
ECE 6745 Complex Digital ASIC Design, Spring 2025

Lab 2: ASIC Sorting Accelerator

School of Electrical and Computer Engineering
Cornell University

revision: 2025-03-19-22-18

In this lab, you will explore a medium-grain hardware accelerator for sorting an array of integer val-
ues of unknown length. The baseline design is a pure-software sorting microbenchmark running on
a pipelined processor with its own instruction and data cache. The alternative design augments the
baseline design with a hardware accelerator and includes the necessary software to configure and
potentially assist the accelerator. You will use a standard-cell ASIC toolflow to quantitatively ana-
lyze the area, energy, and performance of both the baseline and alternative designs. You are required
to implement the alternative design, verify the design using an effective testing strategy, push all
designs through the ASIC toolflow, and perform an evaluation comparing the various implementa-
tions. This lab is designed to give you experience with: (1) application-specific accelerator design;
(2) software/hardware co-design; (3) state-of-the-art standard-cell ASIC toolflow for quantitatively
analyzing the area, energy, and timing of a design.

This handout assumes that you have read and understand the course tutorials and the lab assignment
logistics document. To get started, login to an ecelinux machine, source the setup script, and clone
your lab group’s remote repository from GitHub:

% source setup-ece6745.sh
% mkdir -p ${HOME}/ece6745
% cd ${HOME}/ece6745
% git clone git@github.com:cornell-ece6745/lab2-groupXX.git
% TOPDIR=$PWD

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece6745/lab2-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% pytest ../lab2_xcel

All of the tests should pass except for the tests related to the sorting accelerator you will be imple-
menting in this lab. For this lab, you will be making use of the following subprojects:

• lab1_imul – Staff solution to lab 1, used in proc
• lab2_xcel – Your solution to lab 2
• sram – SRAMs used in cache and potentially your accelerator
• proc – Pipelined, five-stage, TinyRV2 processor
• cache – Blocking, two-way, set-associative cache
• pmx – Processor, cache, accelerator composition

1

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

You will be mostly be working in the lab2_xcel subproject which includes the following files:

• SortXcelFL.py – FL sorting accelerator
• SortXcel.v – Verilog RTL model of sorting accelerator
• SortXcel.py – Pyton wrapper for sorting accelerator

• sort-xcel-sim – Accelerator simulator for isolated eval
• __init__.py – Package setup

• test/SortXcelFL_test.py – FL sorting accelerator unit tests
• test/SortXcel_test.py – RTL sorting accelerator unit tests
• test/__init__.py – Test package setup

1. Introduction

In ECE 4750, you gained experience designing, implementing, testing, and evaluating general-purpose
processors, memories, and networks. In this lab, you will gain experience with a similar process
for an application-specific medium-grain accelerator. Fine-grain accelerators are tightly integrated
within the processor pipeline (e.g., a specialized functional unit for bit-reversed addressing useful
in implementing an FFT), while coarse-grain accelerators are loosely integrated with a processor
through the memory hierarchy (e.g., a graphics rendering accelerator sharing the last-level cache
with a general-purpose processor). Medium-grain accelerators are often integrated as co-processors:
the processor can directly send/receive messages to/from the accelerator with special instructions,
but the co-processor is relatively decoupled from the main processor pipeline and can also indepen-
dently interact with memory.

We will be accelerating a simple sorting application. The application is given an array and a size.
The application should sort the input array of unsigned integers in increasing numerical order. The
application must be able to handle both very small arrays (e.g., four elements) and large arrays (e.g.,
thousands of elements). You can assume the data in the source array will be uniformly distributed
32-bit random integers.

2. Baseline Design

The baseline design for this lab assignment is a pure-software sorting microbenchmark running on
a pipelined processor with its own instruction and data cache. Figure 1 illustrates the overall sys-
tem we will be using in this lab assignment. The processor includes eight latency insensitive val/rdy
interfaces. The mngr2proc/proc2mngr interfaces are used for the test harness to send data to the pro-
cessor and for the processor to send data back to the test harness. The imemreq/imemresp interfaces
are used for instruction fetch, and the dmemreq/dmemresp interfaces are used for implementing
load/store instructions. The system includes both instruction and data caches. The xcelreq/xcelresp
interfaces are used for the processor to send messages to the accelerator. The mngr2proc/proc2mngr
and memreq/memresp interfaces were all introduced in ECE 4750. For the baseline design, we pro-
vide a simple null accelerator which you can largely ignore.

