
ECE 6745 Complex Digital ASIC Design
Course Overview
Christopher Batten

School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece6745

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 2 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

The Computer Systems Stack

Technology

Application

Gap too large to bridge in one step
(but there are exceptions e.g., magnetic compass)

ECE 6745 Course Overview 3 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

The Computer Systems Stack

In its broadest definition, computer architecture is the
design of the abstraction/implementation layers that allow us to

execute information processing applications efficiently
using available manufacturing technologies

Circuits
Devices

Programming Language
Algorithm

Technology

Application

Register-Transfer Level

Instruction Set Architecture
Microarchitecture

Operating System

Gate Level

Compiler

ECE 6745 Course Overview 3 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

What is Computer Architecture?

In its broadest definition, computer architecture is the
design of the abstraction/implementation layers that allow us to

execute information processing applications efficiently
using available manufacturing technologies

Circuits
Devices

Programming Language
Algorithm

Technology

Application

Register-Transfer Level

Instruction Set Architecture
Microarchitecture

Operating System

Gate Level

Compiler

Co
m

pu
te

rA
rc

hi
te

ct
ur

e

Operating System

Gate Level
Register-Transfer Level

Instruction Set Architecture
Microarchitecture

Compiler

Application Requirements
 • Provide motivation for building system
 • SW/HW interface expressive yet productive

Technology Constraints
 • Restrict what can be done efficiently
 • New technologies make new arch possible

Computer architects provides feedback to guide
application and technology research directions

ECE 6745 Course Overview 4 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Transistors
(Thousands)

C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]

1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

2020 2025

108

Pipelining
& Caches

Superscalar
Execution

Superscalar Out-of-Order
Execution

Aggressive Superscalar
Out-of-Order Execution

Single-Core

Power (W)
Frequency (MHz)

SPECint (singe-core)

Number of
Cores

Multi-Core

SPECrate
(4-7 cores)

Parallelization
&

Specialization

Number of
Accelerators

Accelerator

ECE 6745 Course Overview 5 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Key Metrics in Computer Architecture

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

I Primary Metrics
. Execution time (cycles/task)
. Energy (Joules/task)
. Cycle time (ns/cycle)
. Area (µm2)

I Secondary Metrics
. Performance (ns/task)
. Average power (Watts)
. Peak power (Watts)
. Cost ($)
. Design complexity
. Reliability
. Flexibility

Discuss qualitative first-order analysis
from ECE 4750 on board

ECE 6745 Course Overview 6 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Unanswered Questions from ECE 4750

P

I$

D$

Network

Network

Network

Xcel P

I$

D$ D$ D$

Xcel

Accelerated
Instructions

I How can we quantitatively evaluate
area, cycle time, and energy?

I How do we actually implement
processors, memories, and
networks in a real chip?

I How should we implement/analyze
application-specific accelerators?
. Very loosely coupled

memory-mapped accelerators

. More tightly coupled co-processor
accelerators

. Specialized instructions and
functional units

ECE 6745 Course Overview 7 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

ASIC: Application-Specific Integrated Circuit

P

I$

D$

Network

Network

Network

Xcel P

I$

D$ D$ D$

Xcel

Accelerated
Instructions

Performance (Tasks per Second)

Simple
Proc

Processor Power
Constraint

En
er

gy
 (J

ou
le

s
pe

r T
as

k)

C

B

AAAA

 Superscalar
w/ Deeper

Pipelines

Out-of-Order
Superscalar

Superpipelined
D

EE
Multicore FF

Multicore E

AAAA

Specialized Accelerators

ECE 6745 Course Overview 8 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

ASIC: Application-Specific Integrated Circuit

P

I$

D$

Network

Network

Network

Xcel P

I$

D$ D$ D$

Xcel

Accelerated
Instructions

Performance (Tasks per Second)

En
er

gy
 E

ffi
ci

en
cy

 (T
as

ks
 p

er
 J

ou
le

)

Simple
Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Flex
ibil

ity
vs.

 Spe
cia

liza
tio

n
Custom
ASIC

Less Flexible
Accelerator

More Flexible
Accelerator

ECE 6745 Course Overview 9 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Goal for ECE 6745 is to answer these questions!

P

I$

D$

Network

Network

Network

Xcel P

I$

D$ D$ D$

Xcel

Accelerated
Instructions

I How can we quantitatively evaluate
area, cycle time, and energy?

I How do we actually implement
processors, memories, and
networks in a real chip?

I How should we implement/analyze
application-specific accelerators?
. Very loosely coupled

memory-mapped accelerators

. More tightly coupled co-processor
accelerators

. Specialized instructions and
functional units

ECE 6745 Course Overview 10 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Full Custom Design vs. Standard-Cell Design

L01 –
Introduction 22

6.884 –
S

pring 2005
2 Feb 2005

Full Custom
 D

esign
D
esigner is free to do anything, anywhere

–
though each design team

 usually im
poses som

e discipline
M

ost tim
e consum

ing design style
–

Reserved for very high perform
ance or very high volum

e
devices (Intel m

icroprocessors, RF power am
ps for cellphones)

Requires com
plete custom

ization of all layers of wafer

Piece of full-custom
 m

ultiplier array,
1.0Pm

 2-m
etal

Full-custom layout
in 1.0µm w/ 2 metal

layers

I Full-Custom Design (ECE 4740)
. Designer is free to do anything, anywhere; though

team usually imposes some design discipline

. Most time consuming design style; reserved for
very high performance or very high volume chips
(Intel microprocessors, RF power amps for
cellphones)

I Standard-Cell Design (ECE 6745)
. Fixed library of “standard cells” and SRAM

memory generators

. Register-transfer-level description is automatically
mapped to this library of standard cells, then these
cells are placed and routed automatically

. Enables agile hardware design methodology

ECE 6745 Course Overview 11 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Standard-Cell Design Methodology

L01 – Introduction 246.884 – Spring 2005 2 Feb 2005

Standard Cell ASICs
• Also called Cell-Based ICs (CBICs)
• Fixed library of cells plus memory generators
• Cells can be synthesized from HDL, or entered in schematics
• Cells placed and routed automatically
• Requires complete set of custom masks for each design
• Currently most popular hard-wired ASIC type (6.884 will use this)

Mem
1 Mem

2

Cells arranged
in rows

Generated
memory arrays

L01 – Introduction 256.884 – Spring 2005 2 Feb 2005

Standard Cell Design
Cells have standard height but vary in width
Designed to connect power, ground, and wells by abutment

VDD Rail

GND Rail

Clock Rail

Cell I/O
on M2Power

Rails in
M1

Clock Rail
(not typical)

NAND2 Flip-flop

Well Contact
under Power Rail

Ripple carry adder with carry
chain highlighted

ECE 6745 Course Overview 12 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Standard-Cell Design Methodology

Design in HDL

HDL
Simulator

Place&Route

Switching Activity

Power
Analysis

Synthesis

Standard Cells

Gate-Level Model

Layout

Area (μm2)

Execution Time
(cycles/task)

Cycle Time (ns)
Energy (J/task)

Area (μm2)
Cycle Time (ns)
Energy (J/task)

Energy (J/task)

ECE 6745 Course Overview 13 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Example Standard-Cell Chip Plot
Motivation Architectural Patterns Scale VT Core Maven VT Core Evaluation

Single-Lane Vector-Thread Unit w/ 256 Registers

MIT CSAIL Christopher Batten 32 / 42
ECE 6745 Course Overview 14 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

What is Complex Digital ASIC Design?

Circuits
Devices

Programming Language
Algorithm

Technology

Application

Register-Transfer Level

Instruction Set Architecture
Microarchitecture

Operating System

Gate Level

Compiler

Circuits

Register-Transfer Level
Microarchitecture

Gate Level

layout ready for fabrication

Complex digital ASIC design is
the process of

quantitatively exploring the
area, cycle time, execution time, and

energy trade-offs
 of various

automated standard-cell CAD tools
 and then to transform the most

promising design to

using

application-specific accelerators
(and general-purpose proc+mem+net)

ECE 6745 Course Overview 15 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 16 / 46

Christopher Batten 2AI in Computer Engineering • ECE Retreat

Motivation for Taking Course
• Trends in Artificial Intelligence
• 2023/2024 Sabbatical

– Fall 2023: Slice Lab @ UC Berkeley
– Spring 2024: NVIDIA Research @ Santa Clara, CA

Christopher Batten 3AI in Computer Engineering • ECE Retreat

AI for Image Recognition
What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

To
p

5
Er

ro
r R

at
e

28% 26%

16%
12%

7%

'10

3.6% 2.3%3%

'11 '12 '13 '14 '15 '16 '17

ECE 2300 Course Overview 16 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

Image Recognition

ECE 2300 Course Overview 14 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

To
p

5
Er

ro
r R

at
e

28% 26%

16%
12%

7%

'10

3.6% 2.3%3%

'11 '12 '13 '14 '15 '16 '17

Human
Error Rate

ECE 2300 Course Overview 16 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

To
p

5
Er

ro
r R

at
e

28% 26%

16%
12%

7%

'10

3.6% 2.3%3%

'11 '12 '13 '14 '15 '16 '17

Human
Error Rate

Hardware:0 0

14%

En
tri

es
 U

si
ng

 G
PU

s

74%

89% ~100%

ECE 2300 Course Overview 16 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

Hardware: Graphics Processing UnitsEn
tri

es
 U

si
ng

 G
PU

s

ECE 2300 Course Overview 16 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

Software: Deep Neural Network

ECE 2300 Course Overview 16 / 29

What is Digital Logic and Computer Org? Trend 1: Specialization Era • Trend 2: AI $ Hardware • Course Logistics

ImageNet Large-Scale Visual Recognition Challenge

Hardware: Graphics Processing UnitsEn
tri

es
 U

si
ng

 G
PU

s

ECE 2300 Course Overview 16 / 29

Starfish

Bird

Christopher Batten 4AI in Computer Engineering • ECE Retreat

AI for Protein Folding
APRKFFVGGNWKMNGDKKSLGELIHTLNGAKL
SADTEVVCGAPSIYLDFARQKLDAKIGVAAQN
CYKVPKGAFTGEISPAMIKDIGAAWVILGHSE
RRHVFGESDELIGQKVAHALAEGLGVIACIGE
KLDEREAGITEKVVFEQTKAIADNVKDWSKVV
LAYEPVWAIGTGKTATPQQAQEVHEKLRGWLK
THVSDAVAQSTRIIYGGSVTGGNCKELASQHD
VDGFLVGGASLKPEFVDIINAKH

Amino Acid Sequence

triose
phosphate
isomerase

Tertiary Protein Structure

AlphaFold (2020)

584 | Nature | Vol 596 | 26 August 2021

Article

for the participating methods, and has long served as the gold-standard
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than
competing methods. AlphaFold structures had a median backbone
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95%
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas
the next best performing method had a median backbone accuracy
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on
CASP domains; see Fig. 1a for backbone accuracy and Supplementary
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy,
the width of a carbon atom is approximately 1.4 Å. In addition to very
accurate domain structures (Fig. 1b), AlphaFold is able to produce
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best
alternative method. Our methods are scalable to very long proteins with
accurate domains and domain-packing (see Fig. 1d for the prediction
of a 2,180-residue protein with no structural homologues). Finally, the
model is able to provide precise, per-residue estimates of its reliability
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB

structures; in this dataset, all structures were deposited in the PDB after
our training data cut-off and are analysed as full chains (see Methods,
Supplementary Fig. 15 and Supplementary Table 6 for more details).
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence
measure, the predicted local-distance difference test (pLDDT), reliably
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high
accuracy and reliability of AlphaFold on CASP14 proteins also transfers
to an uncurated collection of recent PDB submissions, as would be
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints
of protein structures. In particular, we demonstrate a new architecture
to jointly embed multiple sequence alignments (MSAs) and pairwise
features, a new output representation and associated loss that enable
accurate end-to-end structure prediction, a new equivariant attention

a

G
42

7
A

lp
ha

Fo
ld

G
00

9
G

47
3

G
12

9
G

40
3

G
03

2
G

42
0

G
48

0
G

49
8

G
48

8
G

36
8

G
32

4
G

36
2

G
25

3
G

21
6

0

1

2

3

4

M
ed

ia
n

C
α

r.m
.s

.d
. 95

 (Å
)

b

C terminus

N terminus

AlphaFold Experiment
r.m.s.d.95 = 0.8 Å; TM-score = 0.93

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

AlphaFold Experiment
r.m.s.d.95 = 2.2 Å; TM-score = 0.96

MSA

3D structure

Low
con!dence

High
con!dence

Templates

Input sequence

MSA
representation

(s,r,c)

Evoformer
(48 blocks)

Structure
module

 (8 blocks)

+

+

← Recycling (three times)

Pairing
Pair

representation
(r,r,c)

Pair
representation

(r,r,c)

Genetic
database

search

Structure
database

search

e

Single repr. (r,c)

Fig. 1 | AlphaFold produces highly accurate structures. a, The performance
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers
assigned to entrants by CASP. Data are median and the 95% confidence interval
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental)
structure (green). Four residues in the C terminus of the crystal structure are
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).

