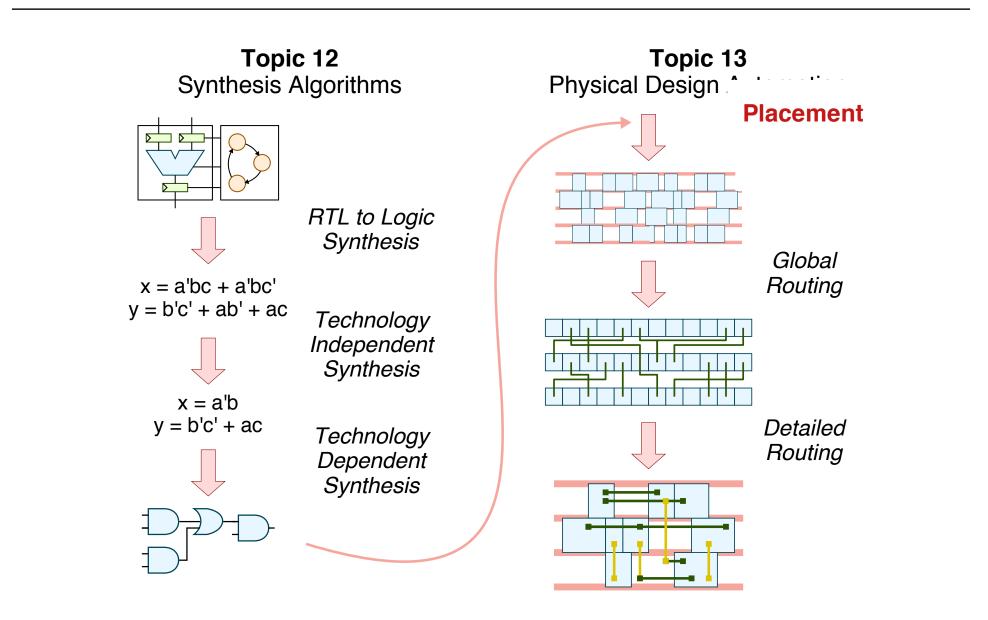
ECE 6745 Complex Digital ASIC Design Topic 13: Physical Design Automation Algorithms

