
ECE6775 High-Level Digital Design Automation, Fall 2024
School of Electrical and Computer Engineering, Cornell University

Lab 1: CORDIC Design
Due Friday, September 13, 2024, 11:59pm

Late submission: 4% penalty per day; cannot be late by more than 6 days

1 Introduction

COordinate Rotation DIgital Computer (CORDIC) is a method for calculating a variety
of functions including trigonometric and hyperbolic. The various functions are calculated
through an iterative set of vector rotations. At the end of these rotations, the value of the
function is easily determined from the (x, y) coordinate. A CORDIC is often used to achieve
low-cost multiplierless sine/cosine implementations in FPGA as well as ASIC designs.

To obtain a good understanding of CORDIC for the purpose of this lab, please read Chap-
ter 3 of Parallel Programming for FPGAs [1] (in particular, Ch. 3.1-3.3). This book
chapter provides a detailed tutorial of the CORDIC algorithm. It also gives a reference
C/C++ code for the HLS implementation. You are encouraged to write your own program,
but allowed to reuse and modify the reference code from the book. The main purpose of
this lab is to help you get familiar with the HLS toolflow and practice the basic concepts of
fixed-point design.

2 Materials

You are given a zip file named lab1.zip in /classes/ece6775/labs on the ecelinux server1, which
contains the following files for you to build the project.

• cordic.cpp: an incomplete source file where you write your synthesizable code.

• cordic.h: the header file with various macro and type definitions that may be useful for
developing your code.

• cordic test.cpp: a test bench that helps verify your code.

• Makefile: a Makefile for you to easily (1) compile source code into an executable and
(2) generate results to measure error (e.g., make fixed-sw or make float-hw).

• run {float/fixed}.tcl : the Tcl scripts that create a Vivado project and synthesize the
CORDIC design to RTL. For this assignment, it is sufficient to run the Vivado HLS
via the Makefile with the fixed-hw and float-hw targets.

1You may directly log into specific ecelinux nodes such as ecelinux-01,02,...,20, if you feel the current
node is slow or unstable.

1



• run opt.tcl : an empty Tcl script that you will write to explore optimizations in the
fixed-point design.

Before starting your assignment, please copy and unzip the zip file to your working
directory. Be sure to source the class setup script using the following command before
compiling your source code: source /classes/ece6775/setup-ece6775.sh.

Please refer to the Vivado HLS user guide [2] for more detailed descriptions of the Vivado
HLS synthesis flow and the Tcl commands used in run {float/fixed}.tcl.

3 Goal

The goal of this assignment is to create and optimize a CORDIC core that calculates the sine
and cosine values of a given input angle. You will write the code in C++ for the CORDIC
core, perform design space exploration using Vivado HLS, and explore trade-offs between
area, performance, and accuracy.

The first part of this assignment is to write a functional CORDIC core using the double-
precision floating-point type. With this baseline design, you will explore the design trade-offs
by varying the iteration count of the main computation loop. Since CORDIC is an iterative
algorithm, the number of iterations will affect the output accuracy as well as the performance
of the synthesized hardware.

The second part is to use the fixed-point data type to optimize the CORDIC core for area,
performance, and accuracy. The primary design space exploration goal is to understand how
the bitwidth setting affects accuracy, as well as area and performance.

The third part asks you to maximize the throughput of the CORDIC core using optimization
directives in Vivado HLS. This exercise will help you familiarize with common HLS optimiza-
tions and understand the effect of each optimization on the microarchitecture, performance,
area, and timing of the design.

You will create a report describing the various trade-offs that you would make and how you
maximize the throughput of the CORDIC core. For each design point (or architecture) you
should provide its results including the area in terms of resource utilization (number of
BRAMs, DSP48s, LUTs, and FFs), and performance in throughput in terms of number
of CORDIC operations / second (i.e., number of input angles processed / second). The
throughput can be calculated based on the reported interval (in clock cycles)
and the target clock period (fixed to 10 ns in this assignment).

4 Guidelines and Hints

4.1 Coding and Debugging

• The input arguments to the cordic function are typed theta type and cos sin type.
These are currently set as double-precision floating-point type (i.e., double)2. In the

2You can use a floating-point division, x/(double)(1ULL<<SHIFT AMOUNT), to perform a right shift on
variable x of type double. Note that ULL means unsigned long long in C++ (usually 64 bits); when
SHIFT AMOUNT ≥ 64, the result may overflow. An alternative is using a for loop to realize the shift in an
iterative fashion: for (int i=0; i<SHIFT AMOUNT; i++) {x=x*0.5;}

2



second part of this assignment, you are expected to change them to a fixed-point type
to optimize your design. Please carefully consider the number of integer bits
necessary for representing the range of required values. Your fixed-point
design should be free of multiplication and division (i.e., NO usage of DSP48
in the synthesis report).

• The input angle (i.e., the theta argument of function cordic) is in radian.

• Enter make or make float under the project folder to compile and execute the floating-
point program; Enter make fixed to run the fixed-point implementation (where the
FIXED TYPE macro is defined).

