
ECE6775 High-Level Digital Design Automation, Fall 2024
School of Electrical Computer Engineering, Cornell University

Tutorial on Software-Hardware Codesign with CORDIC

1 Introduction

So far in ECE6775 you have worked with Vivado HLS to automatically compile C/C++
programs into hardware in the form of RTL. You would then check the quality of the generated
RTL by examining the HLS reports produced by the tool and/or performing some kind of
simulation. This means that up until now in the coursework, you have not actually executed
anything on real hardware. Furthermore, you have not had to deal with how to interface a
software program with a hardware accelerator.

In this tutorial you will learn how to take a modified version of the CORDIC design from
Lab 1 and implement a full-fledged software-hardware system. You will then test the system
on Zedboard, which is an FPGA development board that features the Xilinx Zynq-7000
programmable system-on-chip (SoC) device. Specifically, the Zynq SoC integrates an ARM
microprocessor and reconfigurable logic on a single chip.

The goal of this tutorial is to prepare you for Lab 3, where you will be designing a similar
system, except targeting a different application in digit recognition. In addition, some of you
may choose to use the same system setup for the final project as well.

2 Materials

You are given a zip file named cordic tutorial.zip on ecelinux under /classes/ece6775/labs,
which contains the following directories:

• ecelinux : contains a Vivado HLS project to synthesize the CORDIC hardware module.
This should be done on ecelinux.

• zedboard : contains a C++ project to build the CORDIC host program. The host
program should be run on the Zedboard after programming the FPGA.

3 System Overview

A diagram of the system used in this tutorial is shown in Figure 1. The system roughly
consists of three parts:

• Host Program — The C/C++ program running on the ARM processor which sends
data to the FPGA and receives results. The host must ensure the data exchange is in
a format consistent with the FPGA interface.

1



Hardware
Accelerator

Input
FIFO

Output
FIFO

FPGA ARM CPU

Host
Program

Figure 1: Block diagram of the software-hardware system.

• Hardware Accelerator — The hardware module implemented on the FPGA recon-
figurable fabrics.

• Input & Output FIFOs — Two 32-bit FIFOs are used as the (latency-insensitive)
communication media between the hardware and software components. These two
FIFOs are exposed as two Linux I/O devices on the host.

For this tutorial, all three components have been provided for you. The application we
are targeting is a modified version of CORDIC from Lab 1. The hardware platform is the
Zedboard. Your task is to synthesize the accelerator, generate a bitstream, and use it to
program the Zynq FPGA. Then you will execute the host program on the ARM processor
to invoke the FPGA accelerator. Please carefully read through the explanations in Section 5
to understand the provided code.

4 Zedboard Environment and Login

There are 11 Zedboard units accessible from ecelinux via ssh. You must login to ecelinux
before you login to the Zedboards even if you use the lab computers. Since each Zedboard
runs Linux using the embedded ARM processor, you should be comfortable with the work
environment once you are logged in. The hostnames of the boards are:

zhang-zedboard-xx.ece.cornell.edu

where xx can be 01, 02, ..., 11. All students have an account on each Zedboard with
NetID as the both the username and initial password. You will be prompted to change your
password on your first login to each board. Be sure to ssh into every Zedboard to set
your permanent password before using the board in any way. In addition, the
user accounts and file systems are not linked. That means your files on one ZedBoard
will not be automatically synchronized with other boards. You can choose to either stick to
the same Zedboard or back up your files using git or scp before you log out.

To ensure two students are not simultaneously attempting to program one FPGA (Linux
reboot is required after each FPGA reconfiguration), we have restricted each Zedboard such
that only ONE student can login at a time. Before you attempt to login, please first
check the occupancy of the available boards using the following link:

2



https://www.csl.cornell.edu/courses/ece6775/zedboard.html

This also means that you cannot open multiple ssh sessions for the Zedboard and
that you cannot scp to a Zedboard while logged into it from another terminal. If
you get strange error messages from running these commands please first check for this issue.

When you log out from a Zedboard, it will be possible for another student to log in, at which
point you will no longer be able to access your code. We heavily recommend you back up
your files using version control (such as git) or by copying the files back to ecelinux every
time before you log out.

5 Source Code Explanation

This section provides additional comments on several important source files to help you
develop a better understanding of the overall system setup.

typedefs.h
Most of the typedef statements here should be familiar to you from Lab 1. However, note
that we changed the bitwidth of the fixed-point types to 40. This is to demonstrate how to
transfer wide data to the FPGA.

ecelinux/cordic.cpp
First note that the name of the top-level function has been changed to dut, which stands
for “design under test”. This is to make scripting the flow simpler. The arguments of dut
are a pair of hls::stream<bit32 t> objects. These templated streams are part of Xilinx’s
hls stream library; they represent the input and output FIFOs in Figure 1 and provide
read() and write() methods as seen inside the function. dut reads the input angle through
strm in, calls the cordic function, and write the results to strm out. The <bit32 t> indicate
the data type which is stored in the buffers. A 32-bit integer is chosen to simplify the CPU-
FPGA interface, as such types are standard in software programming.