An example of a well-predicted zinc-binding site (AlphaFold has accurate side
chains even though it does not explicitly predict the zinc ion). d, CASP target
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct
domain packing (the prediction was made after CASP using AlphaFold without
intervention). e, Model architecture. Arrows show the information flow among
the various components described in this paper. Array shapes are shown in
parentheses with s, number of sequences (Nseq in the main text); r, number of
residues (Nres in the main text); c, number of channels.

584 | Nature | Vol 596 | 26 August 2021

Article

for the participating methods, and has long served as the gold-standard
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than
competing methods. AlphaFold structures had a median backbone
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95%
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas
the next best performing method had a median backbone accuracy
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on
CASP domains; see Fig. 1a for backbone accuracy and Supplementary
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy,
the width of a carbon atom is approximately 1.4 Å. In addition to very
accurate domain structures (Fig. 1b), AlphaFold is able to produce
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best
alternative method. Our methods are scalable to very long proteins with
accurate domains and domain-packing (see Fig. 1d for the prediction
of a 2,180-residue protein with no structural homologues). Finally, the
model is able to provide precise, per-residue estimates of its reliability
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB

structures; in this dataset, all structures were deposited in the PDB after
our training data cut-off and are analysed as full chains (see Methods,
Supplementary Fig. 15 and Supplementary Table 6 for more details).
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence
measure, the predicted local-distance difference test (pLDDT), reliably
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high
accuracy and reliability of AlphaFold on CASP14 proteins also transfers
to an uncurated collection of recent PDB submissions, as would be
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints
of protein structures. In particular, we demonstrate a new architecture
to jointly embed multiple sequence alignments (MSAs) and pairwise
features, a new output representation and associated loss that enable
accurate end-to-end structure prediction, a new equivariant attention

a

G
42

7
A

lp
ha

Fo
ld

G
00

9
G

47
3

G
12

9
G

40
3

G
03

2
G

42
0

G
48

0
G

49
8

G
48

8
G

36
8

G
32

4
G

36
2

G
25

3
G

21
6

0

1

2

3

4

M
ed

ia
n

C
α

r.m
.s

.d
. 95

 (Å
)

b

C terminus

N terminus

AlphaFold Experiment
r.m.s.d.95 = 0.8 Å; TM-score = 0.93

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

AlphaFold Experiment
r.m.s.d.95 = 2.2 Å; TM-score = 0.96

MSA

3D structure

Low
con!dence

High
con!dence

Templates

Input sequence

MSA
representation

(s,r,c)

Evoformer
(48 blocks)

Structure
module

 (8 blocks)

+

+

← Recycling (three times)

Pairing
Pair

representation
(r,r,c)

Pair
representation

(r,r,c)

Genetic
database

search

Structure
database

search

e

Single repr. (r,c)

Fig. 1 | AlphaFold produces highly accurate structures. a, The performance
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers
assigned to entrants by CASP. Data are median and the 95% confidence interval
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental)
structure (green). Four residues in the C terminus of the crystal structure are
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).

An example of a well-predicted zinc-binding site (AlphaFold has accurate side
chains even though it does not explicitly predict the zinc ion). d, CASP target
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct
domain packing (the prediction was made after CASP using AlphaFold without
intervention). e, Model architecture. Arrows show the information flow among
the various components described in this paper. Array shapes are shown in
parentheses with s, number of sequences (Nseq in the main text); r, number of
residues (Nres in the main text); c, number of channels.

• Trained using 128 Tensor Processing Units (TPUv3) for 1.5 weeks
• Inference for large proteins requires hours on 4 NVIDIA V100 GPUs

584 | Nature | Vol 596 | 26 August 2021

Article

for the participating methods, and has long served as the gold-standard
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than
competing methods. AlphaFold structures had a median backbone
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95%
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas
the next best performing method had a median backbone accuracy
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on
CASP domains; see Fig. 1a for backbone accuracy and Supplementary
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy,
the width of a carbon atom is approximately 1.4 Å. In addition to very
accurate domain structures (Fig. 1b), AlphaFold is able to produce
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best
alternative method. Our methods are scalable to very long proteins with
accurate domains and domain-packing (see Fig. 1d for the prediction
of a 2,180-residue protein with no structural homologues). Finally, the
model is able to provide precise, per-residue estimates of its reliability
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB

structures; in this dataset, all structures were deposited in the PDB after
our training data cut-off and are analysed as full chains (see Methods,
Supplementary Fig. 15 and Supplementary Table 6 for more details).
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence
measure, the predicted local-distance difference test (pLDDT), reliably
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high
accuracy and reliability of AlphaFold on CASP14 proteins also transfers
to an uncurated collection of recent PDB submissions, as would be
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints
of protein structures. In particular, we demonstrate a new architecture
to jointly embed multiple sequence alignments (MSAs) and pairwise
features, a new output representation and associated loss that enable
accurate end-to-end structure prediction, a new equivariant attention

a

G
42

7
A

lp
ha

Fo
ld

G
00

9
G

47
3

G
12

9
G

40
3

G
03

2
G

42
0

G
48

0
G

49
8

G
48

8
G

36
8

G
32

4
G

36
2

G
25

3
G

21
6

0

1

2

3

4

M
ed

ia
n

C
α

r.m
.s

.d
. 95

 (Å
)

b

C terminus

N terminus

AlphaFold Experiment
r.m.s.d.95 = 0.8 Å; TM-score = 0.93

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

AlphaFold Experiment
r.m.s.d.95 = 2.2 Å; TM-score = 0.96

MSA

3D structure

Low
con!dence

High
con!dence

Templates

Input sequence

MSA
representation

(s,r,c)

Evoformer
(48 blocks)

Structure
module

 (8 blocks)

+

+

← Recycling (three times)

Pairing
Pair

representation
(r,r,c)

Pair
representation

(r,r,c)

Genetic
database

search

Structure
database

search

e

Single repr. (r,c)

Fig. 1 | AlphaFold produces highly accurate structures. a, The performance
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers
assigned to entrants by CASP. Data are median and the 95% confidence interval
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental)
structure (green). Four residues in the C terminus of the crystal structure are
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).

An example of a well-predicted zinc-binding site (AlphaFold has accurate side
chains even though it does not explicitly predict the zinc ion). d, CASP target
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct
domain packing (the prediction was made after CASP using AlphaFold without
intervention). e, Model architecture. Arrows show the information flow among
the various components described in this paper. Array shapes are shown in
parentheses with s, number of sequences (Nseq in the main text); r, number of
residues (Nres in the main text); c, number of channels.

In
pu

t S
eq

ue
nc

e

[J. Jumper et al. Nature'21]

Christopher Batten 5AI in Computer Engineering • ECE Retreat

AI for Natural Language Q&A

https://epoch.ai/blog/open-models-report

Top-performing open and closed AI models on Massive Multitask Language Understanding benchmark
which includes 16,000 multiple-choice questions spanning 57 subject areas

Rough Estimate of Human Level

Ac
cu

ra
cy

Christopher Batten 6AI in Computer Engineering • ECE Retreat

AI for Natural Language Q&A

Chemistry (general)

A reaction of a liquid organic compound, which molecules consist of carbon and hydrogen atoms, is performed at 80
centigrade and 20 bar for 24 hours. In the proton nuclear magnetic resonance spectrum, the signals with the highest
chemical shift of the reactant are replaced by a signal of the product that is observed about three to four units downfield.
Compounds from which position in the periodic system of the elements, which are also used in the corresponding large-scale
industrial process, have been mostly likely initially added in small amounts?
A) A metal compound from the fifth period.
B) A metal compound from the fifth period and a non-metal compound from the third period.
C) A metal compound from the fourth period.
D) A metal compound from the fourth period and a non-metal compound from the second period.

Organic Chemistry

Methylcyclopentadiene (which exists as a fluxional mixture of isomers) was allowed to react with methyl isoamyl ketone
and a catalytic amount of pyrrolidine. A bright yellow, cross-conjugated polyalkenyl hydrocarbon product formed (as
a mixture of isomers), with water as a side product. These products are derivatives of fulvene. This product was then
allowed to react with ethyl acrylate in a 1:1 ratio. Upon completion of the reaction, the bright yellow color had disappeared.
How many chemically distinct isomers make up the final product (not counting stereoisomers)?
A) 2
B) 16
C) 8
D) 4

Genetics

If a sperm from species A is injected into an egg from species B and both species have the same number of chromosomes,
what would be the main cause of the resulting zygote mortality?
A) Species specific zona pellucida proteins on the egg cannot bind sperms from a different species.
B) Epistatic interactions between the genes of different species
C) Chromosomal incompatibilities will cause failure of meiosis leading to death of zygote.
D) Chromosomal recombination will not occur in different species.

Molecular Biology

A scientist studies the stress response of barley to increased temperatures and finds a protein which contributes to heat
tolerance through the stabilisation of cell membrane. The scientist is very happy and wants to create a heat-tolerant cultivar
of diploid wheat. Using databases, they find a heat tolerance protein homologue and start analysing its accumulation under
heat stress. Soon enough, the scientist discovers this protein is not synthesised in the wheat cultivar they study. There are
many possible reasons for such behaviour, including:
A) A miRNA targets the protein, which makes exonucleases cut it immediately after the end of translation and before
processing in ER
B) Trimethylation of lysine of H3 histone in position 27 at the promoter of the gene encoding the target protein
C) A stop-codon occurs in the 5’-UTR region of the gene encoding the target protein
D) The proteolysis process disrupts a quaternary structure of the protein, preserving only a tertiary structure

Astrophysics

Astronomers are studying a star with a Teff of approximately 6000 K. They are interested in spectroscopically determining
the surface gravity of the star using spectral lines (EW < 100 mA) of two chemical elements, El1 and El2. Given the
atmospheric temperature of the star, El1 is mostly in the neutral phase, while El2 is mostly ionized. Which lines are the
most sensitive to surface gravity for the astronomers to consider?
A) El2 I (neutral)
B) El1 II (singly ionized)
C) El2 II (singly ionized)
D) El1 I (neutral)

Quantum Mechanics

Suppose we have a depolarizing channel operation given by ⇢ (d) . The probability, ?, of the depolarization state represents

the strength of the noise. If the Kraus operators of the given state are �0 =
q

1 � 3?
4 , �1 =

q
?
4 -, �2 =

q
?
4 . , and

�3 =
q

?
4 / . What could be the correct Kraus Representation of the state ⇢ (d)?

