell.edu/courses/ece6775
— Lectures slides, handouts, and other readings

» Ed Discussion
— Announcements and Q&A

» CMS: course management system
— Assignments and grades
— Electronic submissions required


https://www.csl.cornell.edu/courses/ece6775

Course Texts

Parallel Programming for FPGAs
The HLS Book

e-book available online

SYNTHESIS AND
OPTIMIZATION OF
DIGITAL CIRCUITS

Giovanni De Micheli

Get 1st edition
Overhead slides
available online

Selected papers &
software manuals



https://kastner.ucsd.edu/hlsbook/
http://si2.epfl.ch/~demichel/publications/mcgraw/
http://si2.epfl.ch/~demichel/publications/mcgraw/

Seeking Help After Class

> Ed Discussion
— Questions on lectures, assignments, projects, etc.
— Monitored by course staff

> Instructor office hours (online)
— Thursday 4:30-5:30pm, Zoom link posted on Ed

> Email instructor for personal issues/appointment

> PhD TAs:
- Jordan Dotzel (jad443), Matthew Hofmann (mrh259)



Grading Scheme

» Class participation (4%) > Midterm exam (20%)

— Asking & answering questions
during lectures

. | | > Assignments (30%)
— Contributing to discussions on Ed

> Paper readings (5%) » Final project (35%)

> Quizzes (6%)



This Course is About Hardware/Software Co-Design

» Specify applications/algorithms in software programs

» Synthesize software descriptions into special-purpose
hardware architectures, namely, accelerators

— Explore performance-cost trade-offs
- Exploit automatic compilation & synthesis optimizations

> Realize the synthesized accelerators on FPGAs



This Course Introduces EDA

Electronic Design Automation

> A general methodology for refining a high-level description
down to a detailed physical implementation for designs
ranging from

— integrated circuits (including system-on-chips),
— printed circuit boards (PCBs),
— and electronic systems

> Modeling, synthesis, and verification at every level of
abstraction

[source: NSF'09 EDA Workshop]



Significance of EDA

Patrick Gelsinger, Desmond Kirkpatrick,
Avinoam Kolodny, and Gadi Singer

Patrick Gelsinger, Desmond Kirkpatrick, Avinoam
Kolodny, and Gadi Singer. “Such a CAD!”
IEEE Solid-State Circuits Magazine, 2010.

TABLE 1. INTEL PROCESSORS, 1971-1993.

Such a

C A D ' PROCESSOR INTRO DATE PROCESS TRANSISTORS FREQUENCY
° 4004 1971 10 m 2,300 108 KHz
8080 1974 6 um 6,000 2 MHz
8086 1978 3 um 29,000 10 MHz
Coping with the 80286 1982 1.5 um 134,000 12 MHz
f:;;’r’(’)ﬁ;‘gg’e ;’sfo i 80386 1985 1.5 um 275,000 16 MHz
design at Intel. Intel 486 DX 1989 1 um 12M 33 MHz
SR RS SSRGS Pentium 1993 0.8 um 31M 60 MHz

This incredible growth rate could not be achieved by
hiring an exponentially growing number of design
engineers. It was fulfilled by adopting new design
methodologies and by introducing innovative design



E-D-A: My Other Interpretation
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Exponential: Moore’s Law
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Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

[Figure credit: Christopher Batten, Cornell] 10



Era of Billion-Transistor Chips

Apple A16 Apple M2 Pro Intel Sapphire Rapids
~16B transistors ~40B transistors (quad-chip module)
~48B transistors

AMD EPYC Bergamo AMD Xilinx Versal Premium NVIDIA GH200
(9-chip module) ~92B transistors Grace Hopper Superchip
~82B transistors >200B transistors

11



End of Dennard Scaling:
Power Becomes the Limiting Factor
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[Figure credit: Christopher Batten, Cornell] 12



Power-Constrained Modern Computers

<<1W/chip ~1W/chip ~15W/chip  ~50W/chip  ~100W/chip  >100W/chip

Energy |Energy y Ops

Power =
Second l Op | |Second T

To increase performance (Ops/Sec) in a power-constrained
regime, energy efficiency (Ops/Joule) must improve!