We provide two implementations of the TinyRV2 processor. The FL model in sim/proc/ProcFL.py is
essentially an instruction-set-architecture (ISA) simulator; it simulates only the instruction semantics
and makes no attempt to model any timing behavior. The RTL model in sim/proc/Proc.v is similar
to the alternative design for lab 2 in ECE 4750. It is a five-stage pipelined processor that implements
the TinyRV2 instruction set and includes full bypassing/forwarding to resolve data hazards. There
are two important differences from the alternative design for lab 2 of ECE 4750. First, the new pro-
cessor design uses a single-cycle integer multiplier. We can push the design through the flow and

2

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

Processor

Test
Source

Test Memory

xmem.req.msg/val/rdy

xmem.resp.msg/val/rdy

Accelerator

xcel.req.msg/val/rdy

xcel.resp.msg/val/rdy

dmem.req.msg/val/rdy

dmem.resp.msg/val/rdy

Test
Sink

mngr2proc.msg/val/rdy

proc2mngr.msg/val/rdy

Funnel/Router

cache.req.msg/val/rdy

cache.resp.msg/val/rdy

imem.req.msg/val/rdy

imem.resp.msg/val/rdy

dmem.req.msg/val/rdy

dmem.resp.msg/val/rdy

imem.req.msg/val/rdy

imem.resp.msg/val/rdy

Instruction
Cache

Data
Cache

Figure 1: Processor, Cache, Accelerator Composition

Figure 2: Baseline Processor Datapath

3

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

verify that the single-cycle integer multiplier does not adversely impact the overall processor cycle
time. Second, the new processor design includes the ability to handle new CSRs for interacting with
medium-grain accelerators. The datapath diagram for the processor is shown in Figure 2.

We provide an RTL model in sim/cache/Cache.v which is very similar to the alternative design
for lab 3 of ECE 4750. It is a two-way set-associative cache with 16B cache lines and a write-
back/write-allocate write policy and LRU replacement policy. There are three important differences
from the alternative design for lab 3 of ECE 4750. First, the new cache design is larger with a to-
tal capacity of 8 KB. Second, the new cache design carefully merges states to enable a single-cycle
hit latency for both reads and writes. Note that writes have a two cycle occupancy (i.e., back-to-
back writes will only be able to be serviced at half throughput). Third, the previous cache de-
sign used combinational-read SRAMs, while the new cache design uses synchronous-read SRAMs.
Combinational-read SRAMs mean the read data is valid on the same cycle we set the read address.
Synchronous-read SRAMs mean the read data is valid on the cycle after we set the read address.
Combinational SRAMs simplify the design, but are not realistic. Almost all real SRAM memory
generators used in ASIC toolflows produce synchronous-read SRAMs, and indeed the CACTI mem-
ory compiler discussed in the previous tutorial also produces synchronous-read SRAMs. Using
synchronous-read SRAMs requires non-trivial changes to both the datapath and the control logic.
The cache FSM must make sure all control signals for the SRAM are ready the cycle before we need
the read data. The datapath and FSM diagrams for the new cache are shown in Figures 3 and 4.
Notice in the FSM how we are able to stay in the TAG_CHECK_READ_DATA state if another request is
ready; this is what produces the single-cycle hit latency.

Finally, we provide a reasonably optimized pure-software sorting microbenchmark which uses quick-
sort in app/ubmark/ubmark-sort.c.

3. Alternative Design

The alternative design is to implement a medium-grain sorting accelerator and to develop a corre-
sponding software microbenchmark that takes advantage of this new accelerator. This lab is com-
pletely open-ended. There are many ways to design such an accelerator. You can design an simple
FSM-based accelerator that iteratively loads one or two values from memory does a comparison and
writes one or two values back to memory algorithm to implement bubble sort, selection sort, merge
sort, quicksort, or some other comparison sort. You might consider a non-comparison sort such as
radix sort. You can also implement a more sophisticated accelerator that streams a block of elements
into a temporary buffer in the accelerator, sort these values inside the accelerator, and then streams
this block of elements back out to the memory system. You would need to merge the sorted blocks in
either software or hardware. You can implement multiple “sub-accelerators” which map to different
accelerator registers. You are free to use SRAMs.