A) ⇢ (d) = (1 � ?)d + ?
3 -d- + ?

3 .d. + ?
3 /d/

B) ⇢ (d) = (1 � ?)d + ?
3 -d2- + ?

3 .d2. + ?
3 /d2/

C) ⇢ (d) = (1 � ?)d + ?
4 -d- + ?

4 .d. + ?
4 /d/

D) ⇢ (d) = (1 � ?)d2 + ?
3 -d2- + ?

3 .d2. + ?
3 /d2/

Table 1: Six example questions from the dataset, two each from subdomains of chemistry, biology,
and physics (respectively).

4

GPQA: Dataset of 448 multiple-choice questions
written by experts in biology, physics, and chemistry

https://epoch.ai/data/ai-benchmarking-dashboard

70%

60%

50%

40%

30%

20%

10%

OpenAI O1

Anthropic Claude

Expert Human Level

Random Guess

Christopher Batten 7AI in Computer Engineering • ECE Retreat

AI Training in the Cloud

https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

• Exponential growth in training
requirements at a rate of ~4x/year
• 2⨉1022 FLOPs on a rack of AMD EPYC

CPUS (each @ 2 TFLOPS) would take
several years to train average model

• 2⨉1022 FLOPs on
the latest NVDIA
AI supercomputer
(Blackwell NVL72
@ 720 PFLOPS)
would take less
than a day to train
average model

Christopher Batten 8AI in Computer Engineering • ECE Retreat

AI Inference in the Cloud

Figure 2: Best score@k results observed by total time budget across different allocations between
samples and time horizon. For different agents, the optimal number of independent runs is different.
For instance, at 16 hours, we saw the highest score for Claude by taking the best of 32 half-hour
runs (30min@32), whereas for o1-preview the best allocation was 2h@8, and for humans 8h@2.
See Section 4 for details on which score@k results were evaluated. Shaded regions represent 95%
confidence intervals generated via percentile bootstrapping, and are skewed downwards due to a
long right tail of agent performance and best-of-k sampling. We find that agents initially make faster
progress than humans, but that human experts improve more rapidly with additional time. That
being said, current AI agents are substantially cheaper than human experts per unit time, suggesting
that there may be ways to greatly improve AI agent performance in a given time budget by using
additional tokens (see Section 6 for more discussion, and Figure 11 for a version of this graph with
labor cost on the x-axis).

of scaffolding and compute usage could substantially improve AI agent performance from what we
show here.

The remainder of this paper details our methodology, results and analysis. Section 2 provides
background on AI R&D automation risk and current approaches to evaluation; Section 3 introduces
our evaluation and the design principles behind it; Sections 4 and 5 presents our evaluation results
with current frontier models; and Section 6 concludes the paper with a discussion of limitations and
implications.

2 Background

2.1 Risks from AI R&D Automation

Recent developments in frontier AI capabilities have prompted leading AI developers and gov-
ernments to establish frameworks for identifying and mitigating catastrophic risks from advanced
AI systems [12, 11, 10]. An emerging consensus, reflected in commitments like the Bletchley
Declaration [15] and the Seoul AI Safety Summit [16], is that systematic evaluation of dangerous
capabilities should be central to effective AI governance. Progress has been made in developing safety
policies and evaluation frameworks around specific capability risks, particularly those involving
potential misuse such as bioweapons development [17] and cyber attacks [18]. However, there
exists a distinct challenge in assessing risks downstream of AI systems’ capacity for autonomous
operation—particularly in the domain of AI research and development itself.

The concern is that AI agents automating AI R&D could drastically increase the amount of skilled
research labor available to AI developers, which would likely accelerate further progress, potentially

3

https://metr.org/AI_R_D_
Evaluation_Report.pdf

Compute Required for Training (FLOPS)

Co
m

pu
te

 R
eq

ui
re

d
fo

r S
in

gl
e

In
fe

re
nc

e
(F

LO
PS

)

https://epoch.ai/blog/trading-off-
compute-in-training-and-inference

• Compute for inference can require 1012 FLOPs
for a single query (GPT3 required ~300 GFLOPs)
• Emerging reasoning models use tens of

queries to improve quality at the cost of
significantly increase compute for inference

Christopher Batten 9AI in Computer Engineering • ECE Retreat

Datacenter AI Hardware

GH200 & GB200

MI350

Gaudi 3
NorthPole

https://research.aimultiple.com/ai-chip-makers
https://www.ai-startups.org/top/hardware

TPU & Trillium

Trainium3

Maia 100

MTIA & Artemis

ACCEL

Etched

($1.1B) SN40L

($165M)
M2000($720M) WFE-3

($335M) Wormhole

($692M) Bow IPU

Sohu

($1B)
LPU

Corsair

Christopher Batten 10AI in Computer Engineering • ECE Retreat

Client & Edge AI Hardware

Movidius
Myriad X

Jetson Orin

Edge TPU

Hailo-8 E1

AI 100 Pro

NPU

Client & Edge AI Hardware

A17
Pro

Apple

Christopher Batten 11AI in Computer Engineering • ECE Retreat

AI hardware is critical to
enabling new AI capabilities,
so any discussion about AI

without talking about AI
hardware is meaningless

Christopher Batten 12AI in Computer Engineering • ECE Retreat

Motivation for Taking Course
• Trends in Artificial Intelligence
• 2023/2024 Sabbatical

– Fall 2023: Slice Lab @ UC Berkeley
– Spring 2024: NVIDIA Research @ Santa Clara, CA

Christopher Batten 14AI in Computer Engineering • ECE Retreat

• Tremendous excitement in
the computer architecture
community over the past
10 years around hardware
accelerators for ML and AI
• Much of this work focuses

on an accelerator in
isolation and/or with small
ML/AI microbenchmarks
• Goal for Fall 2023

sabbatical was to learn
more about full-system AI
accelerators running
complete AI software
stacks

Computer Architecture Research in ML/AI

early multiprocessor andmulticore CPUs (discussed fur-
ther in the “Per-Decade Word Clouds” section). Thus,
although Spectre and Meltdown fueled a resurgence in
security as a highly cited topic at ISCA, it was not the
first time that they were highly cited in the community.

Moreover, focusing on the single highest-cited
paper per year, or even the papers within 15% of the
top-cited paper per year, may potentially miss out on
other high-impact papers from a given year. For exam-
ple, in 1995, SPLASH-2 (thus far the top-cited ISCA
paper of all time), the aforementioned SMT paper (thus
far the ninth highest-cited ISCA paper of all time), and
Multiscalar (thus far the 20th highest-cited ISCA paper
of all time) all appeared. Each of these papers are
more highly cited than the top-cited paper from many
years of ISCA, including the first 16 ISCAs! Thus, only
studying the top-cited paper per year would miss out
on these foundational, important papers. However,
SPLASH-2 is so highly cited that the SMT and Multisca-
lar papers are not within 15% of it. To address this, we
also looked at the top-50 highest-cited papers, as
shown in Figure 3(a) and (b). Comparing the per-year
top 50 (Table 1) to the overall top 50 highlights several
interesting trends. Certain topics like parallelism, inter-
connects, and ML have similar proportions across the
decades, as shown in Figure 3(b). However, in Figure
3(a), microarchitecture (57%) and tools (12%) papers
constitute a significantly different proportion of the
per-year top-cited papers than the overall top 50 (70%
and 8%, respectively). This potentially highlights how
papers, especially those from earlier versions of ISCA,

may not be cited as much relative to newer ISCA
papers but still made significant impacts at the time.
Moreover, it also shows how papers from recent years
(e.g., on security), which have not yet had enough time
to be cited enough to reach the top 50, are also making
significant impact.

Note that focusing on citation counts across years
comes with caveats. Over the years, ISCA has also
seen significant growth and changes in many facets.
One of the most interesting growth vectors has been
in how other papers were cited. ISCA predates search
engines and digital libraries. For example, ACM’s Digital
Library (https://dl.acm.org/) started in 1998 and IEEE
Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp) in
2000. Finding related work in the 1970s and 1980s was
a lot of work: you had to go to libraries to read physical
papers and to chase references, which reduced the
number of references per paper. Moreover, ISCA
[and other conferences, like the Architectural Support
for Programming Languages and Operating Systems
(ASPLOS) conference] changed policies on paper length
for references in !2015, hoping to increase the number
of citations to computer architecture papers. The addi-
tion of arXiv, newer conferences like IEEE’s International
Symposium on High-Performance Computer Architec-
ture (HPCA), and existing conferences like ASPLOS
becoming annual instead of biannual, also collectively
increase the number of computer architecture papers
per year. As a result, there are roughly 5" more com-
puter architecture papers published in top venues per
year in 2023 than there were in 1990. Consequently,

FIGURE 2. Topic distribution in each decade for papers with citation counts within 15% of the top-cited paper each year.

EXPERT OPINION

November/December 2023 IEEE Micro 115

1973-1982 1983-1992 1998-2002 2003-2012 2013-2022

[M. Sinclair et al., IEEE Micro 2023]

ISCA Papers within 15% of top-cited paper each year

Machine
Learning
Papers

Christopher Batten 15AI in Computer Engineering • ECE Retreat

Fall 2023: Sabbatical @ UC Berkeley
• The UC Berkeley Slice lab

seeks to democratize the
design, programming, and
integration of domain-
specific computing at scale
• Leverages significant prior

investment in system-
building infrastructure

What can I do with these tools?

9

Hammer
+

Measure Functionality, Performance, Power,
Area, Frequency for real HW/SW systems,

quickly and easily, with small teams of engineers

What can I do with these tools?

9

Hammer
+

Measure Functionality, Performance, Power,
Area, Frequency for real HW/SW systems,

quickly and easily, with small teams of engineers

What can I do with these tools?

9

Hammer
+

Measure Functionality, Performance, Power,
Area, Frequency for real HW/SW systems,

quickly and easily, with small teams of engineers

Christopher Batten 16AI in Computer Engineering • ECE Retreat

Gemmini Deep-Learning Accelerator
• Systolic array for dense matrix and

vector operations
• Integrated with two Linux-capable

cores using DMA and hardware
cache coherence
• Runs completed end-to-end

machine-learning software stacks
• Enables studying context switches,

page table evictions, multi-
programmed workloads
• Includes a "generator" to enable

broad system-level design-space
exploration

[H. Genc et al., DAC'21]

Christopher Batten 17AI in Computer Engineering • ECE Retreat

2023/2024 Sabbatical Key Takeaways

Slice Lab Retreat, Jan 2024

Artificial
Intelligence

Hardware
Systems

Christopher Batten 18AI in Computer Engineering • ECE Retreat

AI for Chip Design

LLM-Aided Efficient Hardware Design Automation
Kangwei Xu1, Ruidi Qiu1, Zhuorui Zhao1, Grace Li Zhang2, Ulf Schlichtmann1, Bing Li3

1Chair of Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany
2Hardware for Artificial Intelligence Group, Technical University of Darmstadt, Darmstadt, Germany

3Research Group of Digital Integrated Systems, University of Siegen, Siegen, Germany
Email: {kangwei.xu, r.qiu, zhuorui.zhao, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de, bing.li@uni-siegen.de

Abstract—With the rapidly increasing complexity of mod-

ern chips, hardware engineers are required to invest more

effort in tasks such as circuit design, verification, and physi-

cal implementation. These workflows often involve continuous

modifications, which are labor-intensive and prone to errors.