13



Inefficiency of General-Purpose Computing

> Typical energy overhead Embedded Processor Energy

(or “tax”) for every 10pJ Breakdown
arithmetic operations u Arithmetic u Clock and control
u Data supply u Instruction supply

— 70pd on instruction supply
— 47pd on data supply

28%

‘42%

Also, only 59% of the
instructions are arithmetic

24%

“

6%

[source: Dally et al. Efficient Embedded Computing, IEEE’08]
14



Advance of Civilization

» For humans, Moore’s Law scaling of the brain has
ended a long time ago
— Number of neurons and their firing rate did not change
significantly
> Remarkable advancement of civilization via
specialization

15



Diverse: Era of Hardware Heterogeneity
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Special-purpose accelerators are increasingly deployed to improve
performance & energy efficiency both in datacenters and at the edge
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Hardware Specialization in Mobile Chips

System on chip (SoC)
Tempest | Tempest
GPUCore0 || GPUCore2 CPU CPU
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Secm;::)clave A'W':zlsj'on m«, IMC ngine

Apple 12 (iPhone X)

> Modern SoCs integrate a
rich set of special-purpose

accelerators
—- Speed up critical tasks

-~ Reduce power
consumption and cost

- Increase energy
efficiency
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Hardware Specialization in Datacenters

ASIC- and FPGA-based accelerators are being deployed for a rich mix
of compute-intensive applications in cloud datacenters
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Hardware Specialization in Datacenters

ASIC- and FPGA-based accelerators are being deployed for a rich mix
of compute-intensive applications in cloud datacenters

Network switch (top of rack, cluster)
~—— FPGA - switch link
Z=7 FPGA acceleration board

——— NIC - FPGA link
/~7 2-socket CPU server 2-socket server blade

Datacenter hw acceleration plane
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Hardware Specialization for Deep Learning

Blue Chips Startups

Amazon Cerebras
Apple Graphcore
Google Grog

Intel Mythic
Microsoft ... SambaNova ...

Academia

DianNao [Chen ASPLOS’14]
EIE/ESE [Han ISCA'16, FPGA17]
Eyeriss [Chen ISCA'16, JSSC'17]
FINN [Umuroglu FPGA'17]
FracBNN [zhang FPGA21] ...

Link Clock; Core Clock DCNN Accelerator

14x12 PE Array

e
Ptr_Even Arithm- Ptr_Odd
! ;

SpMat

Deep learning has caused a revolution Al and computer

hardware industry

20



Increasing Specialization Demands (Even) Higher
Design Productivity

Can custom hardware evolve

fast enough to keep up?

> Target of specialization is moving rapidly

ML+AI arXiv papers per month

A
L Log :
4000 [ : __ Technology Capabilities
:’ HW Design Gap _ - 2x/36 months
[ HW Design Productivity
3000 - - /Filling with IP and Memory
[ __ — — HW Design Productivity
2000¢
1000}
! — — n o — >
: 8§§§§8882§S§§ Time
1994.01 2007.01 202009 - @ — — = = = NN NN N
Number of machine learning papers published The design productivity gap
on arXiv has outpaced Moore’s Law [Source: Workshops on Extreme Scale Design Automation:
[Dean et al., IEEE Micro 2018] Challenges and Opportunities for 2025 and Beyond]
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Evolution of Design Abstraction

Design productivity What’s next?

Register-Transfer-Level (RTL)

2:;? Gate-level entry

Transistor-level entry

>
McKinsey S-Curve EDA tool effort

[source: Kurt Keutzer, UCB] 22



Motivation for High-Level Synthesis (HLS)

module dut(rst, clk, q);

input rst;
input clk;
output q;
reg [7:0] c; VS.

uint8 dut() {

static uint8 c;

C+=1;