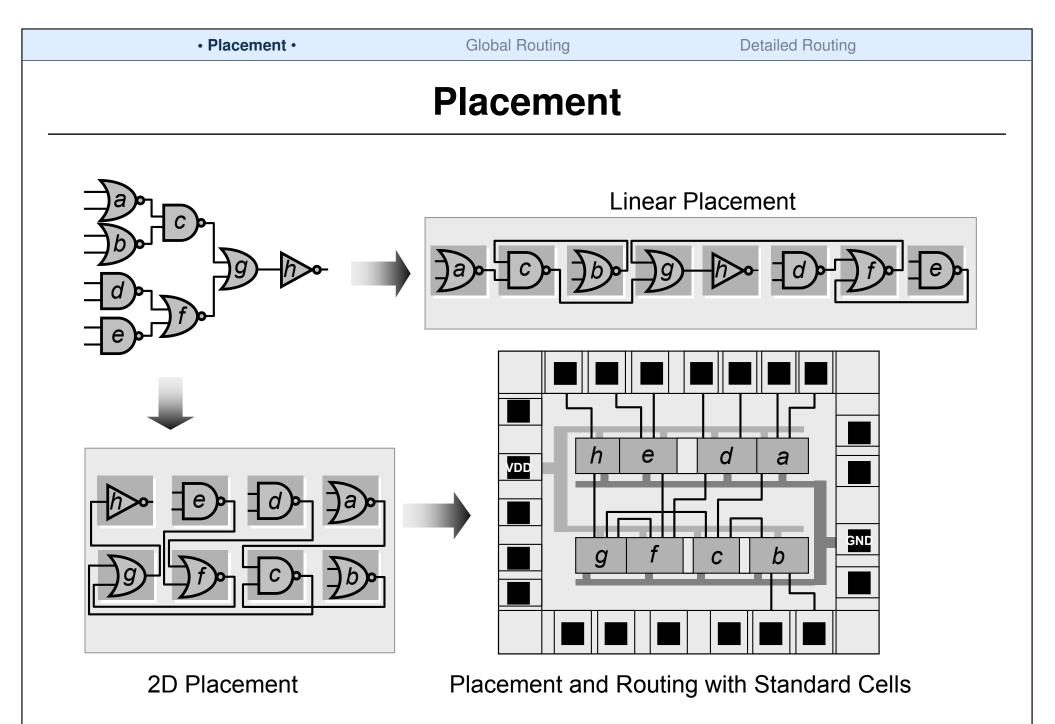
Christopher Batten

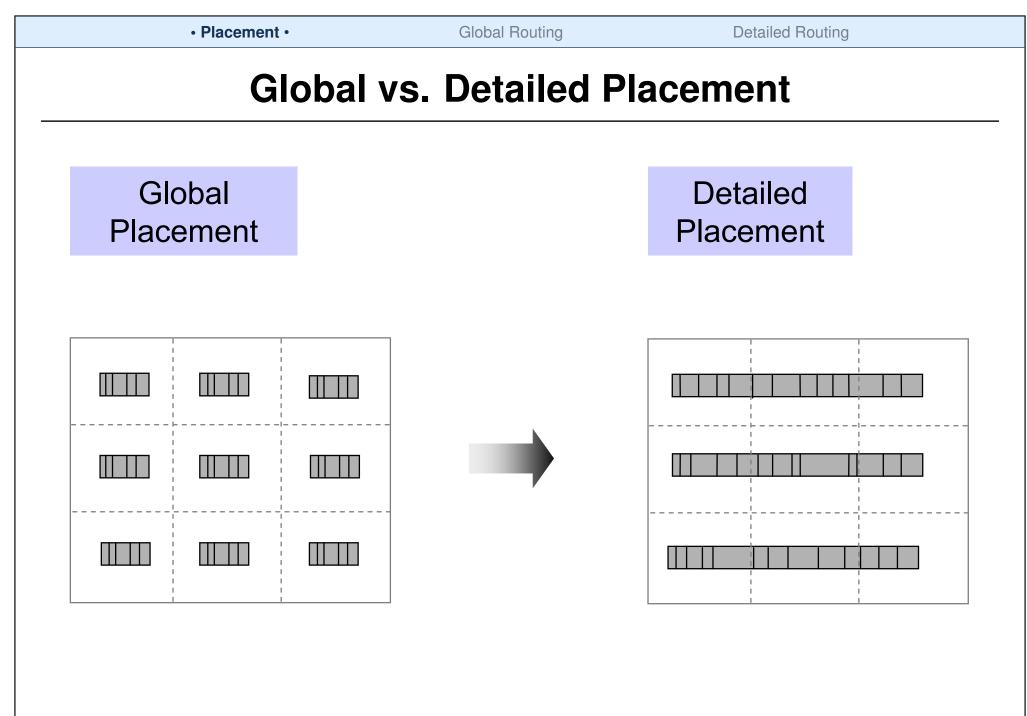
School of Electrical and Computer Engineering Cornell University

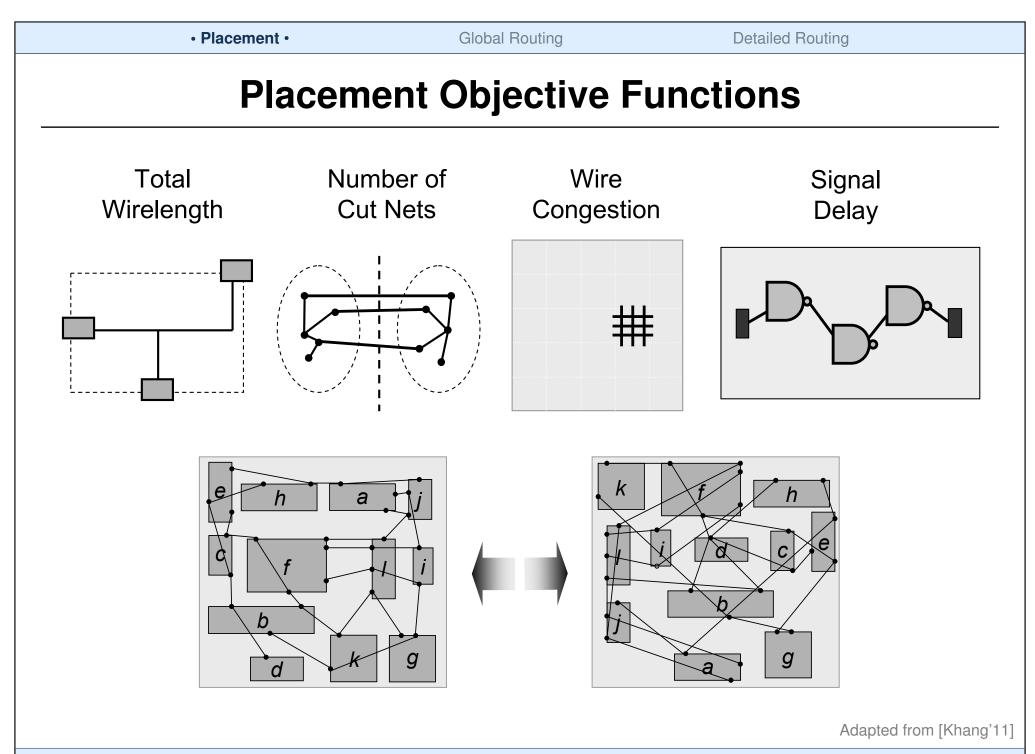
http://www.csl.cornell.edu/courses/ece6745