Therefore, there is an increasing need for more efficient and

cost-effective Electronic Design Automation (EDA) solutions to

accelerate new hardware development. Recently, large language

models (LLMs) have made significant advancements in contextual

understanding, logical reasoning, and response generation. Since

hardware designs and intermediate scripts can be expressed

in text format, it is reasonable to explore whether integrating

LLMs into EDA could simplify and fully automate the entire

workflow. Accordingly, this paper discusses such possibilities in

several aspects, covering hardware description language (HDL)

generation, code debugging, design verification, and physical

implementation. Two case studies, along with their future outlook,

are introduced to highlight the capabilities of LLMs in code

repair and testbench generation. Finally, future directions and

challenges are highlighted to further explore the potential of

LLMs in shaping the next-generation EDA.

I. INTRODUCTION

Electronic Design Automation (EDA) spans the entire work-
flow from logic design to manufacturing, which plays a
key role in improving hardware performance, reducing costs,
and shortening development cycles. The advent of AI brings
revolutionary changes to reshape the future of EDA [1]. By
leveraging techniques such as large language models (LLMs),
patterns can be learned, and insights can be inspired from
a large amount of historical data, providing more efficient
and intelligent solutions for the EDA workflow [2]–[8]. Since
circuits can be represented by hardware description languages
(HDL), and intermediate scripts can be written in text format,
integrating EDA with LLMs to release human efforts has
become a promising trend. Recent studies show that the
application of LLMs in hardware design demonstrates their
superior capabilities and expertise in the field of EDA [9]–[16].
Fig. 1 provides an overview of LLM applications in the typical
chip design flow, showing their roles in automating tasks
like specification optimization, RTL generation, etc., thereby
enhancing the efficiency of the hardware design process.

While LLMs bring many benefits to the EDA workflow,
they would be widely adopted only if they can achieve
groundbreaking advancements to address the complexities of
hardware design. The diversity of EDA tasks, along with
the highly specialized nature of HDL, presents a significant
challenge for applying LLMs to automate the hardware design
process. In this paper, a comprehensive overview of how
LLM is shaping the next-generation EDA is provided to

System Specification
and Architecture Design

 Functional Design
and Logic Design (RTL)

Design Testing and
Verification

Physical Implementation
& Fabrication & Testing

 Error-based
Fault Localization Analyze

Repair Library

< / > C_Orig
int Func (int **p, int n) {
 p = malloc(sizeof(int *) *n); p[0] = &n;
return n > 1? *p[0] + Func(p, n-1):1

Input

Compile

Pointer

··· ···

Recursion
Retrieve

Similarity
Search

Extract Templates: T_Ref

< / >C_Ref ...for (int i=1; i<=n; i++) sum+=i; return sum;}...

Iterative Repair

Co-Simulation

③ Equivalence Verification
Pass
? Y

N
Testbench

Hardware
SynthesisIdentify

HLS
Tool

• Critical Code Segments
• Key Optimi. Targets

Final HLS-C

① Preprocessing

② Repair with RAG

④ PPA Optimization

Add / Tune
Parameters

such as
#pragma

Actual Errors

HLS
Tool

Potential
Errors

< / >

CPU Execution

HLS Simulation

Performance
Bottlenecks

C_Orig With T_Ref

Repair Instructions

You’re an expert in HLS

Prompts of LLM

Pass?
Y

(a)

Logic Synthesis &
PPA Optimization

< / >< / > Verilog
module adder_8bit (
 input [7:0] a...);...
endmodule

Driver DUT Checker

Automate
Specification
Optimization

Automate Code
Generation

Automate
Testbench
Generation

Automate Code
Debugging

Tune Arguments
& Suggest

Optimization
 Strategies

Automate
Back-End Task

Execution

Chip-Chat [5], Hierar.-Prompt [6], AutoChip [9]…

AutoBench [29], AutoSVA [30], VerilogReader[31]…

RTLFixer [20], Auto-Repair [24], MEIC [27]…

ChatEDA [34], Layout Optimization [35,36]… VeriPPA [33]…

Bug Detection
& Correction

Transcript
** Error: adder.v(6):
near ",": syntax error,
unexpected ',’.

Fig. 1. Typical chip design flow and potential LLM applications.

evaluate whether this integration is an actual breakthrough or
an overestimated future.

The rest of this paper is organized as follows. Section II
provides a comprehensive and in-depth discussion of current
trends in LLM applications in EDA. Section III analyzes
two emerging cases in code repair and testbench generation.
Section IV explores the future applications and challenges of
LLMs in reshaping EDA, and Section V concludes the paper.

II. STATE OF THE ART OF LLM APPLICATIONS IN EDA

Hardware design typically begins with design specifications,
which are then written into hardware description languages
(HDL) by experienced engineers. This process is not only
error-prone but also time-consuming and requires extensive
human debugging efforts. Recently, LLMs have demonstrated
remarkable capabilities in context understanding and logical
reasoning, making it possible to automate HDL generation [2]–
[4]. Chip-Chat [5] uses GPT-4 to collaborate with hardware
engineers, completing a full HDL writing process for a tapeout
and testing it on a new microprocessor design with an 8-
bit accumulator architecture. Given the challenges of using
LLMs to generate HDL for complex hardware tasks, the
authors then propose hierarchical prompting techniques to
enable efficient, stepwise hardware design [6]. AutoChip [9]
introduces an automated, feedback-driven method utilizing
LLMs to generate HDL. It combines LLMs with output
from Verilog compilers to iteratively generate the design. An
initial module is generated using design prompts. Afterward,
this module is corrected based on compilation errors and
simulation messages. GPT4AIGChip [10] is a framework that
automates AI accelerator design by integrating LLMs with
natural language inputs. This framework decouples different
functions and hardware modules of the AI accelerator, integrat-
ing LLM-friendly hardware templates and a prompt-enhanced
generator to iteratively optimize the AI accelerator design.
To protect hardware intellectual property (IP) from various

ar
X

iv
:2

41
0.

18
58

2v
1

 [e
es

s.S
Y

]
24

 O
ct

 2
02

4

[K. Xu et al., arXiv'24]

LLM-Aided Efficient Hardware Design Automation
Kangwei Xu1, Ruidi Qiu1, Zhuorui Zhao1, Grace Li Zhang2, Ulf Schlichtmann1, Bing Li3

1Chair of Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany
2Hardware for Artificial Intelligence Group, Technical University of Darmstadt, Darmstadt, Germany

3Research Group of Digital Integrated Systems, University of Siegen, Siegen, Germany
Email: {kangwei.xu, r.qiu, zhuorui.zhao, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de, bing.li@uni-siegen.de

Abstract—With the rapidly increasing complexity of mod-

ern chips, hardware engineers are required to invest more

effort in tasks such as circuit design, verification, and physi-

cal implementation. These workflows often involve continuous

modifications, which are labor-intensive and prone to errors.

Therefore, there is an increasing need for more efficient and

cost-effective Electronic Design Automation (EDA) solutions to

accelerate new hardware development. Recently, large language

models (LLMs) have made significant advancements in contextual

understanding, logical reasoning, and response generation. Since

hardware designs and intermediate scripts can be expressed

in text format, it is reasonable to explore whether integrating

LLMs into EDA could simplify and fully automate the entire

workflow. Accordingly, this paper discusses such possibilities in

several aspects, covering hardware description language (HDL)

generation, code debugging, design verification, and physical

implementation. Two case studies, along with their future outlook,

are introduced to highlight the capabilities of LLMs in code

repair and testbench generation. Finally, future directions and

challenges are highlighted to further explore the potential of

LLMs in shaping the next-generation EDA.

I. INTRODUCTION

Electronic Design Automation (EDA) spans the entire work-
flow from logic design to manufacturing, which plays a
key role in improving hardware performance, reducing costs,
and shortening development cycles. The advent of AI brings
revolutionary changes to reshape the future of EDA [1]. By
leveraging techniques such as large language models (LLMs),
patterns can be learned, and insights can be inspired from
a large amount of historical data, providing more efficient
and intelligent solutions for the EDA workflow [2]–[8]. Since
circuits can be represented by hardware description languages
(HDL), and intermediate scripts can be written in text format,
integrating EDA with LLMs to release human efforts has
become a promising trend. Recent studies show that the
application of LLMs in hardware design demonstrates their
superior capabilities and expertise in the field of EDA [9]–[16].
Fig. 1 provides an overview of LLM applications in the typical
chip design flow, showing their roles in automating tasks
like specification optimization, RTL generation, etc., thereby
enhancing the efficiency of the hardware design process.

While LLMs bring many benefits to the EDA workflow,
they would be widely adopted only if they can achieve
groundbreaking advancements to address the complexities of
hardware design. The diversity of EDA tasks, along with
the highly specialized nature of HDL, presents a significant
challenge for applying LLMs to automate the hardware design
process. In this paper, a comprehensive overview of how
LLM is shaping the next-generation EDA is provided to

System Specification
and Architecture Design

 Functional Design
and Logic Design (RTL)

Design Testing and
Verification

Physical Implementation
& Fabrication & Testing

 Error-based
Fault Localization Analyze

Repair Library

< / > C_Orig
int Func (int **p, int n) {
 p = malloc(sizeof(int *) *n); p[0] = &n;
return n > 1? *p[0] + Func(p, n-1):1

Input

Compile

Pointer

··· ···

Recursion
Retrieve

Similarity
Search

Extract Templates: T_Ref

< / >C_Ref ...for (int i=1; i<=n; i++) sum+=i; return sum;}...

Iterative Repair

Co-Simulation

③ Equivalence Verification
Pass
? Y

N
Testbench

Hardware
SynthesisIdentify

HLS
Tool

• Critical Code Segments
• Key Optimi. Targets

Final HLS-C

① Preprocessing

② Repair with RAG

④ PPA Optimization

Add / Tune
Parameters

such as
#pragma

Actual Errors

HLS
Tool

Potential
Errors

< / >

CPU Execution

HLS Simulation

Performance
Bottlenecks

C_Orig With T_Ref

Repair Instructions

You’re an expert in HLS

Prompts of LLM

Pass?
Y

(a)

Logic Synthesis &
PPA Optimization

< / >< / > Verilog
module adder_8bit (
 input [7:0] a...);...
endmodule

Driver DUT Checker

Automate
Specification
Optimization

Automate Code
Generation

Automate
Testbench
Generation

Automate Code
Debugging

Tune Arguments
& Suggest

Optimization
 Strategies

Automate
Back-End Task

Execution

Chip-Chat [5], Hierar.-Prompt [6], AutoChip [9]…

AutoBench [29], AutoSVA [30], VerilogReader[31]…

RTLFixer [20], Auto-Repair [24], MEIC [27]…

ChatEDA [34], Layout Optimization [35,36]… VeriPPA [33]…

Bug Detection
& Correction

Transcript
** Error: adder.v(6):
near ",": syntax error,
unexpected ',’.

Fig. 1. Typical chip design flow and potential LLM applications.

evaluate whether this integration is an actual breakthrough or
an overestimated future.

The rest of this paper is organized as follows. Section II
provides a comprehensive and in-depth discussion of current
trends in LLM applications in EDA. Section III analyzes
two emerging cases in code repair and testbench generation.
Section IV explores the future applications and challenges of
LLMs in reshaping EDA, and Section V concludes the paper.