We provide you an FL model of a sorting accelerator which uses the following accelerator registers:

• xr0: go/done
• xr1: base address of array
• xr2: number of elements in array

Using the accelerator protocol involves the following steps:

• 1. Write the base address of array via xr1
• 2. Write the number of elements in array via xr2
• 3. Tell accelerator to go by writing xr0
• 4. Wait for accelerator to finish by reading xr0, result will be 1

4

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

Figure 2: Datapath diagram of single-cycle hit latency two-way set associative cache

13

Figure 3: Baseline Cache Datapath

5

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

Figure 3: Control FSM of single-cycle hit latency two-way set associative cache

14

Figure 4: Baseline Cache FSM

You can see an example of how to use this accelerator from software in app/ubmark/ubmark-sort-xcel.c.
You are free to modify this software. You are free to use a completely different accelerator protocol
(i.e., the number and semantics of the accelerator registers). If you modify the accelerator protocol
you will also need to modify the FL model of the accelerator. You are free to implement part of your
sorting algorithm in software and part of your sorting algorithm in hardware. You are free to overlap
work on the processor with work in the accelerator.

The only restrictions on your software is that you cannot change the interface to the sorting function.
The sorting function must take just an array and a size. You may not use any global state so if you
need a temporary array you will need to dynamically allocate it on the heap in the implementation of
your sorting function. The only restrictions on your hardware is that you cannot change the proces-
sor or cache implementation. This means your accelerator is restricted to a peak memory bandwidth
of one 4B memory request/response per cycle and you must use the provided accelerator message
interface; you can change the accelerator protocol but you must use the basic xcelreq/xcelresp in-

6

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

terface. We also ask you not to flatten your design, nor make significant modifications to the scripts
used in the automated ASIC flow. We ask you to keep the clock constraint at a specific value which
will be provided by the instructor. If your accelerator significantly impacts the cycle time compared
to the baseline design, then you should optimize your accelerator so that it is no longer on the critical
path.

Recall that the sorting application must be able to handle both very small arrays (e.g., four elements)
and large arrays (e.g., thousands of elements). It is fine for your accelerator to only handle a fixed
array size, but you will need to ensure that your software can use this accelerator to sort an arbitrary
array size.

You should not feel limited to implementing only one alternative design. Feel free to implement mul-
tiple alternative designs, or to experiment with different parameters in order to lay the foundation
for a rich and compelling design-space exploration in your lab report.

4. Testing Strategy

The testing strategy has four parts: (1) testing of the accelerator in isolation; (2) testing of the pro-
cessor and accelerator composition; (3) testing the accelerator using four-state RTL, fast-functional
gate-level, and back-annotated gate-level simulation; and (4) testing the processor and accelerator
composition using four-state RTL, fast-functional gate-level, and back-annotated gate-level simula-
tion.

4.1. Testing Accelerator in Isolation

We have provided you with some basic unit tests that test the sorting accelerator in isolation. These
tests are defined in sim/lab2_xcel/test/SortXcelFL_test.py and they are reused in the test scripts
for the RTL model. You will need to modify the FL model and these tests if you change the sorting
accelerator protocol. For example, if your sorting accelerator can only sort a fixed array size, you
will need to modify the unit tests appropriately. You will almost certainly want to add more tests for
specific corner cases related to your sorting accelerator implementation. The following commands
illustrate how to run all of the tests for the entire project, how to run just the tests for this lab, and
how to run just the tests for the FL and RTL models.

% cd ${TOPDIR}/sim/build
% pytest ..
% pytest ../lab2_xcel
% pytest ../lab2_xcel/test/SortXcelFL_test.py --verbose
% pytest ../lab2_xcel/test/SortXcel_test.py --verbose

4.2. Testing Accelerator in Isolation Using ASIC Flow

Now that we know our accelerator works in isolation using two-state RTL simulation, we can use the
ASIC flow to verify the accelerator works using four-state RTL, fast-functional gate-level, and back-
annotated gate-level simulation. First, we generate the test benches for the accelerator in isolation.

% cd ${TOPDIR}/sim/build
% pytest ../lab2_xcel/test/SortXcel_test.py --test-verilog --dump-vtb

7

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

Now we can use pyhflow to push just the accelerator through the ASIC flow and also run the ad-
ditional simulations. Note that the cycle time is fixed at 3ns since this is the target cycle time of the
processor. Make sure every step is successful before moving on to the next step.