Part 3: CAD Algorithms







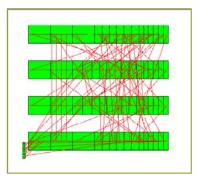


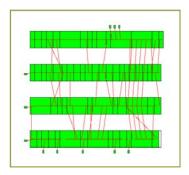
Placement
 ·

Global Routing

Detailed Routing

Good vs. Bad Placement





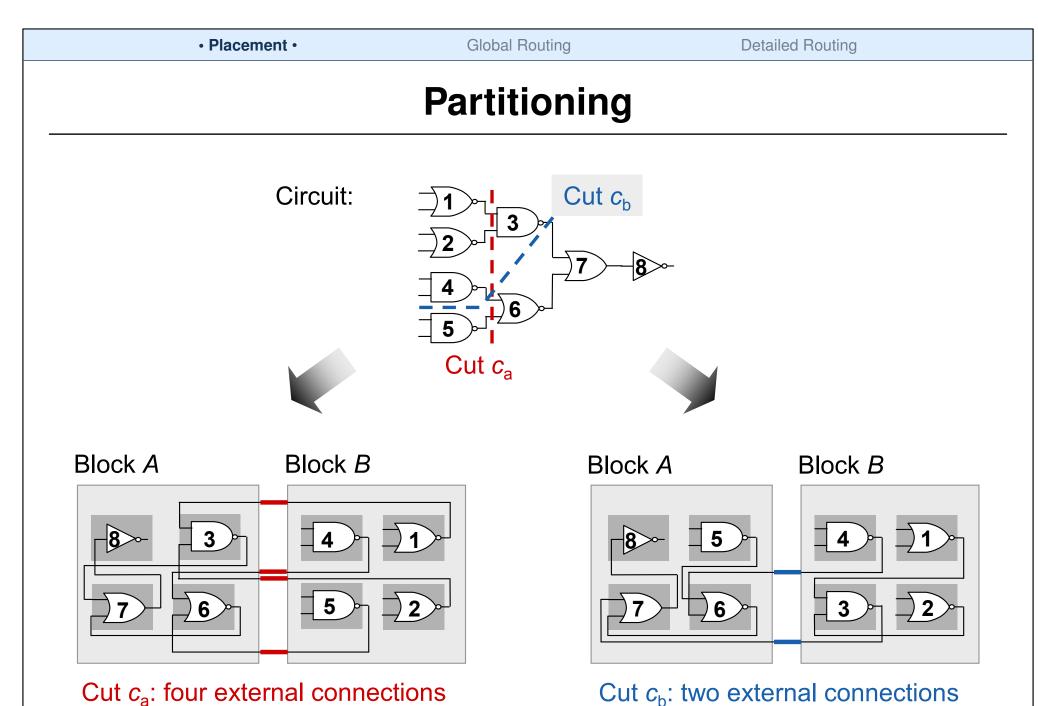
Bad placement causes routing congestion resulting in:

- Increases in circuit area (cost) and wiring
- Longer wires → more capacitance
 - Longer delay
 - Higher dynamic power dissipation