}

4

always @ (posedge clk)
begin

if (rst == 1b’1) begin

c <= 8'b00000000;

end
else begin

c<=cCc+1;
end

assign q = c;
endmodule r

RTL Verilog

Automated
Q with HLS

clk

An 8-bit counter

23



Algorithms Drive Automation
Topics touched on in 6775

Circuit Timing

Extraction : : Placement Routing o )
analysis analysis optimization checking
DAE PDE Machi Compilers Concurrency
solvers solvers achllne
learning ..
Search Decision
Function Model rocedures
approximations reduction
Nonlinear F ast Continuous Discrete Combinatoria B aoe Logic and
linear o R . automata and .
solvers optimization (|Joptimization || algorithms semantics
solvers concurrency
Continuous mathematics Discrete mathematics

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.] 24




Course Organization

> Refer to syllabus for course organization details

Course Syllabus
ECE 6775 High-Level Digital Design Automation
Fall 2023, Tuesday and Thursday 08:40-09:55am, Phillips 403

1. Course Information

Lectures: TuTh 08:40-09:55am, 403 Phillips Hall
Website: http:/ /www.csl.cornell.edu/courses /ece6775
CMS: https:/ /cmsx.cs.cornell.edu

Ed: https:/ /edstem.org/us/courses /42268

Instructor: Zhiru Zhang, zhiruz@cornell.edu
Office Hours: Thursday 4:30-5:30pm, Online
Staff Email: ece6775-staff@csl.cornell.edu

Course Texts:

o Lecture slides/notes on course website

o R. Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, arXiv, 2018.
o G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

Supplementary Materials:
o S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani, Algorithms, McGraw-Hill, 2007.
[link to online draft]

o Additional reference papers will be posted as a course reader. ’s


https://www.csl.cornell.edu/courses/ece6775/pdf/syllabus.pdf

Course Roadmap

» Lecture and paper discussion sessions

- Background
* Introduction
- Hardware specialization
* Algorithm basics

- High-level synthesis
C-based synthesis for FPGAs
Front-end compilation
Scheduling
Resource sharing

* Pipelining
- More advanced topics

- Deep learning acceleration

- Domain-specific programming

26



Preferred Background

> Working knowledge of the following at
undergraduate level
- C/C++

- Digital logic and basic computer architecture concepts
(e.g., adders, clock, registers, pipelining)

» Experiences with the following would increase
appreciation & productivity

- Algorithms and data structures
— RTL design for FPGA or ASIC

27



Learning Outcomes: The Tangibles

» High-level digital design methodologies

— Design above reqister transfer level (RTL)
— Building realistic accelerators with C-based design flow

> High-level design automation algorithms
- Fundamentals of high-level synthesis (HLS)
* e.g., scheduling, resource sharing, pipelining

— Useful combinatorial optimization techniques

* e.g., graph algorithms, dynamic programming, greedy
algorithms, integer linear programming

28



Learning Outcomes: The Intangibles

» Develop a principled approach to analyzing
accelerator design process and essential design
factors (e.g., parallelism, resources, precision)

» (Gain comprehensive insights into accelerator
design from the perspective of an HLS compiler

Achieve these objectives through a blend of theoretical
foundation and practical implementation

29



NOT Our Goals

» Teach you the design of microprocessors
» Cover the whole breadth of EDA

» Write RTL code

» Make you an expert FPGA programmer

30



Assignments

> Two problem sets (8%)

> Four lab assignments (22%)
— Design & programming assignments leveraging high-
level synthesis tools and software compilers

- Experiments to be conducted on ecelinux servers
* % ssh -X <netid>@ecelinux-01.ece.cornell.edu
* Necessary tools will be installed in common directories

31



Quizzes and Paper Readings

> Quizzes (6%)
— You will need to answer pop quiz questions in most
lectures (using itempool)

- TWO lowest scores will be dropped

» Paper Readings (5%)
— Two reading sessions

— You are expected to read the paper or book chapter
before the lecture, answer quiz questions, and
participate in discussions

- Reading assignment will be announced at least one
week in advance

32



Exam

> In-class midterm (20%)

— Open notes & open book
— When: Thursday October 19th
— No sit-down final

33



Final Project — 35%

> In-depth exploration of a research topic

— (1) Designing new application-specific accelerators
with HLS; OR
(2) Devising new automation algorithms/tools

