
ECE6775 High-Level Digital Design Automation, Fall 2024
School of Electrical and Computer Engineering, Cornell University

Lab 4: Binarized Convolutional Neural Networks
Team work: Groups of 2

Due Monday, November 04, 2024, 11:59pm
Late submission: 4% penalty per day; cannot be late by more than 6 days

1 Introduction1

A convolutional neural network (CNN) is a machine learning algorithm that takes in an
image and produces predictions on the classification of the image. A CNN consists of a
series of connected layers. Each layer takes as input a set of feature maps (fmaps for
short), performs some computation on them, and produces a new set of fmaps to be fed
into the next layer. The input fmaps of the first layer come from the input images. Layers
may require configuration values known as parameters, which must first be determined by
training the CNN offline on pre-classified data. Once the parameters are finalized, the CNN
can be deployed for inference — the classification of new data points. For most practical
machine learning applications, the first-order concerns are the accuracy and execution time of
online classification. Figure 1 shows a typical structure of a CNN. In this lab, we focus on the
inference process. Especially, we want to perform hardware acceleration on the convolutional
layers.
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Figure 1: The typical structure of a CNN.

Networks with parameters and/or feature maps quantized to +1/−1 using polar encoding
are called binarized neural networks (BNNs). Such networks have demonstrated high com-
pute throughput and low on-chip memory footprint on FPGAs while maintaining accuracy
comparable to full precision networks in certain cases. Moreover, we can reduce the number
of multipliers by replacing multiplications with bit operations. In this lab, we represent +1

1Part of this section is adapted from R. Zhao, et al. [1]
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as 1 in memory. In addition, −1 is represented as 0. Hence, we only need one bit to store a
binarized value. Figure 2 shows how we replace a multiplication with an XNOR operation
after encoding. We use x̂ to denote the encoded value of x.
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+1 +1 +1

(a) Normal multiplication between binarized
variables x and y
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(b) Multiplication using XNOR with en-
coded variables x̂ and ŷ

Figure 2: The encoding and multiplication for binarized variables.

In the following, we show how to perform a dot product between two binarized vectors.

A ·B =
L∑
i=0

Ai ×Bi (1.1)

= 2×
L∑
i=0

(Âi ⊙ B̂i)− L (1.2)

Here A and B are two vectors with the same length L (i.e., |A| = |B| = L); Ai and Bi are

the binarized elements that are either +1 or −1 in polar encoding; Âi and B̂i are the actual
binary values stored as 0/1 for Ai and Bi according to Figure 2. Below is a concrete example.

(+1,−1,−1,+1) · (−1,−1,+1,+1) = 1×−1 +−1×−1 +−1× 1 + 1× 1 = 0 Eq. (1.1)

= 2× (1⊙ 0 + 0⊙ 0 + 0⊙ 1 + 1⊙ 1)− 4 = 0 Eq. (1.2)

We can see that now we only need logic operations (i.e., XNOR) and additions to perform
the dot product. The multiplication of two can be replaced with a simple shift operation.

There are two common layer types in most BNNs — convolutional and fully connected layers.

A convolutional (conv) layer takes in M input fmaps of size I × I pixels, convolves them
with filters of size K ×K pixels, and produces N output fmaps of size O × O pixels. The
convolution operation can be demonstrated using an example, which is shown in Figure 3.
In this example, we have three input fmaps of size 5×5 (i0, i1, and i2) and two output fmaps
of size 3×3 (o0 and o1). To begin with, each input fmap is convolved with a 3×3 filter,
which generates a partial sum for the corresponding output pixel. In Figure 3, input fmap i0
convolves with filter w0,0 and generates p0,0. The rest partial sums p0,1, . . . , p2,1 are produced
in a similar manner. These partial sums are accumulated to produce the pixels of the output
fmaps. In Figure 3, we sum up p0,0, p1,0, and p2,0 to produce o0. Similarly, we can produce
o1 by accumulating p0,1, p1,1, and p2,1.
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Figure 3: An example of convolution operation, where M = 3, N = 2, I = 5, O = 3, and
K = 3.