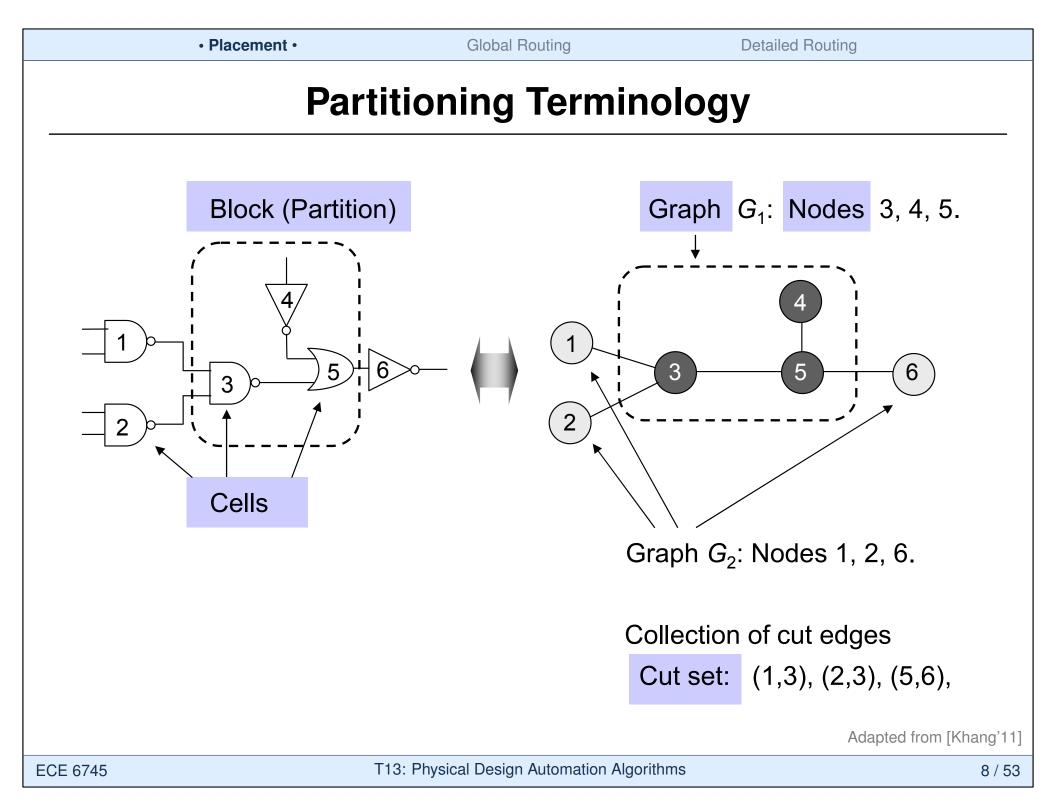
Good placement

- •Circuit area (cost) and wiring decreases
- Shorter wires → less capacitance
 - Shorter delay
 - Less dynamic power dissipation

Adapted from [Devadas'06]



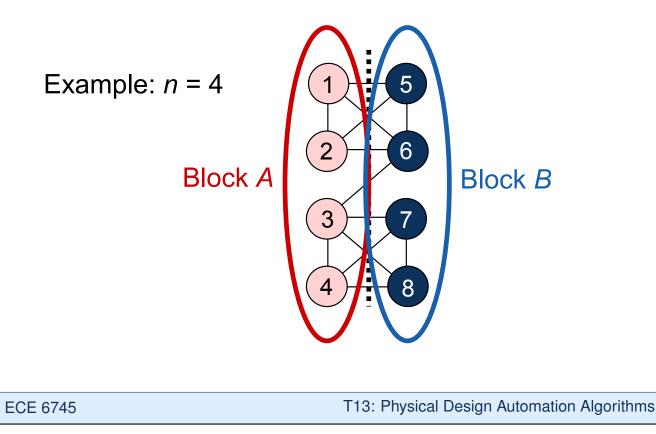
Cut $c_{\rm b}$: two external connections



Kernighan-Lin (KL) Algorithm

Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with minimum cut cost and |A| = |B| = n.



Detailed Routing

Kernighan-Lin (KL) Algorithm Concepts

Cost D(v) of moving a node v

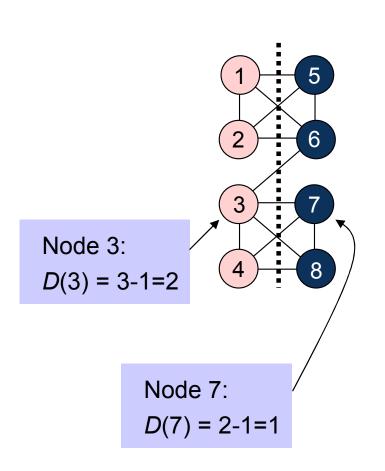
$$D(v) = |E_{\rm c}(v)| - |E_{\rm nc}(v)|$$
,

where

 $E_{\rm c}(v)$ is the set of *v*'s incident edges that are cut by the cut line, and

 $E_{\rm nc}(v)$ is the set of *v*'s incident edges that are not cut by the cut line.

High costs (D > 0) indicate that the node should move, while low costs (D < 0) indicate that the node should stay within the same partition.