- 3-4 students / team, depending on class size

> Timeline
— Proposal due after midterm
- Weekly meeting with the instructor to track progress
— Demo before the final week
— Final report due by the final exam date

34



High-Level Synthesis Tool

0 n226a8brg-2hang xcel:~[shared]ces97mumal-tutoral

, | Vivado HLS - image (CAL irk\Desktop\De : jmag - - . . lilﬂlg (vivadol9) nz264@brg-zhang-xcel:~/shared/ece5997/mvmul-tutorial$ vivado_hls -f run.tcl

File Edit Project Solution Window Help Run sokkfokk Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC v2019.2.1 (64-bit)
Fokkx SW Build 2729669 on Thu Dec
| ® x| =& +| Synthesis srrx IP Build 2729494 on Thu Dec
x @D *x Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

%5 Debug 52 75 Explorer = O |[= Variables 53 % Breakpoints | iif Registers| =\ Modules =8 source /opt/xilinx/Xilinx_Vivado_vitis_2019.2/Vivado/2019.2/scripts/vivado_hls/hls.tcl -notrace
> ot 2 ¥ o B ‘ & [ I INFO: Applying HLS Y2K22 patch v1.2 for IP revision

= - — ha b = INFO: [HLS 200-10] Running '/opt/xilinx/Xilinx_Vivado_vitis_2019.2/Vivado/2019.2/bin/unwrapped/1lnx64.0/vivado_hls'
[] image fiiter.demo.Debug [C/C++ Application] Name Type Value 0 INFO: [HLS 200-10] For user 'nz264' on host 'en-ec-brg-zhang-xcel.coecis.cornell.edu' (Linux_x86_64 version 3.10.0-1160.71.1.e

{8 C:\Users\dirk\Desktop\Demos\image filter\image filter.demo\Debug\a.exe [10552] @ rgb_in gb_pirel ) 17.x86_64) on Mon Aug 22 11:07:33 EDT 2022

o Thread [1]0 (Suspended : Step) ®: R color t 28 \\03¢" INFO: [HLS 200-10] On os "Cent0S Linux release 7.9.2009 (Core)"

color filter() at image_filter.cpp:240 0x402bc8 ®- G color t 137211 INFO: [HLS 200-10] In directory '/work/shared/users/phd/nz264/ece5997/mvmul-tutorial’
image _filter() at image IR0 AN T - B wlm'! 01000° Sourcing Tcl script 'run.tcl'
= main() at image filter | = rgb_out b, p-ixel ) : [HLS 200-10] Oper_|ing anq resgtting project '/wark/shared/usgrs/phd/n1264/ece5997/mvmu1—tutorial/mvmu'l_vitis.prj'.
8 gdb Vivado™ HLS = 9~ - : [HLS 200-10] Adding design file 'mvmul_unroll.c' to the project

D ¢

« i - » : [HLS 200-10] Adding test bench file 'mvmul-top.c' to the project
. : [HLS 200-10] Opening and resetting solution '/work/shared/users/phd/nz264/ece5997/mvmul-tutorial/mvmul_vitis.prj/solutio

i : [HLS 200-1@] Cleaning up the solution database.

« ) : [HLS 200-10] Setting target device to 'xc7z020-clg484-1'
= [SYN 201-201] Setting up clock ‘'default' with a period of 1@ns.
L¢] image filter_test.cpp L¢] image | = O[5 outline 52 ZR e "0 : [SCHED 204-61] Option 'relax_ii_for_timing' is enabled, will increase II to preserve clock frequency constraints.
: - U stdioh : [HLS 200-10] Analyzing design file 'mvmul_unroll.c'