However, this presents two problems: (1) our interface is only 32-bit wide while the input
angle is 40 bits; (2) our input is in integer format (ap uint) while the input angle to cordic
is of fixed-point type which contains fractional bits. This is resolved using the bit slicing
methods provided by the ap int and ap fixed data types. We use these methods to assign
the appropriate (raw) bits from input to theta type, and similarly, assign cos sin type to
output.

zedboard/host.cpp
This file contains the program responsible for invoking the hardware module. The Zedboard
system is set up so that the FIFO channels connecting the FPGA are exposed to the Linux
OS as two device files, which can be can be written to and read from like any regular files.

/dev/xillybus_write_32
/dev/xillybus_read_32

We begin by opening the two files. To access them we simply use the C functions write and
read, which take in a file handle, a pointer to the data, number of bytes to send/receive,
and returns the number of bytes successfully communicated. We again use bit assignment to
convert the input angle from theta type to a 64-bit integer (int64 t). Unlike in cordic.cpp,
we can send the 64-bit value with a single function call instead of two separate transactions.

3

https://www.csl.cornell.edu/courses/ece6775/zedboard.html
https://www.csl.cornell.edu/courses/ece6775/zedboard.html


This is because the write and read functions actually breaks up the data for you and
transfers one byte at a time.

In host.cpp we send one angle at a time, wait for the hardware module to produce a result,
and read the result before sending the next angle. This is actually very inefficient — in our
system setup the communication channel between the ARM processor and the FPGA has a
long latency but high throughput. Because we send only one piece of data each time and
wait for the result, we incur this latency for every angle.

zedboard/host batch.cpp
This file provides a much more efficient implementation of the host program. The only
difference is that we first write all 180 angles to the input FIFO of the CORDIC hardware
module, then read all 180 sets of results. This allows us to take advantage of the high
throughput of the processor-FPGA communication channel and greatly reduce the runtime.

Both host.cpp and host batch.cpp use a timer object to measure the runtime of invoking the
hardware module (including data transfer). The timer is straightforward to use, and will
print the total time recorded when the program ends. This allows us to see the difference in
execution time between the two host programs.

6 Tutorial Instructions

6.1 Generating the Bitstream

As in previous labs, you will begin by synthesizing the C++ source files into Verilog using
the Vivado HLS tool. On ecelinux do:

unzip cordic_tutorial.zip # unzip the archive
cd cordic_tutorial/ecelinux
source /classes/ece6775/setup-ece6775.sh # setup env
make # builds and runs the csim
vivado_hls -f run.tcl # generate Verilog for CORDIC

Compiling the csim is optional, but it will allow you to verify that the FPGA is producing
the correct results.

You can examine the directory cordic.prj/solution1/syn/verilog to check that the Verilog files
have been generated.

The next step is to implement the hardware circuit described by the Verilog on an the FPGA.
This is done by Vivado (not Vivado HLS), and is usually quite complicated. Fortunately, we
provide a script which automates this process.

source run_bitstream.sh # generate FPGA bitstream

Vivado will first map the circuit logic to components like wires, gates, and registers. It will
then perform placement and routing, which places each component into a physical look-
up table (LUT), and makes connections between LUTs using the FPGA’s programmable
interconnect. Finally, Vivado generates the bitstream — this file contains the configuration
bits which are sent to the LUTs and switches on the FPGA in order to (re)configure the
FPGA to become the CORDIC circuit.

4



Due to how complex this process is, this command may take upwards of 15 minutes. When
it finishes, it will copy the bitstream file xillydemo.bit to the current directory.

6.2 Programming the FPGA

To program the FPGA, we first copy the bitstream file onto the Zedboard. Then we will
mount the SD card on the board (exposing it to Linux as a writeable directory) and move
the bitstream file onto the card. When the Zedboard boots up, the it will read the bitstream
from the SD card and reconfigure the FPGA.

# Copy the bitstream from ecelinux to Zedboard
scp xillydemo.bit <user>@zhang-zedboard-xx.ece.cornell.edu:~

# Login to the Zedboard
ssh <user>@zhang-zedboard-xx.ece.cornell.edu

# Mount SD card. Try rebooting if there is a device busy error
mount /mnt/sd

# Copy the bitstream file to the SD card and reboot the Zedboard
cp xillydemo.bit /mnt/sd
sudo reboot

The Zedboard will restart. Wait about 30 seconds and login again — the FPGA will be fully
programmed after the reboot.

If you encounter any issues with scp or ssh, please check the status of the Zedboard and try
another Zedboard. If you encounter any issue copying the bitstream to the SD card, please
first reboot the board and attempt the commands again.

6.3 Running The CORDIC Example

Use scp to copy cordic tutorial.zip to the Zedboard, then do:

unzip cordic_tutorial.zip # unzip the archive
cd cordic_tutorial/zedboard
make fpga # build FPGA host program
./cordic-fpga # run the baseline host
make fpga_batch # build FPGA host program (batch mode)
./cordic-fpga-batch # run the batched host

You should see the same accumulated error as when you ran the csim on ecelinux. Further-
more, host batch should run much faster than host.

5



7 Acknowledgement

The baseline FPGA+Linux setup used in tutorial is based on the Xillinux distribution pro-
vided by Xillybus Ltd. (http://xillybus.com/xillinux)

6


	Introduction
	Materials
	System Overview
	Zedboard Environment and Login
	Source Code Explanation
	Tutorial Instructions
	Generating the Bitstream
	Programming the FPGA
	Running The CORDIC Example

	Acknowledgement