% mkdir -p ${TOPDIR}/asic/build-lab2-sort-xcel
% cd ${TOPDIR}/asic/build-lab2-sort-xcel
% pyhflow --one-test ../designs/lab2-sort-xcel.yml
% ./01-synopsys-vcs-rtlsim/run
% ./02-synopsys-dc-synth/run
% ./03-synopsys-vcs-ffglsim/run
% ./04-cadence-innovus-pnr/run
% ./05-synopsys-vcs-baglsim/run

If your design does not meet timing you will need to modify the design so it does meet timing.

4.3. Testing Processor with/without Accelerator

Once you know your accelerator works in isolation you should test the processor and accelerator
composition by running using the simple C unit testing framework. First, let’s build the tests for the
pure-software baseline.

% mkdir -p ${TOPDIR}/app/build
% cd ${TOPDIR}/app/build
% ../configure --host=riscv32-unknown-elf
% make ubmark-sort-test

Then we can run this test on a FL model of the processor.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim ./ubmark-sort-test

And finally we can run this test on the RTL model of the processor.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim --proc-impl rtl ./ubmark-sort-test

Now let’s build the test program that takes advantage of the sorting accelerator.

% cd ${TOPDIR}/app/build
% make ubmark-sort-xcel-test

Then we can make sure these tests pass on various compositions including: (1) FL processor and FL
accelerator; (2) FL processor and RTL accelerator; and (3) RTL processor and RTL accelerator.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim --proc-impl fl --xcel-impl sort-fl ./ubmark-sort-xcel-test
% ../../sim/pmx/pmx-sim --proc-impl fl --xcel-impl sort-rtl ./ubmark-sort-xcel-test
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort-rtl ./ubmark-sort-xcel-test

8

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

4.4. Testing Processor with/without Accelerator Using ASIC Flow

Now that we know our accelerator works in isolation and that the processor and accelerator com-
position works using two-state RTL simulation, we are finally ready to use the ASIC flow to verify
the complete processor and accelerator composition also works using four-state RTL, fast-functional
gate-level, and back-annotated gate-level simulation. First, we generate the test benches for the base-
line processor.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl null-rtl \

--translate --dump-vtb ./ubmark-sort-test

Now we can use pyhflow to push the baseline processor through the ASIC flow and run the addi-
tional simulations. Note that the cycle time is fixed at 3ns since this is the target cycle time of the
processor. Make sure every step is successful before moving on to the next step.

% mkdir -p ${TOPDIR}/asic/build-lab2-px-null
% cd ${TOPDIR}/asic/build-lab2-px-null
% pyhflow --one-test ../designs/lab2-px-null.yml
% ./01-synopsys-vcs-rtlsim/run
% ./02-synopsys-dc-synth/run
% ./03-synopsys-vcs-ffglsim/run
% ./04-cadence-innovus-pnr/run
% ./05-synopsys-vcs-baglsim/run

Now we can generate the test benches for the processor and accelerator composition.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort-rtl \

--translate --dump-vtb ./ubmark-sort-xcel-test

Finally, we can use pyhflow to push the processor and accelerator composition through the ASIC
flow and also run the additional simulations. Make sure every step is successful before moving on
to the next step.

% mkdir -p ${TOPDIR}/asic/build-lab2-px-sort
% cd ${TOPDIR}/asic/build-lab2-px-sort
% pyhflow --one-test ../designs/lab2-px-sort.yml
% ./01-synopsys-vcs-rtlsim/run
% ./02-synopsys-dc-synth/run
% ./03-synopsys-vcs-ffglsim/run
% ./04-cadence-innovus-pnr/run
% ./05-synopsys-vcs-baglsim/run

5. Evaluation

Once you have fully verified the functionality of both the accelerator in isolation as well as the pro-
cessor and accelerator composition, you can use various interactive simulators to evaluate the cycle-
level performance and the ASIC flow to evaluate the area, energy, and timing.

9

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

5.1. Evaluating Accelerator in Isolation

You can use the interactive sort accelerator simulator to evaluate the performance of your sorting
accelerator in isolation. The simulator will display the number of cycles to execute the given input
dataset.