From the above example, we can observe that for each output fmap, we need M filters. Thus,
to produce N output feature maps, we need M × N filters. The above procedure can be
formalized in Equation (1.3).

on(x, y) =
M−1∑
m=0

K−1∑
r=0

K−1∑
c=0

im(x+ c, y + r)× wm,n(c, r) (1.3)

Here on(x, y) is the value of pixel (x, y) of the nth output feature map, im is the mth input
feature map, and wm,n is the filter that convolves with input im and produces a partial sum
of output on. Note that we can apply Equation (1.2) to transform the multiplications into
XNOR operations. For example, if we want to calculate the pixel (2, 1) of the first output
fmap in Figure 3, we can have the following equation.
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o0(2, 1) =
2∑

m=0

2∑
r=0

2∑
c=0

im(2 + c, 1 + r)× wm,0(c, r)

= 2×
2∑

m=0

2∑
r=0

2∑
c=0

(îm(2 + c, 1 + r)⊙ ˆwm,0(c, r))− 3× 3× 3

= 2× {(0⊙ 1 + 1⊙ 0 + 1⊙ 1 + · · ·+ 0⊙ 1)

+ (0⊙ 1 + 1⊙ 0 + 1⊙ 1 + · · ·+ 0⊙ 0)

+ (0⊙ 1 + 0⊙ 1 + 1⊙ 0 + · · ·+ 1⊙ 1)} − 27 = −5

The number of multiplication-accumulation operations (MACs) needed during the
above process is M ×N × O × O ×K ×K. After we derive the output fmaps, we binarize
the outputs by comparing each value with a pre-trained threshold t, which is shown in
Equation (1.4).

binarize(x) =

{
+1, x >= t

−1, x < t
(1.4)

The parameters of a conv layer are M×N×K×K bits. Finally, we perform a 2D maximum
pooling to halve the size of an output fmap, where we pick the maximum value in a 2 × 2
window with a stride of two. An example is shown in Figure 4.

1 -1 1 1 1 1 1 1
1 1 1 1 1 1 -1 -1
1 -1 -1 -1 1 -1 -1 -1
1 -1 -1 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 1 1
1 -1 -1 1 -1 -1 1 1
-1 -1 1 -1 -1 1 -1 1
-1 -1 1 -1 1 1 1 -1

1 1 1 1
1 -1 1 -1
1 1 1 1
-1 1 1 1

Figure 4: An example of performing 2D maximum pooling on a 8× 8 fmap, which results in
a fmap of size 4× 4.

A fully-connected (or dense) layer takes inM input feature maps of size 1×1 (i.e., a pixel)
and produces N output feature maps of size 1×1. The output feature maps are derived from
the product between M input fmaps and M × N weight matrix. Equation (1.5) shows the
operation of a dense layer with M input pixels i0, . . . , iM−1, N output pixels o0, . . . , oN−1,
and M ×N weights w0,0, . . . , wM−1,N−1.

on =
M−1∑
m=0

im × wm,n (1.5)
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The number of MAC operations isM×N . Similar to conv layers, we can apply Equation (1.2)
to replace all multiplications. After we have the output fmaps, we quantize the output values
according to their signs. The parameters of a dense layer are M×N bits, which are produced
by the training process.

2 Objective

In this lab, you will be building a BNN inference accelerator on ZedBoard. Specifically, you
are given a pre-trained BNN that performs digit recognition.

From Table 1, we can observe from the last two columns that conv layers are more compute
intensive while dense layers are more memory intensive. In practice, a larger and deeper
BNN has more conv layers, where the difference is more pronounced. Thus, although we
offload all layers to FPGA in this lab, you should first focus on optimizing the conv layers.

ARM CPU

Prediction Result

Test Images

FPGA

Hardware Accelerator
bnn_xcel

Conv Layers

Dense Layers

Figure 5: The software-hardware partition.

The software-hardware system is shown in Figure 5. The whole flow works as follows. First,
the test images stored in CPU are sent to the hardware accelerator bnn xcel one at a time.
The test image will become the input fmaps of the first layer in bnn xcel. The fmaps will
be processed by the two conv layers inside bnn xcel sequentially. The output fmaps of the
last conv layer will become the input fmaps of the first dense layer in bnn xcel. Finally, the
prediction result is computed by the second dense layer and sent back to CPU. Your task is
to optimize the performance of the accelerator with limited hardware resources.

3 Materials

You are given a zip file named lab4.zip on ecelinux under /classes/ece6775/labs, which
contains the following directories:

• ecelinux: contains a C++ project for you to build the bnn HLS design and synthesize
it to a hardware module. This code should be completed on ecelinux.

• zedboard: contains symbolic links to the files in the ecelinux directory required for
software execution of bnn on CPU. This time the host program is given.
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You may find the following files in ecelinux and zedboard folders:

• bnn.cpp: a source file which contains the program (dut) to be synthesized on FPGA.