II. STATE OF THE ART OF LLM APPLICATIONS IN EDA

Hardware design typically begins with design specifications,
which are then written into hardware description languages
(HDL) by experienced engineers. This process is not only
error-prone but also time-consuming and requires extensive
human debugging efforts. Recently, LLMs have demonstrated
remarkable capabilities in context understanding and logical
reasoning, making it possible to automate HDL generation [2]–
[4]. Chip-Chat [5] uses GPT-4 to collaborate with hardware
engineers, completing a full HDL writing process for a tapeout
and testing it on a new microprocessor design with an 8-
bit accumulator architecture. Given the challenges of using
LLMs to generate HDL for complex hardware tasks, the
authors then propose hierarchical prompting techniques to
enable efficient, stepwise hardware design [6]. AutoChip [9]
introduces an automated, feedback-driven method utilizing
LLMs to generate HDL. It combines LLMs with output
from Verilog compilers to iteratively generate the design. An
initial module is generated using design prompts. Afterward,
this module is corrected based on compilation errors and
simulation messages. GPT4AIGChip [10] is a framework that
automates AI accelerator design by integrating LLMs with
natural language inputs. This framework decouples different
functions and hardware modules of the AI accelerator, integrat-
ing LLM-friendly hardware templates and a prompt-enhanced
generator to iteratively optimize the AI accelerator design.
To protect hardware intellectual property (IP) from various

ar
X

iv
:2

41
0.

18
58

2v
1

 [e
es

s.S
Y

]
24

 O
ct

 2
02

4

Christopher Batten 19AI in Computer Engineering • ECE Retreat

Spring 2024: Sabbatical @ NVIDIA
Exploring large-language models for chip design in
Brucek Khailany's Accelerator & VLSI Research Group

Christopher Batten 20AI in Computer Engineering • ECE Retreat

PyMTL: A Python Framework for Hardware
Modeling, Generation, Simulation, & Verification

Python

Functional-Level
Cycle-Level

RTL

Test Bench

Multi-Level
Simulation

SystemVerilog

RTLgenerate

co-simulate synthesize

FPGA
ASICprototype

bring-up

• PyMTL3 enables:
– implementing multi-level hardware models
– analyzing, instrumenting, transforming models
– simulating models w/ fast JIT-compiled simulator
– applying state-of-the-art SW testing to HW

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

I Hardware modules are Python
classes derived from Component

I construct method for constructing
(elaborating) hardware

I ports and wires for signals

I update blocks for modeling
combinational and sequential logic

Christopher Batten Spring 2023 @ NVIDIA 12 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

I Hardware modules are Python
classes derived from Component

I construct method for constructing
(elaborating) hardware

I ports and wires for signals

I update blocks for modeling
combinational and sequential logic

Christopher Batten Spring 2023 @ NVIDIA 12 / 48

Christopher Batten 21AI in Computer Engineering • ECE Retreat

A hardware design framework
embedded in the most popular general-

purpose programming language can
potentially make design engineers

more effective

A hardware design framework
embedded in the most popular general-

purpose programming language can
potentially make design engineers

more effective

Hypothesis
A hardware design framework

embedded in the most popular general-
purpose programming language can

potentially make LLMs more effective
“The Top Programming Languages”

IEEE Spectrum, Aug 2023

Embedded DSLs & LLMs

Underlying Assumption
LLMs are trained on far
more Python code than

Verilog code and thus are
more effective on

generating Python code
than Verilog Code

Christopher Batten 22AI in Computer Engineering • ECE Retreat

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Test
(iverilog) Log Files

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Test
(iverilog) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Test
(iverilog) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

Test
(Python) Log Files

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Test
(iverilog) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

Test
(Python) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

PyHDL-Eval Framework • Each problem includes prompt,
Verilog reference, Verilog test
bench, and Python test script

• Generate script supports different
ICL examples, models, model
hosting services, and languages

• Verilog reference can be tested
against itself using both Icarus
Verilog and Python via
PyMTL3/Verilator

• LLM-generated Verilog RTL is
tested against Verilog reference
using Icarus Verilog

• Analysis scripts enable automatic
failure classification

• LLM-generated Python-
embedded DSL RTL is tested
against Verilog reference using
Python test scripts

• Includes workflow management
scripts

Christopher Batten 23AI in Computer Engineering • ECE Retreat

PyHDL-Eval Problems
• New evaluation benchmark with 168

specification-to-RTL problems developed
from scratch

• Careful ontological approach with problems
categorized into classes and subclasses
– 97 combinational problems
– 71 sequential problems
– 19 subclasses

Problem Num Spec Lines Spec Tokens Reference LOC Num Test Cases
Category Examples of Problems in Category Probs

Across All Categories: 168 4 17.8 60 48 216 812 6 21.7 93 1 3.2 12

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 comb const constant zero, one, lohi, 32-bit value 4 4 5.0 8 48 60 88 6 6.5 8 1 1.0 1
2 comb wires pass through, split, bit/byte reverse, sign extend 8 6 10.1 21 65 130 274 7 12.1 19 2 2.0 2
3 comb gates single logic gate, multiple logic gates, natural language 13 6 11.0 16 58 128 231 8 11.2 17 1 1.2 2
4 comb bool logic equations, truth table, K-map, waveform, natural language 15 8 19.6 52 72 231 746 9 16.8 29 1 1.0 1
5 comb mux various bitwidths and number of inputs, mux/demux 9 9 13.8 17 116 162 198 8 21.7 34 1 2.0 3
6 comb codes encoder, decoder, priority encoder, graycode, BCD, ASCII, parity 14 6 7.9 11 67 109 152 7 19.9 27 1 1.8 3
7 comb arith add/sub, popcount, multiplication, shift/rotate, comparison, ALU, sorter 17 7 10.7 20 85 130 293 8 13.4 32 2 4.1 9
8 comb fsm FSM tables and diagrams for next state and output logic 9 22 27.9 49 234 309 511 30 37.2 55 1 1.3 2
9 comb param parameterized: gates, mux, encoder, decoder, priority encoder, rotator 8 7 10.4 15 65 133 175 9 14.6 22 2 3.9 6

10 seq gates single gate, multiple gates, natural language 9 7 12.4 22 74 150 314 9 14.1 21 1 2.4 4
11 seq bool truth table, waveform 5 16 24.4 32 167 252 318 9 11.8 16 1 2.2 4
12 seq sreg shift registers: SISO, PISO, SIPO, universal, bidir, LFSR 7 15 21.1 28 177 280 459 17 20.6 25 3 4.7 7
13 seq count counters: binary, up/down, saturating, variable, decade, timer, clock 9 11 16.1 27 135 191 323 17 27.8 60 4 6.4 10
14 seq edge edge detect, edge capture, edge counters, max switching 5 24 26.8 29 331 356 369 11 19.4 33 4 6.0 9
15 seq arb arbiters: priority, rotational oblivious, round robin, grant-hold, weighted 5 34 42.6 60 423 565 812 47 60.6 93 6 7.8 12
16 seq fsm FSM tables and diagrams, natural language 13 22 28.5 49 260 317 503 34 43.4 63 4 4.3 6
17 seq mem 1r1w, 2r1w register file (forwarding, reg zero, byte enables), 1s1w CAM 6 15 19.3 24 185 249 346 16 22.0 33 3 4.5 6
18 seq arith bit serial incrementer, bit serial adder, byte-serial adder, accumulator 4 23 26.8 34 264 327 404 17 27.3 31 6 6.3 7
19 seq pipe 1/2/3-stage delay, 1/2-stage 2/3/4-input adder, 2-stage minmax 8 20 28.5 38 234 379 554 11 24.1 41 2 4.0 6

Christopher Batten 24AI in Computer Engineering • ECE Retreat

PyHDL-Eval Problem 9.8
Problem Num Spec Lines Spec Tokens Reference LOC Num Test Cases
Category Examples of Problems in Category Probs

Across All Categories: 168 4 17.8 60 48 216 812 6 21.7 93 1 3.2 12

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 comb const constant zero, one, lohi, 32-bit value 4 4 5.0 8 48 60 88 6 6.5 8 1 1.0 1
2 comb wires pass through, split, bit/byte reverse, sign extend 8 6 10.1 21 65 130 274 7 12.1 19 2 2.0 2
3 comb gates single logic gate, multiple logic gates, natural language 13 6 11.0 16 58 128 231 8 11.2 17 1 1.2 2
4 comb bool logic equations, truth table, K-map, waveform, natural language 15 8 19.6 52 72 231 746 9 16.8 29 1 1.0 1
5 comb mux various bitwidths and number of inputs, mux/demux 9 9 13.8 17 116 162 198 8 21.7 34 1 2.0 3
6 comb codes encoder, decoder, priority encoder, graycode, BCD, ASCII, parity 14 6 7.9 11 67 109 152 7 19.9 27 1 1.8 3
7 comb arith add/sub, popcount, multiplication, shift/rotate, comparison, ALU, sorter 17 7 10.7 20 85 130 293 8 13.4 32 2 4.1 9
8 comb fsm FSM tables and diagrams for next state and output logic 9 22 27.9 49 234 309 511 30 37.2 55 1 1.3 2
9 comb param parameterized: gates, mux, encoder, decoder, priority encoder, rotator 8 7 10.4 15 65 133 175 9 14.6 22 2 3.9 6

10 seq gates single gate, multiple gates, natural language 9 7 12.4 22 74 150 314 9 14.1 21 1 2.4 4
11 seq bool truth table, waveform 5 16 24.4 32 167 252 318 9 11.8 16 1 2.2 4
12 seq sreg shift registers: SISO, PISO, SIPO, universal, bidir, LFSR 7 15 21.1 28 177 280 459 17 20.6 25 3 4.7 7
13 seq count counters: binary, up/down, saturating, variable, decade, timer, clock 9 11 16.1 27 135 191 323 17 27.8 60 4 6.4 10
14 seq edge edge detect, edge capture, edge counters, max switching 5 24 26.8 29 331 356 369 11 19.4 33 4 6.0 9
15 seq arb arbiters: priority, rotational oblivious, round robin, grant-hold, weighted 5 34 42.6 60 423 565 812 47 60.6 93 6 7.8 12
16 seq fsm FSM tables and diagrams, natural language 13 22 28.5 49 260 317 503 34 43.4 63 4 4.3 6
17 seq mem 1r1w, 2r1w register file (forwarding, reg zero, byte enables), 1s1w CAM 6 15 19.3 24 185 249 346 16 22.0 33 3 4.5 6
18 seq arith bit serial incrementer, bit serial adder, byte-serial adder, accumulator 4 23 26.8 34 264 327 404 17 27.3 31 6 6.3 7
19 seq pipe 1/2/3-stage delay, 1/2-stage 2/3/4-input adder, 2-stage minmax 8 20 28.5 38 234 379 554 11 24.1 41 2 4.0 6

Christopher Batten 25AI in Computer Engineering • ECE Retreat

PyHDL-Eval Problem 19.6
Problem Num Spec Lines Spec Tokens Reference LOC Num Test Cases
Category Examples of Problems in Category Probs

Across All Categories: 168 4 17.8 60 48 216 812 6 21.7 93 1 3.2 12

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

1 comb const constant zero, one, lohi, 32-bit value 4 4 5.0 8 48 60 88 6 6.5 8 1 1.0 1
2 comb wires pass through, split, bit/byte reverse, sign extend 8 6 10.1 21 65 130 274 7 12.1 19 2 2.0 2
3 comb gates single logic gate, multiple logic gates, natural language 13 6 11.0 16 58 128 231 8 11.2 17 1 1.2 2
4 comb bool logic equations, truth table, K-map, waveform, natural language 15 8 19.6 52 72 231 746 9 16.8 29 1 1.0 1
5 comb mux various bitwidths and number of inputs, mux/demux 9 9 13.8 17 116 162 198 8 21.7 34 1 2.0 3
6 comb codes encoder, decoder, priority encoder, graycode, BCD, ASCII, parity 14 6 7.9 11 67 109 152 7 19.9 27 1 1.8 3
7 comb arith add/sub, popcount, multiplication, shift/rotate, comparison, ALU, sorter 17 7 10.7 20 85 130 293 8 13.4 32 2 4.1 9
8 comb fsm FSM tables and diagrams for next state and output logic 9 22 27.9 49 234 309 511 30 37.2 55 1 1.3 2
9 comb param parameterized: gates, mux, encoder, decoder, priority encoder, rotator 8 7 10.4 15 65 133 175 9 14.6 22 2 3.9 6