% cd ${TOPDIR}/sim/build
% ../lab2_xcel/sort-xcel-sim --impl rtl --input random --stats --translate --dump-vtb

5.2. Evaluating Accelerator in Isolation using ASIC Flow

Now we can use the ASIC flow to determine the area, energy, and timing of the accelerator in isola-
tion.

% cd ${TOPDIR}/asic/build-lab2-sort-xcel
% pyhflow ../designs/lab2-sort-xcel.yml
% ./run-flow

5.3. Evaluating Processor with/without Accelerator

We are now ready to evaluate the cycle-level performance of both baseline and alternative design
using the provided interactive simulator. We need to build the corresponding programs.

% cd ${TOPDIR}/app/build
% make ubmark-sort-eval
% make ubmark-sort-xcel-eval

We can run the interactive simulator as follows.

% cd ${TOPDIR}/app/build
% ../../sim/pmx/pmx-sim --stats --proc-impl rtl --xcel-impl null-rtl \

--translate --dump-vtb ./ubmark-sort-eval
% ../../sim/pmx/pmx-sim --stats --proc-impl rtl --xcel-impl sort-rtl \

--translate --dump-vtb ./ubmark-sort-xcel-eval

The simulator will display the number of cycles for the baseline and alternative designs. You should
study the line traces (with the --trace option) and possibly the waveforms (with the --dump-vcd
option) to understand the reason why each design performs as it does on the various patterns.

5.4. Evaluating Processor with/without Accelerator using ASIC Flow

Finally, we can use pyhflow to push the baseline design through the flow and calculate the area,
energy, and timing.

% cd ${TOPDIR}/asic/build-lab2-px-null
% pyhflow ../designs/lab2-px-null.yml
% ./run-flow

We can also use pyhflow to push the alternative design through the flow and calculate the area,
energy, and timing.

% cd ${TOPDIR}/asic/build-lab2-px-sort

10

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

% pyhflow ../designs/lab2-px-sort.yml
% ./run-flow

Given all of these results, here is how you should analyze the execution time, cycle time, area, and
energy.

• Execution Time: Use the number of cycles in the final report from the ASIC flow; this only counts
cycles when stats are enabled. Use the line traces from pmx-sim to understand performance over-
heads.

• Cycle Time: Ensure your accelerator in isolation along with the processor/accelerator composi-
tion all meet timing at 3.0ns (333MHz). Use the timing reports from the accelerator in isolation to
determine the critical path of your accelerator.

• Area: Use the area of your accelerator in isolation and compare it to the area of the baseline
processor design. Use the hierarchical area reports from the accelerator in isolation to determine
how much area each module in your design requires.

• Energy: Use the energy of running the baseline and alternative design. Use the hierarchical
energy reports from the accelerator in isolation to determine how much energy each module in
your design requires.

6. Pareto-Optimal Frontier Competition

We hope students will continue to modify their software and/or hardware to improve the perfor-
mance of their sorting accelerator. To encourage such optimization, a small bonus will be given to
those designs which lay on the pareto-optimal frontier in the area vs. performance space. We will
run your sorting microbenchmark on your processor, cache, and accelerator composition using one
or more of our own private datasets. These datasets will not be the same size as the dataset we give
you. They may be smaller or they may be larger. Note that students should only attempt improv-
ing the software and/or hardware once everything is completely working and they have finished a
draft of the lab report. We allow students to submit up to two different accelerator designs for the
purposes of evaluating the pareto-optimal frontier.

Here are the steps we will use to determine the pareto-optimal frontier. We first clone your lab
repo. Note that all of these steps must work from a clean clone, otherwise your design will not be
considered for the pareto-optimal frontier.

% source setup-ece6745.sh
% mkdir -p $HOME/ece6745
% cd $HOME/ece6745
% git clone git@github.com:cornell-ece6745/lab2-groupXX
% cd lab2-groupXX
% TOPDIR=$PWD

We will then evaluate the area and cycle time of the accelerator in isolation.

% mkdir -p $TOPDIR/sim/build
% cd $TOPDIR/sim/build
% pytest ../lab2_xcel/test/SortXcel_test.py --test-verilog --dump-vtb
% ../lab2_xcel/sort-xcel-sim --impl rtl --input random --translate --dump-vtb

% mkdir -p $TOPDIR/asic/build-lab2-sort-xcel

11

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

% cd $TOPDIR/asic/build-lab2-sort-xcel
% pyhflow ../designs/lab2-sort-xcel.yml
% ./run-flow

We will use the area of your accelerator in isolation as one metric for determining the pareto-optimal
frontier. The reason we use the area of your accelerator in isolation as opposed to the area of the
processor and accelerator composition, is because we want to avoid any variation in the way the
tools synthesize and place-and-route the processor from impacting our evaluation of the area of the
accelerator. The cycle time of your accelerator in isolation must be less than the cycle time of the
baseline design.