• bnn.h: a header file that defines the prototype of functions in bnn.cpp.

• layer.h: a header file that defines the templates for the layers in the BNN

• bnn test.cpp: a test bench file that runs and tests the BNN model.

• host.cpp: a program that runs on the ARM core and invokes the BNN accelerator.

• model.h: a header file that contains the weights for all layers.

• typedefs.h: a header file that defines the data types used in the design.

• data: a folder that contains the weights and testing data.

• run.tcl : a Tcl script that helps you run the HLS flow (csim and csynth).

• Makefile: a makefile similar to Lab 3 that helps you compile the design and generate
the bitstream.

4 Design Overview

The configuration of our network is shown in Table 1.

Layers2 #Input #Output Size of Size of Filter #MACs #Params
fmaps fmaps Input fmaps Output fmaps Size

conv1 1 16 16×16 8×8 3×3 36864 144
conv2 16 32 8×8 4×4 3×3 294912 4608
dense1 512 256 1×1 1×1 - 131072 131072
dense2 256 10 1×1 1×1 - 2560 2560

Table 1: The network configuration of our BNN.

Following we describe the details of each hardware component.

CPU/FPGA Interface: Similar to Lab 3, an input FIFO and an output FIFO are used
to transfer data between software and hardware. Each pixel of a 16 × 16 input image is
represented by a Bool variable, which stores the encoded value of the original pixel. The
output is a number ranging from 0 to 9 that represents the classification result. The C/C++
code for this interface is provided in file zedboard/host.cpp.

On-chip Memories: The on-chip memories can be classified as two parts: feature maps
and parameters. From Table 1, we can see that the parameters used by both conv and dense
layers only require 138384 bits (17k bytes). Thus, we can store all parameters on-chip to
minimize software-hardware communication. The stored weights and thresholds are in file
model.h. All weights are already encoded for XNOR operations. Similarly, the maximum
size of fmaps we need is 16 × 16 × 16 = 4096 bits. Therefore, the fmaps for conv layers are
also stored on-chip. The stored fmaps are in file bnn.cpp. The value of each pixel in the
fmaps is also encoded.

2Convolutional layers are followed by maxpooling layers, which downsample feature map sizes by 2.
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5 Guidelines and Hints

5.1 Coding and Debugging

Your first task is to run the code on ecelinux by using make to make sure you have a
functional design. The accuracy should be around 0.90 (90%). In this lab, you only need to
optimize the FPGA implementation on a ZedBoard. The process of generating the bitstream,
logging onto a ZedBoard, and programming the ZedBoard using the bitstream is identical
to Lab 3. Be aware that it may take 20+ minutes to generate the bitstream. Since
the bitstream generation may be slower with a more complex design after optimization, we
strongly recommend you to use the information from the Vivado HLS synthesis report to
estimate the performance of your hardware design before generating the bitstream. Similar
to Lab 3, use make sw to run the entire design on ARM CPU and use make fpga to run the
program with the generated bitstream. The host program will first test the accuracy over
100 images; this part is not timed. Then, it starts the timer and feeds the 100-image dataset
to the accelerator for 20 repetitions (i.e., 2000 images in total) to amortize the CPU-FPGA
communication latency. After running the code, the execution times you get from make
sw and make fpga will be the CPU baseline and FPGA baseline, respectively. The FPGA
baseline should take around 27600 ms to process 2000 images.

5.2 Design Optimizations and Constraints

In the first three labs, you have explored various design optimization techniques related
to customized data types (e.g. fixed point) and customized compute engines that exploit
parallel processing and pipelining. In this lab, you will further learn to build customized
on-chip memory architectures to maximize the efficiency of your accelerator. Besides using
HLS pragmas/directives, such as unroll, pipeline, and array partition, you will also
need to modify the given source code to reorganize the on-chip data storage. Specifically,
there are several optimizations you can try to implement.3

• Reorganize the arrays that store the binary parameters and fmaps by packing multiple
1-bit values into integers with a higher bitwidth (say 32 or 64 bits). This would allow
each access to the array to read or write many bits in one slot and naturally enable
many (bitwise) XNOR operations to be performed in parallel.

– This can be achieved by repacking the weights into wider words ahead of time
and rewriting the code. However, the array reshape directive exists specifically
to perform such an optimization without major code rewrites. You can find the
full documentation on array reshape in UG902 [3]. In a nutshell, the pragma
uses similar syntax to array partition, but instead the directive reorganizes the
data layout such that the number of required memory operations is reduced.