10 seq gates single gate, multiple gates, natural language 9 7 12.4 22 74 150 314 9 14.1 21 1 2.4 4
11 seq bool truth table, waveform 5 16 24.4 32 167 252 318 9 11.8 16 1 2.2 4
12 seq sreg shift registers: SISO, PISO, SIPO, universal, bidir, LFSR 7 15 21.1 28 177 280 459 17 20.6 25 3 4.7 7
13 seq count counters: binary, up/down, saturating, variable, decade, timer, clock 9 11 16.1 27 135 191 323 17 27.8 60 4 6.4 10
14 seq edge edge detect, edge capture, edge counters, max switching 5 24 26.8 29 331 356 369 11 19.4 33 4 6.0 9
15 seq arb arbiters: priority, rotational oblivious, round robin, grant-hold, weighted 5 34 42.6 60 423 565 812 47 60.6 93 6 7.8 12
16 seq fsm FSM tables and diagrams, natural language 13 22 28.5 49 260 317 503 34 43.4 63 4 4.3 6
17 seq mem 1r1w, 2r1w register file (forwarding, reg zero, byte enables), 1s1w CAM 6 15 19.3 24 185 249 346 16 22.0 33 3 4.5 6
18 seq arith bit serial incrementer, bit serial adder, byte-serial adder, accumulator 4 23 26.8 34 264 327 404 17 27.3 31 6 6.3 7
19 seq pipe 1/2/3-stage delay, 1/2-stage 2/3/4-input adder, 2-stage minmax 8 20 28.5 38 234 379 554 11 24.1 41 2 4.0 6

Christopher Batten 28AI in Computer Engineering • ECE Retreat

Run 20 samples for each
problem to determine
average pass rate per

problem

PyHDL-Eval Results: ICL for Verilog & PyMTL3

• Up to three ICL examples
– 8-bit combinational incrementer
– 8-bit registered incrementer
– 8-bit parameterized registered incrementer

• ICL for Verilog
– ICL examples help smaller models more than larger models
– ICL examples also help LLaMA3 70B and GPT4
– ICL examples do not significantly help GPT4 Turbo

168 Comb+Seq Problems

DSL
Num

Examples

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

NIM AnyScale Anyscale OpenAI OpenAI

Verilog 0 14.94% 21.49% 57.62% 60.30% 70.98%
Verilog 1 26.58% 32.95% 56.88% 62.44% 70.09%
Verilog 2 32.17% 34.76% 62.59% 69.43% 72.80%
Verilog 3 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 0 0.00% 0.00% 0.62% 12.50% 1.88%
PyMTL 1 20.00% 15.65% 27.29% 33.10% 33.12%
PyMTL 2 23.54% 14.32% 31.93% 43.39% 39.17%
PyMTL 3 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 3 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 3 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 3 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 3 22.44% 20.15% 45.18% 49.17% 56.01%

0 14.94% 21.49% 57.62% 60.30% 70.98%
1 26.58% 32.95% 56.88% 62.44% 70.09%
2 32.17% 34.76% 62.59% 69.43% 72.80%
3 32.65% 36.67% 63.27% 70.00% 72.32%

0 0.00% 0.00% 0.62% 12.50% 1.88%
1 20.00% 15.65% 27.29% 33.10% 33.12%
2 23.54% 14.32% 31.93% 43.39% 39.17%
3 23.93% 15.86% 33.04% 46.67% 43.60%

Verilog 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 22.44% 20.15% 45.18% 49.17% 56.01%

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for Verilog

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for PyMTL3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Verilog

Number of ICL Examples
0 1 2 3

Number of ICL Examples

A
ve

ra
ge

 P
as

s R
at

e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for Verilog

Av
er

ag
e

Pa
ss

 R
at

e

PyMTL3

Number of ICL Examples
0 1 2 3

ICL is critical for
Python-embedded DSLs
(even for GPT4 Turbo)!

Num Code
ICL Gemma GPT4

DSL Ex 7B 8B 70B GPT4 Turbo
Llama3 Llama3

Verilog 0 14.9% 21.5% 57.5% 60.2% 71.0%
Verilog 1 26.6% 33.0% 56.7% 62.4% 70.1%
Verilog 2 32.2% 34.7% 62.4% 69.3% 72.7%
Verilog 3 32.7% 36.6% 63.2% 69.9% 72.2%

PyMTL3 0 0.0% 0.0% 0.6% 13.2% 2.0%
PyMTL3 1 20.0% 15.7% 27.3% 33.1% 33.2%
PyMTL3 2 23.5% 14.3% 31.9% 43.5% 39.2%
PyMTL3 3 23.9% 15.9% 33.0% 47.0% 43.6%

PyRTL 3 14.7% 6.9% 24.4% 22.9% 29.8%
MyHDL 3 32.8% 23.1% 53.8% 61.0% 62.0%
Migen 3 22.9% 21.4% 40.2% 46.0% 47.3%
Amaranth 3 22.4% 20.7% 45.2% 49.4% 56.0%

Num Code
ICL Gemma GPT4

DSL Ex 7B 8B 70B GPT4 Turbo
Llama3 Llama3

Verilog 0 14.9% 21.5% 57.5% 60.2% 71.0%
Verilog 1 26.6% 33.0% 56.7% 62.4% 70.1%
Verilog 2 32.2% 34.7% 62.4% 69.3% 72.7%
Verilog 3 32.7% 36.6% 63.2% 69.9% 72.2%

PyMTL3 0 0.0% 0.0% 0.6% 13.2% 2.0%
PyMTL3 1 20.0% 15.7% 27.3% 33.1% 33.2%
PyMTL3 2 23.5% 14.3% 31.9% 43.5% 39.2%
PyMTL3 3 23.9% 15.9% 33.0% 47.0% 43.6%

PyRTL 3 14.7% 6.9% 24.4% 22.9% 29.8%
MyHDL 3 32.8% 23.1% 53.8% 61.0% 62.0%
Migen 3 22.9% 21.4% 40.2% 46.0% 47.3%
Amaranth 3 22.4% 20.7% 45.2% 49.4% 56.0%

Code Gemma 7B
LLaMA3 8B
LLaMA3 70B
GPT4
GPT4 Turbo

168 Comb+Seq Problems

DSL
Num

Examples

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

NIM AnyScale Anyscale OpenAI OpenAI

Verilog 0 14.94% 21.49% 57.62% 60.30% 70.98%
Verilog 1 26.58% 32.95% 56.88% 62.44% 70.09%
Verilog 2 32.17% 34.76% 62.59% 69.43% 72.80%
Verilog 3 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 0 0.00% 0.00% 0.62% 12.50% 1.88%
PyMTL 1 20.00% 15.65% 27.29% 33.10% 33.12%
PyMTL 2 23.54% 14.32% 31.93% 43.39% 39.17%
PyMTL 3 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 3 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 3 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 3 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 3 22.44% 20.15% 45.18% 49.17% 56.01%

0 14.94% 21.49% 57.62% 60.30% 70.98%
1 26.58% 32.95% 56.88% 62.44% 70.09%
2 32.17% 34.76% 62.59% 69.43% 72.80%
3 32.65% 36.67% 63.27% 70.00% 72.32%

0 0.00% 0.00% 0.62% 12.50% 1.88%
1 20.00% 15.65% 27.29% 33.10% 33.12%
2 23.54% 14.32% 31.93% 43.39% 39.17%
3 23.93% 15.86% 33.04% 46.67% 43.60%

Verilog 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 22.44% 20.15% 45.18% 49.17% 56.01%

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for Verilog

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for PyMTL3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Av
er

ag
e

Pa
ss

 R
at

e

Christopher Batten 29AI in Computer Engineering • ECE Retreat

PyHDL-Eval Results: Comparing Embedded DSLs

• State-of-the-art GPT4 Turbo does reasonably
well on Verilog specification-to-RTL tasks

• Larger open models (LLaMA3 70B) nearing
larger closed models (GPT4, GPT4 Turbo)

• Smaller code foundation model (Code Gemma
7B) outperforms smaller general foundation
model (LLaMA3 8B) on Python-embedded DSL

• LLMs have more success on specification-to-
RTL tasks targeting MyHDL vs other Python-
embedded DSLs

Num Code
ICL Gemma GPT4

DSL Ex 7B 8B 70B GPT4 Turbo
Llama3 Llama3

Verilog 3 32.7% 36.6% 63.2% 69.9% 72.2%

PyMTL3 3 23.9% 15.9% 33.0% 47.0% 43.6%
PyRTL 3 14.7% 6.9% 24.4% 22.9% 29.8%
MyHDL 3 32.8% 23.1% 53.8% 61.0% 62.0%
Migen 3 22.9% 21.4% 40.2% 46.0% 47.3%
Amaranth 3 22.4% 20.7% 45.2% 49.4% 56.0%

168 Comb+Seq Problems

DSL
Num

Examples

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

Code
Gemma

7B
LLaMA3

8B
LLaMA3

70B GPT4
GPT4
Turbo

NIM AnyScale Anyscale OpenAI OpenAI

Verilog 0 14.94% 21.49% 57.62% 60.30% 70.98%
Verilog 1 26.58% 32.95% 56.88% 62.44% 70.09%
Verilog 2 32.17% 34.76% 62.59% 69.43% 72.80%
Verilog 3 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 0 0.00% 0.00% 0.62% 12.50% 1.88%
PyMTL 1 20.00% 15.65% 27.29% 33.10% 33.12%
PyMTL 2 23.54% 14.32% 31.93% 43.39% 39.17%
PyMTL 3 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 3 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 3 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 3 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 3 22.44% 20.15% 45.18% 49.17% 56.01%

0 14.94% 21.49% 57.62% 60.30% 70.98%
1 26.58% 32.95% 56.88% 62.44% 70.09%
2 32.17% 34.76% 62.59% 69.43% 72.80%
3 32.65% 36.67% 63.27% 70.00% 72.32%

0 0.00% 0.00% 0.62% 12.50% 1.88%
1 20.00% 15.65% 27.29% 33.10% 33.12%
2 23.54% 14.32% 31.93% 43.39% 39.17%
3 23.93% 15.86% 33.04% 46.67% 43.60%

Verilog 32.65% 36.67% 63.27% 70.00% 72.32%
PyMTL 23.93% 15.86% 33.04% 46.67% 43.60%
PyRTL 14.67% 6.85% 24.32% 22.86% 29.97%
MyHDL 32.86% 23.15% 53.84% 60.65% 62.23%
Migen 22.98% 21.40% 40.21% 46.10% 47.44%
Amaranth 22.44% 20.15% 45.18% 49.17% 56.01%

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for Verilog

Number of ICL Examples

Av
er

ag
e

Pa
ss

 R
at

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

Code Gemma 7B LLaMA3 8B LLaMA3 70B
GPT4 GPT4 Turbo

PyHDL-Eval for PyMTL3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Code Gemma 7B LLaMA3 8B LLaMA3 70B GPT4 GPT4 Turbo

Verilog PyMTL PyRTL MyHDL Migen Amaranth

Ultimately, our findings do not support the original
hypothesis that LLMs would be naturally more

effective targeting Python-embedded DSLs

Christopher Batten 31AI in Computer Engineering • ECE Retreat

Num Code
ICL Gemma Llama3.2 GPT4 GPT4o

DSL Ex 7B 8B 70B 90B GPT4 Turbo Mini
Llama3 Llama3

Verilog 0 14.9% 21.5% 57.5% 76.1% 60.2% 71.0% 83.6%
Verilog 1 26.6% 33.0% 56.7% 82.4% 62.4% 70.1% 84.7%
Verilog 2 32.2% 34.7% 62.4% 84.0% 69.3% 72.7% 86.4%
Verilog 3 32.7% 36.6% 63.2% 85.0% 69.9% 72.2% 87.2%