We will then evaluate the cycle time and the execution time of the processor and accelerator compo-
sition using your sorting microbenchmark.

% mkdir -p $TOPDIR/app/build
% cd $TOPDIR/app/build
% ../configure --host=riscv32-unknown-elf
% make ubmark-sort-xcel-test
% make ubmark-sort-xcel-eval

% cd $TOPDIR/app/build
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort-rtl \

--translate --dump-vtb ./ubmark-sort-xcel-test
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort-rtl \

--stats --translate --dump-vtb ./ubmark-sort-xcel-eval

% mkdir -p $TOPDIR/asic/build-lab2-px-sort
% cd $TOPDIR/asic/build-lab2-px-sort
% pyhflow ../designs/lab2-px-sort.yml
% ./run-flow

For those groups that want to submit two different accelerator designs, we will also do the following
steps. Note that you are responsible for: modifying sort-xcel-sim and pmx-sim so they can cor-
rectly instantiate both sorting accelerators; adding a new lab2-sort2-xcel.yml design YAML to the
designs directory; and adding a new microbenchmark which uses your second sorting accelerator.

% mkdir -p $TOPDIR/sim/build
% cd $TOPDIR/sim/build
% pytest ../lab2_xcel/test/SortXcel2_test.py --test-verilog --dump-vtb
% ../lab2_xcel/sort-xcel-sim --impl rtl2 --input random --translate --dump-vtb

% mkdir -p $TOPDIR/asic/build-lab2-sort2-xcel
% cd $TOPDIR/asic/build-lab2-sort2-xcel
% phyflow ../designs/lab2-sort2-xcel.yml
% ./run-flow

% mkdir -p $TOPDIR/app/build
% cd $TOPDIR/app/build
% ../configure --host=riscv32-unknown-elf
% make ubmark-sort2-xcel-test

12

ECE 6745 Complex Digital ASIC Design, Spring 2025 Lab 2: ASIC Sorting Accelerator

% make ubmark-sort2-xcel-eval

% cd $TOPDIR/app/build
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort2-rtl \

--translate --dump-vtb ./ubmark-sort2-xcel-test
% ../../sim/pmx/pmx-sim --proc-impl rtl --xcel-impl sort2-rtl \

--stats --translate --dump-vtb ./ubmark-sort2-xcel-eval

% mkdir -p $TOPDIR/asic/build-lab2-px-sort2
% cd $TOPDIR/asic/build-lab2-px-sort2
% phyflow ../designs/lab2-px-sort2-xcel.yml
% ./run-flow

7. Report

The Lab Assignment Logistics document provides general details about the requirements for the report.
You must actually read this document to ensure you know what goes in your report and how to
format it.

Alternative Design Section – In the alternative design section of your report you should discuss
your sorting accelerator design in detail. Be sure to include one or more diagrams illustrating your
design. If you also implemented more than one sorting accelerator, then you must describe all of
these accelerators in the alternative design section.

Evaluation Section – In addition to tables and bar plots, you should include several energy vs. per-
formance plots similar to what we use in lecture to compare the various designs. We recommend
having two energy vs. performance plots; one plot for sorting a smaller array and one plot for sorting
a larger array. Each plot should have two points: one for the baseline design and one for the alterna-
tive design. You could also have additional energy vs. performance plots for different datasets with
the same input array size. These energy vs. performance plots should enable you to provide deep
insight into the various trade-offs in the evaluation section of your report. If you also implemented
more than one accelerator, then you must evaluate it in the alternative design section. You must
include at least two Klayout screenshots in your report: one of your accelerator in isolation and
one of the processor and accelerator composition!

Acknowledgments

This lab was created by Christopher Batten, Khalid Al-Hawaj, Jason Setter, Shunning Jiang, Moyang
Wang, and Jack Brzozowski as part of the course ECE 6745 Complex Digital ASIC Design at Cornell
University.

13