• Exploit data reuse in 2D convolution by introducing reuse buffers, which is discussed
in Lecture 2. To understand the key concepts, you can refer to Chapter 9 “Video Sys-
tems” of this book [4]. Then, you should be able to restructure your code with unroll
and array partition pragmas to implement such a reuse scheme yourself. Alterna-
tively, there are also helpful tutorials on YouTube [5] that give detailed explanation

3You don’t have to implement all of them to achieve a good performance.
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and guidelines of using the LineBuffer and Window provided by Vivado HLS.

– If you choose to use the HLS video library, make sure to only include necessary
headers to avoid compilation issues on the Zedboard. For example, if you want to
use hls::LineBuffer:

// BAD! Don’t do this.
#include "hls_video.h"
// Do this.
typedef ap_uint<32> HLS_SIZE_T;
#include "hls/hls_video_mem.h"

You are allowed and encouraged to change any parts of the program to improve performance;
the only two restrictions are:

• The utilization ratio for any type of resources (i.e., BRAMs, LUTs, FFs, and DSPs)
should not exceed 85%.4You can verify this by checking the HLS synthesis report.

• The test error should be no greater than 10%.

If HLS takes a long time to synthesize your design (it usually finishes in several minutes), or
Vivado takes hours to generate the bitstream, please check related warnings in the HLS log
and adjust your optimizations accordingly.

5.3 Grading Scheme

This lab has 10 points and a 0.5pt bonus. Up to 6.5 points are given according to the speedup
achieved by the optimized design. Below is the grading scheme:

• +2.5pt: Estimated worst-case latency is at least 10× lower than the estimated worst-
case latency of the baseline from the HLS report.

• +1.5pt: Measured execution time on Zedboard is at least 30× lower than the FPGA
baseline.

• +1pt: Measured execution time on Zedboard is at least 60× lower than the FPGA
baseline.

• +1pt: Measured execution time on Zedboard is at least 120× lower than the FPGA
baseline.

• +0.5pt (bonus): Measured execution time on Zedboard is at least 200× lower than
the FPGA baseline.

Points are accumulative; for example, if a design achieves 100× speed up from the HLS report
and 65× speedup running on the Zedboard, it earns 2.5 + 1.5 + 1 = 5 points.

The report is worth 4 points.

5.4 Report

• Please write your report in a single-column and single-space format with a 10pt
font size. Page limit is 2. Please include the names and NetIDs of your team
members on the report.

4Using more resources may cause routing congestion that increases the compile time to generate bitstream.
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• The report should start with an overview of the document. This should inform the
reader what the report is about, and highlight the major results. In other words, this
is similar to an abstract in a technical document.

• There should be a section describing how you optimize the design. If you use more
than one optimization methods, please compare their impacts regarding different as-
pects (e.g., performance, resource utilization, accuracy). This section should contain a
table which reports the measured execution time, LUT, FF, DSP, and BRAM resource
utilizations under different optimization methods, including the CPU baseline and the
FPGA baseline.

• There should be one paragraph at the end that concisely describe the division of work
between the team members.

• All of the figures and tables should have captions. These captions should do their best
to explain the figure (explain axis, units, etc.). Ideally you can understand the report
just by looking at the figures and captions. But please avoid just putting some results
and never saying anything about them.

• The report should only show screenshots from the tool when they demonstrate some
significant idea. If you do use screenshots, make sure they are readable (e.g., not blurry).
In general, you are expected to create your own figures. While more time consuming,
it allows you to show the exact results, figures, and ideas you wish to present.

6 Deliverables

Please submit your lab on CMS. You are expected to submit your report and your code
and scripts (and only these files, not the project files generated by the tool) in a zipped file
named bnn.zip that contains the following contents:

• report.pdf : the project report in pdf format.

• The folders ecelinux and zedboard. These should contain the completed source files
for the software-only and optimized FPGA implementations of the bnn design. Make
sure the design can be built using the Makefile and scripts in the folders. Please run
make clean to remove all the generated output files.

It is preferred that you zip your solution with make bnn.zip in the lab root direc-
tory in order to prevent any unneeded files or directories from being included.

7 Acknowledgement

The baseline FPGA+Linux setup used in the lab is based on the Xillinux distribution pro-
vided by Xillybus (https://xillybus.com/xillinux).
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