1 malloch : [HLS 200-111] Finished Linking Time (s): cpu = 00:00:11 ; elapsed = 00:00:18 . Memory (MB): peak = 1057.715 ; gain = 527
; free physical = 97063 ; free virtual = 219377
[HLS 200-111] Finished Checking Pragmas Time (s): cpu = 00:00:11 ; elapsed = 00:00:18 . Memory (MB): peak = 1057.715 ; g

free physical = 97063 ; free virtual = 219377
sepia_operator(rgb_pixel) : rgh_pixel INFO: [HLS 200-10] Starting code transformations .
gray_operator(rgb_pixel): rgh_pixe INFO: [HLS 200-111] Finished Standard Transforms Time (s): cpu = 00:00:12 ; elapsed = 00:00:19 . Memory (MB): peak = 1057.715
color_blend(rgb_pixel, rgb_pixel) : rgb_pixel ; gain = 527.219 ; free physical = 97048 ; free virtual = 219361
sobel_operator(unsigned char[][]) : rgb_pixe [HLS 200-10] Checking synthesizability ...
sobel filter(rgb_frame®, rgb_frame®) : voi : [HLS 200-111] Finished Checking Synthesizability Time (s): cpu = 00:00:12 ; elapsed = 00:00:19 . Memory (MB): peak = 105
color_filter(rgb_frame”, rgb_frame”) : void . ; gain = 527.219 ; free physical = 97063 ; free virtual = 219377
image_filter(rgb_frame”, rgb_frame”) [HLS 200-489] Unrolling loop 'ACC_LOOP' (mvmul_unroll.c:17) in function 'mvmul' completely with a factor of 16.
} i : [XFORM 203-11] Balancing expressions in function 'mvmul' (mvmul_unroll.c:6)...15 expression(s) balanced.

- = [HLS 200-111] Finished Pre-synthesis Time (s): cpu = 00:00:12 ; elapsed = 00 119 . Memory (MB): peak = 1057.715 ; gain
= 527.219 ; free physical = 97044 ; free virtual 219358
& Console 52 ] Tasks| [£{ Problems| (3 Executables| (3 Memory r =0 INFO: [HLS 200-111] Finished Architecture Synthesis Time (s): cpu = 00:00:12 ; elapsed = 00:00:19 . Memory (MB): peak = 1057.7
. . v - 15 ; gain = 527.219 ; free physical = 97043 ; free virtual 219357
image ftter.demo.Debug |G/C+ + Applcation] a.exe INFO: [HLS 200-10] Starting hardware synthesis ...
INFO: [HLS 200-10] Synthesizing ‘mvmul' ...
WARNING: [SYN 201-107] Renaming port name 'mvmul/output' to 'mvmul/output_r' to avoid the conflict with HDL keywords or other
object names.

[HLS 200-10] =
- = : [HLS 200-42] Implementing module ‘mvmul'
[HLS 200-10]
Writable Smart Insert 240:1 : [SCHED 204-11] Starting scheduling ...
[SCHED 204-11] Finished scheduling.

a
rame_in->pixel[1][3].6; -
rame_in->pixel[i][3].8; M image filterh

rgb2y(rgb_pixel) : color_t

°
rgb_out = gray_operator(rgb_in); °

#else °
rgb_out = sepia_operator(rgb_in); °

#endif °
°

°

°

frame_out->pixel[i][j].R = rgb_out.R;
frame_out->pixel[i][j].G = rgb_out.G;
frame_out->pixel[i][j].B = rgb_out.B;

Tutorial on AMD Xilinx Vivado HLS (v2019.2), Tuesday 9/5
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Local Cluster of Embedded FPGAs

» For labs and project, we will use
Zyng-based FPGA development
boards (ZedBoard, Ultra96v2)

— FPGA + Dual-core ARM

— Boot Linux

36



Datacenter FPGA Platforms

> For the final project, students can also choose to explore
datacenter FPGA platforms such as AMD Xilinx Alveo
U280 and AWS F1 cloud instances

[IT]
‘ EC2 F1

Instance
Amazon

Machine
Image (AMI)

Launch Instance
and Load AFI

CPU
Application
on F1

FPGA Link
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Takeaway Points

> End of Dennard scaling leads to increasing hardware
specialization to sustain improvement in performance
and energy efficiency

> Increasing specialization and continued exponential
growth in silicon capacity demands higher level of
design abstraction

» HLS is a promising next step for EDA, which is fueled by
sophisticated and yet scalable algorithms

38



Before Next Lecture

» Action items
— Check out the course website
- Read through the course syllabus

— Verify your login on ecelinux
» ssh -X <netid>@ecelinux.ece.cornell.edu
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