• The test bench creates an out.dat file which is useful for debugging3. This file lists the
golden sine/cosine values from math.h, the sine/cosine values computed from your func-
tion, and the normalized difference (error). You will be able to assess the correctness
and/or accuracy of your code based on the error reported by the test bench. Note that
the errors are expected to be close to but NOT exactly zero even with the correct code.
The accuracy should be improved by increasing the number of iterations. Otherwise,
your code is not working.

• There is a constant array called cordic ctab in cordic.h. You may find this useful
although you do not necessarily have to use it.

• Please include meaningful comments in your code.

4.2 Design Exploration

• In this assignment, you will use a fixed 10 ns clock period targeting a specific FPGA
device (i.e., Zynq). The clock period and target device have been specified in the
run {float/fixed}.tcl script.

• The number of iterations in your cordic function will play an important role in the
accuracy and performance of the design. You should explore this aspect with your
floating-point design. You are expected to specify the list of iteration counts
at line 23 of run float.tcl to run simulation and synthesis in batch. The
script will also automatically collect important stats (i.e., accuracy, performance, and
resource usage) from the Vivado HLS reports and generate a float result.csv file under
the result folder.

• The data types of the variables in your cordic function would also make a significant
difference in area, accuracy, and performance. This should be another form of your
design space exploration. For this part, the number of iterations is fixed to 20.
You should experiment extensively with the data types and your report should show
how different data types affect the accuracy as well as area and performance. You are
expected to specify the list of bitwidth settings in run fixed.tcl to run simulation and
synthesis in batch. Similar to run float.tcl, the script will also automatically collect
important stats from the Vivado HLS reports and generate a fixed result.csv file under
the result folder.

• Although the synthesis tool takes some time to initialize, it should finish within 1-2
minutes for each design point based on our past experience with ecelinux. It is not

3You are welcome to use gdb as well.

3



normal if Vivado HLS runs for more than 10 minutes. You can use the top command
in a separate shell to check the real-time system usage to see if the current ecelinux
node is overloaded with other processes.

4.3 Performance Optimization

• In this part, please finish run opt.tcl where we fix the design configuration to use 20
iterations and 32-bit signed fixed-point type with 8 integer bits. Note that
we use this configuration only for convenience instead of efficiency.

• The goal is to maximize the throughput of this design using optimization directives
provided by Vivado HLS. The optimization directives serve the same purpose as the
pragmas. While pragmas are embedded into the source code, directives are added in the
.tcl file. Directives allow us to optimize the design without modifying the C++ source
code so the same source code can be reused to synthesize different microarchitectures.

• For the purpose of this lab, you may use set directive pipeline and/or
set directive unroll commands in run opt.tcl to optimize your design instead of
adding pragmas. Detailed descriptions of these directives can be found in Chapter 4,
p.450 - 452 and p.458 - 460 of the Vivado HLS User Guide [2]. You are recommended
to carefully study sections relevant to these commands.

4.4 Report

• Please write your report in a single-column and single-space format with a 10pt
font size. Page limit is ONE, including necessary figures and tables. You
may place figures side-by-side in one line to save space.

• The report should start with an overview of the document. This should inform the
reader what the report is about, and highlight the major results. In other words, this
is similar to an abstract in a technical document.

• There should be a section that summarizes your experiments by comparing and con-
trasting the various design points that you generated. You are encouraged to create
a table and additional plots to that clearly show the design choices, resulting
performance, area/resource allocation, and accuracy.

• All of the figures and tables should have captions. These captions should do their best
to explain the figures (explain axis, units, etc.). Ideally you can understand the report
just by looking at the figures and captions. Please avoid just putting some results and
never saying anything about them.

• The report should only show screenshots from the tool when they demonstrate some
significant idea. If you do use screenshots, make sure they are readable (e.g., not blurry).
In general, you are expected to create your own figures. While more time consuming,
it allows you to show the exact results, figures, and ideas you wish to present.

5 Deliverables

Please submit your assignment on CMS. You are expected to submit your report, code,
and scripts in a single zipped file named cordic.zip that contains the following contents:

4



• report.pdf : the project report in pdf.

• A folder named solution: the set of source files and scripts required to reproduce
your experiments; no need to inlcude the generated HLS projects and reports. We
recommend you run make clean to remove all the automatically generated output files
and copy the content of lab1 into solution.

6 Acknowledgement

This document is adapted from a project description originally developed by Prof. Ryan
Kastner for CSE 237C at UCSD.

References

[1] Ryan Kastner, Jannarbek Matal, and Stephen Neuendorffer, Parallel Programming for
FPGAs, arXiv, 2018.

[2] AMD Xilinx Inc., Vivado Design Suite User Guide: High-Level Synthesis UG902
(v2019.2), Available at https://docs.amd.com/v/u/2019.2-English/ug902-viv
ado-high-level-synthesis

5

https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
https://docs.amd.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis

	Introduction
	Materials
	Goal
	Guidelines and Hints
	Coding and Debugging
	Design Exploration
	Performance Optimization
	Report

	Deliverables
	Acknowledgement