PyMTL3 0 0.0% 0.0% 0.6% 13.2% 2.0%
PyMTL3 1 20.0% 15.7% 27.3% 33.1% 33.2%
PyMTL3 2 23.5% 14.3% 31.9% 43.5% 39.2%
PyMTL3 3 23.9% 15.9% 33.0% 47.0% 43.6%

PyRTL 3 14.7% 6.9% 24.4% 22.9% 29.8%
MyHDL 3 32.8% 23.1% 53.8% 61.0% 62.0%
Migen 3 22.9% 21.4% 40.2% 46.0% 47.3%
Amaranth 3 22.4% 20.7% 45.2% 49.4% 56.0%

V1.1

Ar
tif

acts
Available

Functional V

1.1

Ar
tif

act
s Evaluated

PyHDL-Eval: An LLM Evaluation Framework for
Hardware Design Using Python-Embedded DSLs

Christopher Batten∗
cbatten@cornell.edu
Cornell University
Ithaca, NY, USA

Nathaniel Pinckney
npinckney@nvidia.com
NVIDIA Corporation
Santa Clara, CA, USA

Mingjie Liu
mingjiel@nvidia.com
NVIDIA Corporation
Santa Clara, CA, USA

Haoxing Ren
haoxingr@nvidia.com
NVIDIA Corporation
Santa Clara, CA, USA

Brucek Khailany
bkhailany@nvidia.com
NVIDIA Corporation
Santa Clara, CA, USA

Abstract
Embedding hardware design frameworks within Python is a promis-
ing technique to improve the productivity of hardware engineers. At
the same time, there is signi�cant interest in using large-language
models (LLMs) to improve key chip design tasks. This paper de-
scribes PyHDL-Eval, a new framework for evaluating LLMs on
speci�cation-to-RTL tasks in the context of Python-embedded domain-
speci�c languages (DSLs). The framework includes 168 problems,
Verilog reference solutions, Verilog test benches, Python test scripts,
and work�ow orchestration scripts. We use the framework to con-
duct a detailed case study comparing �ve LLMs (CodeGemma 7B,
Llama3 8B/70B, GPT4, and GPT4 Turbo) targeting Verilog and �ve
Python-embedded DSLs (PyMTL3, PyRTL, MyHDL, Migen, and
Amaranth). Our results demonstrate the promise of in-context learn-
ingwhen applied to smallermodels (e.g., pass rate for CodeGemma 7B
improves from 14.9% to 32.7% on Verilog) and Python-embedded
DSLs (e.g., pass rate for LLama3 70B improves from 0.6% to 33.0% on
PyMTL3). We �nd LLMs perform better when targeting Verilog as
compared to Python-embedded DSLs (e.g., pass rate for GPT4 Turbo
is 72.2% on Verilog and 29.8–62.0% on the Python-embedded DSLs)
despite using a popular general-purpose host language. PyHDL-
Eval will serve as a useful framework for future research at the
intersection of Python-embedded DSLs and LLMs.

CCS Concepts
• Hardware ! Hardware description languages and compila-
tion; • Computing methodologies!Machine learning.

Keywords
hardware description languages, Python-embedded domain-speci�c
languages, large language models

∗Also with NVIDIA Corporation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685948

ACM Reference Format:
Christopher Batten, Nathaniel Pinckney,Mingjie Liu, Haoxing Ren, and Brucek
Khailany. 2024. PyHDL-Eval: An LLM Evaluation Framework for Hard-
ware Design Using Python-Embedded DSLs . In 2024 ACM/IEEE Interna-
tional Symposium on Machine Learning for CAD (MLCAD ’24), September
9–11, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3670474.3685948

1 Introduction
Novel domain-speci�c languages (DSLs) can improve hardware de-
signer productivity by introducing new execution semantics, type
systems, and/or custom compilation �ows [14, 27, 28, 38]. Alter-
natively, embedded DSLs for hardware augment a software host
language with a carefully designed library to provide the illusion
of a new DSL while maintaining all of the features of the host lan-
guage [3–6, 32–34]. Python-embedded DSLs for hardware design
and veri�cation capitalize on Python’s popularity but also its unique
mix of language features (e.g, lightweight syntax, dynamic typing,
re�ection, metaprogramming) and ecosystem (e.g., third-party li-
braries, package management) [2, 11–13, 17–19, 23, 38]. Trend #1:
Python-embedded DSLs are increasingly being used to improve the
productivity of hardware design and veri�cation.

Large-language models (LLMs) can also improve hardware de-
signer productivity by enabling engineers to express their intent as
a natural-language prompt and using an LLM to generate low-level
design or veri�cation code [42]. Early work identi�ed the key chal-
lenges and opportunities in using general-purpose LLMs for chip
design [7, 10]. More recently, there has been work on new LLM
benchmarks and �ne-tuned LLMs for Verilog RTL code completion
and speci�cation-to-RTL tasks (e.g., VerilogEval [21], RTLLM [24],
VeriGen [35, 36], RTLCoder [22], RTL-Repo [1]). Agent-based ap-
proaches use this recent work as one step in an automated and
iterative work�ow (e.g., RTLFixer [39], AutoChip [37]). LLMs are
also being used more broadly to target other HDLs [40], generate
hardware accelerators [15], generate dynamic test stimulus [41],
generate formal assertions [31], and serve as a general chip-design
AI assistant [20]. Trend #2: LLMs are increasingly being used to im-
prove the productivity of hardware design and veri�cation.

This paper describes PyHDL-Eval1, a framework designed to
enable research at the intersection of these two trends. Section 2
brie�y reviews the Python-embedded DSLs that are considered in

1PyHDL-Eval is available at https://github.com/cornell-brg/pyhdl-eval

PyHDL-Eval Verilog Results
on Newer Models

Both open and closed large-language models
are continuing to make impressive progress

because of AI hardware

Christopher Batten 32AI in Computer Engineering • ECE Retreat

2023/2024 Sabbatical Key Takeaways

Slice Lab Retreat, Jan 2024

Artificial
Intelligence

Hardware
Systems

NVIDIA Voyager , May 2024

Problem
Specification

Python
Test
Script

Verilog RTL
Reference

Verilog
Test
Bench

Verilog
System

Msg

Verilog
ICL

Examples

Generate
Script

Verilog
RTL

LLM

PyDSL
ICL

Examples

PyDSL
System

Msg

Generate
Script

PyDSL
RTL

Test
(Python)

Test
(iverilog)

Reference
OK?

Reference
OK?

Test
(iverilog) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

Test
(Python) Log Files

Analysis
Script

Failure
Classification

Accuracy
(pass@1)

Christopher Batten 33AI in Computer Engineering • ECE Retreat

Motivation for Taking Course
• Trends in Artificial Intelligence
• 2023/2024 Sabbatical

– Fall 2023: Slice Lab @ UC Berkeley
– Spring 2024: NVIDIA Research @ Santa Clara, CA

Incredibly exciting
time since

hardware systems are
critical to enabling AI

capabilities
and

AI will transform the
way we build

hardware systems

Artificial
Intelligence

Hardware
Systems

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 17 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Course Structure

Part 1
ASIC Design

Overview

Part 2
Digital CMOS

Circuits

Part 3
CAD Algorithms

P P

MM

Prereq
Computer

Architecture

ECE 6745 Course Overview 18 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Part 1: ASIC Design Overview

P P

MM

Topic 1
Hardware

Description
Languages

Topic 2
CMOS Devices

Topic 3
CMOS Circuits

Topic 4
Full-Custom

Design
Methodology

Topic 5
Automated

Design
Methodologies

Topic 7
Clocking, Power Distribution,

Packaging, and I/O

Topic 8
Testing and Verification

Topic 6
Closing

the
Gap

ECE 6745 Course Overview 19 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Part 2: Digital CMOS Circuits

Topic
10

Se
qu
en
tia
l

Sta
teTopic

11

Int
erc
on
ne
ct

Topic
9

Co
mb
ina
tio
na
l

Lo
gic

ECE 6745 Course Overview 20 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Part 3: CAD Algorithms

RTL to Logic

Synthesis

Technology
Independent

Synthesis

Technology
Dependent
Synthesis

x = a'bc + a'bc'
y = b'c' + ab' + ac

x = a'b
y = b'c' + ac

Placement

Detailed
Routing

Global

Routing

Topic 12
Synthesis Algorithms

Topic 13
Physical Design Automation

ECE 6745 Course Overview 21 / 46

• Course Goal, Motivation, Structure • Activity ASIC Design Case Studies

Five-Week Design Project

P

I$

D$

Network

Network

Network

Xcel P

I$

D$ D$ D$

Xcel

Accelerated
Instructions

Performance (Tasks per Second)

En
er

gy
 E

ffi
ci

en
cy

 (T
as

ks
 p

er
 J

ou
le

)

Simple
Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Flex
ibil

ity
vs.

 Spe
cia

liza
tio

n
Custom
ASIC

Less Flexible
Accelerator

More Flexible
Accelerator

ECE 6745 Course Overview 22 / 46

Course Goal, Motivation, Structure • Activity • ASIC Design Case Studies

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 23 / 46

Course Goal, Motivation, Structure • Activity • ASIC Design Case Studies

Fixed-Latency Iterative Multiplier Datapath

b_reg
b_mux_sel

32b

a_reg
a_mux_sel

32b

result_
reg

result_
mux_sel

result_en

32b

32b

32b

>>

<<

add_
mux_sel

re
q_
m
sg
.are
q_
m
sg

32b re
sp
_m
sg

re
q_
m
sg
.b

b_lsb

0

ECE 6745 Course Overview 24 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 25 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Hardware Xcel for RSA Cryptography (Aidan McNay)

ECE 6745 Course Overview 26 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Algorithm Design-Space Exploration

ECE 6745 Course Overview 27 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Baseline Software Implementation

ECE 6745 Course Overview 28 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Baseline Hardware Implementation

ECE 6745 Course Overview 29 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Alternative Naive Design

ECE 6745 Course Overview 30 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Alternative Optimized Design

ECE 6745 Course Overview 31 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

ASIC Implementations

(a) Amoeba plot of our ProcXcelNaive system (b) Amoeba plot of our ProcXcelMont system

Figure 16: Amoeba plots of our processor-accelerator systems

MontMulRemmodule, compared to the size of our naive accelerator’s MulRemmodule. The latter implements
the mulrem operation using a optimized multiplier (our synthesis tool chose an unsigned Booth-Encoded
Radix8 multiplier from the Synopsys DesignWare component library) and iterative divider, allowing for rel-
atively little area to be used (7776.377µm2, on average). However, unrolling the operation combinationally
for the 32 AddRed units in our MontMulRem module takes up significantly more area (13846.736µm2, on
average). This is augmented by the fact that our RSAXcel module only needs 2 MulRem units in the main
ModExp module, whereas our RSAMontXcel module needs 3 more for a total of 5; 2 extra for conversion into
N-residue form in the MontConvertIn module, and one more for conversion out in the MontConvertOut
module. This leads to an area overhead of 2(13846.736µm2 � 7776.377µm2) = 12140.718µm2 for the en-
larged size of the initial 2 MulRem modules, plus 3(13846.736µm2) = 41540.208µm2 for the additional 3
MontMulRem modules needed for conversion, for a total of 53680.926µm2 of extra area from these modules.
This accounts for the large majority of the extra 57726.21µm2 of area that our RSAMontXcel module uses
compared to our RSAXcel module.

This area analysis translates directly over to our RSA systems, with our accelerators coupled to processors.
our ProcXcelNull system served as the system to run our baseline implementations, having a ”null”
accelerator just to maintain the accelerator connections. Relative to this, our ProcXcelNaive system
(processor with a RSAXcel accelerator) had an area overhead of 17223.234µm2, only slightly less than
what our RSAXcel occupied in isolation (with the slight decrease due to the fact that our null accelerator
still took up some area in the ProcXcelNull implementation). Similarly, our ProcXcelMont system
(processor with a RSAMontXcel accelerator) had an area overhead relative to the ProcXcelNull system
of 74703.174µm2, slightly less than the area of our RSAMontXcel in isolation. Combined with our previous
data, this allows us to analyze the tradeo� between area and energy in our RSA systems, visualized in the
plots in Figure 17.

Here, we can see the tradeo� we have to make as designers between are and energy. The least area
designs are our baseline designs with just the processor and null accelerator (with the most performant
design depending slightly on the application, but assuming that 0.98 � 1, we can generally say that the
Montgomery version is faster due to the speedup on decryption). However, as we want to obtain faster
performance with custom accelerator hardware, we must also sacrifice area. This comes in di�erent degrees;
our ProcXcelNaive system has 1.8x for fairly sizeable performance gains relative to both baseline designs.
We can obtain even faster performance using our ProcXcelMontgomery module, but it comes at the cost of
a system with 4.5x the area of our baseline. With the exception of our baselines (which change performance
with the algorithm), no system completely dominates another; any could be a valid choice, depending on

21

ECE 6745 Course Overview 32 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Area vs. Performance Design-Space Exploration

Figure 17: Area vs. Performance plots for our RSA systems

the constraints that are imposed on our system (they all lie along a pareto-optimal curve).
Similarly to with performance, this would change for scaling up the number of bits. Our processors

wouldn’t largely change due to the emulation of N -bit operations. Our RSAXcel’s area would grow with
N , as it needs an N -bit multiplier and div rem unit. However, our RSAMontXcel would grow in area
proportional to N2; it needs N AddRed modules in the MontMulRem unit, each of which need an (N + 2)-
bit adder. Therefore, as we scale up our number of bits, our accelerator implementations will grow larger;
RSAXcel will grow with N , and RSAMontXcel will grow with N2.

5.3 Critical Path

In addition to area, a useful metric our ASIC flows can tell us it the critical path, the longest register-to-
register path in our design, and the one that limits how fast our design can perform. While our designs were
constrained with the shortest clock period at 3ns (and not optimized beyond that), the critical path is still
useful in knowing which part of our design is limiting our speed, and which one we’d have to optimize first
in order to have a faster system. For our accelerator designs, these paths can be additionally viewed as the
paths highlighted in yellow in Figure 15, as well as the paths for the overall systems in Figure 16.

The majority of our designs (RSAXcel, as well as all of our processor-accelerator systems) incorporate a
combinational 64-bit multiplier followed by a div rem unit. For our accelerator, this is part of the MulRem
module, whereas for our processor systems, this path can be found as a bypass path from the result of the
multiplier in the X stage back to the input of the div rem unit in the D stage. For these designs, this
is the critical path (specifically inside the r mulrem instantiation for our accelerator); the combinational
64-bit multiplier is very large, and takes a while for the operands to pass through (with the end of the path
being in the div rem unit due to the logic done to store the inputs, as they must be muxed with other
intermediate values that are used during operation). Note that when our accelerator is coupled with the
processor, the multiplier→div rem path in the processor is longer than the one in the accelerator, as it
must also go through bypass muxing.

The only module for which this isn’t the critical path is the RSAMontXcel module. This is by design;
we modified the Montgomery algorithm to strategically overlap the multiply and reduction phases, breaking
them up into smaller portions that only use adders in the MontMulRem module [2]. However, this is still
the bulk of our computation; we had to pipeline the stages in the MontMulRem module to meet timing, so
it makes sense that our critical path for the overall accelerator is in one of these stages (specifically, the first
stage of the r montmulrem instantiation in the MontConvertIn module). While this is hard to compare
to our naive implementations in terms of speed (as our Montgomery version optimized the computation at
an algorithmic level), it tells us that we can achieve even more speedup at a hardware level if we were able
to execute this combinational computation faster.

22

I Optimized accelerator improves performance by over 20⇥ but
increases area by 4.4⇥

I Optimized algorithm for encryption does not improve performance of
software baseline, but does improve performance of hardware
accelerator

ECE 6745 Course Overview 33 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Energy vs. Performance Design-Space Exploration

1.24 for decryption), you get an overall overhead of 2.02x for encryption and 2.10x for decryption for both
an improved algorithm and custom hardware. This is astoundingly close to the actual overhead of our
ProcXcelMont system when compared to our naive baseline (2x for encryption, 2.10x for decryption),
indicating that the overhead likely comes from the combined e�orts of the overhead from our individual
systems. However, despite all of this increase in energy, the large increase in performance still dominates,
resulting in an overall dramatic decrease in energy, making it the most energy e�cient design (using 12.4x
less energy for encryption and 18.2x less energy for decryption when compared to our naive baseline).

Finally, along with our performance data, this allows us to understand the tradeo� between energy and
performance, visualized in the plots in Figure 18. Here, we can see that for decryption, there is the tradeo�
mentioned previously between our baseline systems; our Montgomery algorithm is faster, but uses more
power and ultimately energy. However, for the rest of the systems, we can see that even with the increasing
power, our performance still dominates, leading to lesser energy usage being directly correlated with faster
performance. This leads our ProcXcelMont system to dominate in this field; if all you care about is energy
and performance (with no consideration of area), than the ProcXcelMont system will always be the correct
choice.

Figure 18: Energy vs. Performance plots for our RSA systems

Because of this, we can make some concrete conclusions from our di�erent RSA implementations. Without
implementing any extra hardware, our baseline designs demonstrate how we can still experience tradeo�s
based solely on our choice of algorithm; our Montgomery baseline version performed better on average (up
to 1.59x with decryption), at the cost of using more energy. When introducing custom hardware for this
purpose, we can see how we can get large increases in performance, dominating the power consumption to
lead to additional decreases in energy, at the cost of the increase in are required for the hardware. This
highlights the tradeo�s between our two designs. If all we care about is performance and energy, with no
regard for area, then we should always choose our ProcXcelMont system; it was able to achieve a average
of 27.84x the performance versus our naive baseline (and 21.57x compared to our Montgomery baseline)
for encryption, as well as using a fraction of the energy (averaging 6.8% of the energy compared to our
naive baseline), at the cost of 4.49x the area. However, if we want a more moderate approach, taking into
consideration the area of our system, then we might choose out ProcXcelNaive system; for only 1.8x the
area of our baseline, we still get an average of 3.88x speedup versus our naive baseline (and 3.08x compared
to our Montgomery baseline), as well as only 28.4% of the energy compared to our naive baseline. This
shows how there is a wide spectrum of available options, and choosing the best one will rely heavily on the
overall constraints and importance of parameters for our system in our specific application.

References

[1] Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS, 46:203–213, 1999.

24

I Accelerators have higher power because they do more work per cycle,
but they also finish sooner such that the overall energy/task is less

ECE 6745 Course Overview 34 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Complex Digital ASIC Design

I Course goal, motivation, structure
. What is the goal of the course?
. Why should students want to take this course?
. How is the course structured?

I Activity: Evaluation of Integer Multiplier

I ASIC Design Case Studies
. Example design-space exploration
. Example real ASIC chips

ECE 6745 Course Overview 35 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Contributions to Various Chip Tapeouts

ECE 6745 Course Overview 36 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip 1 (2016)

Taped-out Layout for BRGTC1

Host
Interface

de
bu

g

RISC
Core

Sort
Accel

Memory Arbitration Unit

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

diff clk (+)
diff clk (−)

single
ended clk

re
se

t

Ctrl
Reghost2chip

chip2host

LVDS
Recv

clk
div

clk tree
reset
tree

cl
k

ou
t

The testing platform enables running small
test programs on BRGTC1 to compare the

performance and energy of pure-software kernels
versus the HLS-generated sorting accelerator

2x2mm 1.3M transistors in IBM 130nm
RISC processor, 16KB SRAM
HLS-generated accelerators

Static Timing Analysis Freq. @ 246 MHz

Post-Silicon Evaluation Strategy

LV
D

S

di
vi

de
d

cl
k

ou
t

LV
D

S
cl

k
ou

t

ECE 6745 Course Overview 37 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

Celerity w/ UCSD, UW, Michigan (2017)

Target Workload: High-Performance Embedded Computing
I 5 ⇥ 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I 3 clock domains
I 672-pin flip chip BGA package
I 9-months from PDK access to

tape-out

ECE 6745 Course Overview 38 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip 2 (2018)

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Block Diagram
4xRV32IMAF cores with “smart”

sharing L1$/LLFU,
synthesizable PLL

Taped-out Layout for BRGTC2
2x2mm, 1.2M-trans, IBM 130nm

Static Timing Analysis Freq. @ 500MHz

ECE 6745 Course Overview 39 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

CIFER w/ Princeton (2020)

ECE 6745 Course Overview 40 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip 3/4 (2020/2021)

ECE 5745 Alumni
Tape-Out!

• 2x2.5mm, TSMC 180nm
• SPI minion interface
• Open-source FPU
• Synthesizable digital
 clock generator
• BRGTC3 had hold time
 issue in the SPI minion
• BRGTC4 fully functional

ECE 6745 Course Overview 41 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip #5 (2022)

RISC-V RV32IM core with 32-KB of SRAM
SPI minion for config; SPI master and GP I/O for peripherals

2x2.5mm, TSMC 180nm
100% done using PyMTL3 by ECE 6745 Alumni

ECE 6745 Course Overview 42 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip #5 (2022)

ECE 6745 Course Overview 43 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

BRG Test Chip #5 (2022)
BRGTC5 Fall 2022

seen in Figure 68. This comparison is done at 66 MHz with a 3.3 V core voltage since these are
the conditions under which the processor is simulated.

Figure 68. Measured and simulated energy per instruction breakdown at 66 MHz clock and 3.3
V core voltage. Both measurements include static power.

As can be seen in the figure, the simulated energy per instruction is quite close to the
post-silicon measured energy use. This gives us confidence in the tools ability to provide
accurate energy and power estimations based on the post place-and-route design. This figure also
confirms the theory that load and store instructions use significantly less energy in the ALU than
the add and addi instructions.

6.6: Performance
Evaluating the performance of the chip involves exploring the tradeoffs between energy

and latency for programs run on the processor. The shmoo plot in Figure 69 illustrates the range
of frequencies at which the chip can operate for different core voltage levels.

88

ECE 6745 Course Overview 44 / 46

Course Goal, Motivation, Structure Activity • ASIC Design Case Studies •

PIPES EIC w/ Columbia (2023)

ECE 6745 Course Overview 45 / 46

Course Goal, Motivation, Structure Activity ASIC Design Case Studies

RTL

Devices

ISA

PL

Algorithm

μArch

Technology

Application

OS

Gates

Compiler

Circuits

Take-Away Points

I ASIC design is process of quantitatively exploring
the area, cycle time, execution time, and energy
trade-offs of general-purpose and
application-specific designs using automated
standard-cell CAD tools and then to transform the
most promising design to layout ready for fabrication

I Incredibly exciting time since hardware systems are
critical to enabling AI capabilities, and AI will
transform the way we build hardware systems

I Course provides an excellent foundation for
students interested in pursuing a industry career in
ASIC development or research in accelerator-
centric system design

ECE 6745 Course Overview 46 / 46