Detailed Routing

Kernighan-Lin (KL) Algorithm Concepts

Gain of swapping a pair of nodes a und b

 $\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$

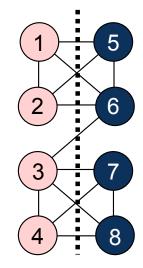
where

• D(a), D(b) are the respective costs of nodes a, b

c(a,b) is the connection weight between a and b:
If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

The gain Δg indicates how useful the swap between two nodes will be

The larger Δg , the more the total cut cost will be reduced



11 / 53

Kernighan-Lin (KL) Algorithm Concepts

Gain of swapping a pair of nodes a und b

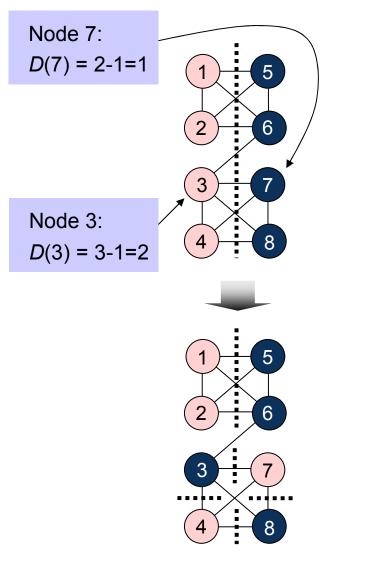
 $\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$

where

- D(a), D(b) are the respective costs of nodes a, b
- c(a,b) is the connection weight between a and b:
 If an edge exists between a and b,
 then c(a,b) = edge weight (here 1),
 otherwise, c(a,b) = 0.

 $\Delta g (3,7) = D(3) + D(7) - 2 \cdot c(a,b) = 2 + 1 - 2 = 1$

=> Swapping nodes 3 and 7 would reduce the cut size by 1



Adapted from [Khang'11]

Kernighan-Lin (KL) Algorithm Concepts

Gain of swapping a pair of nodes *a* und *b*

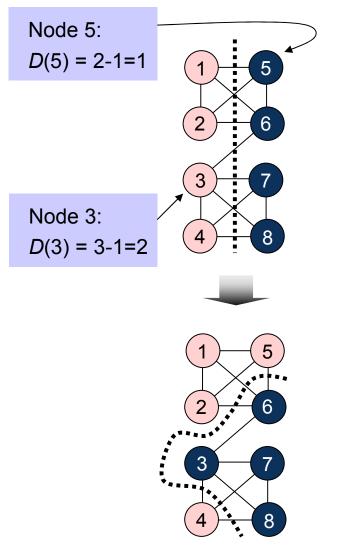
 $\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$

where

- D(a), D(b) are the respective costs of nodes a, b
- c(a,b) is the connection weight between a and b: If an edge exists between a and b, then c(a,b) = edge weight (here 1), otherwise, c(a,b) = 0.

$$\Delta g (3,5) = D(3) + D(5) - 2 \cdot c(a,b) = 2 + 1 - 0 = 3$$

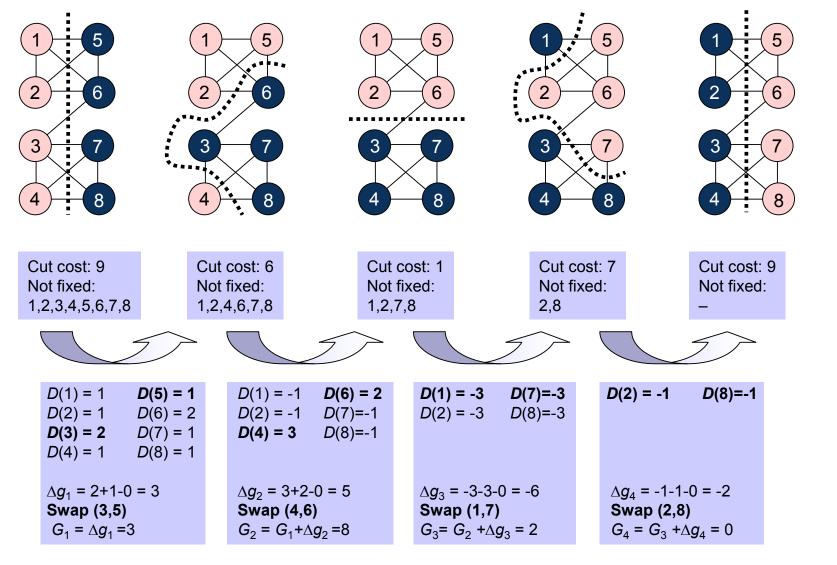
=> Swapping nodes 3 and 5 would reduce the cut size by 3



Adapted from [Khang'11]

Detailed Routing

Kernighan-Lin (KL) Algorithm Example

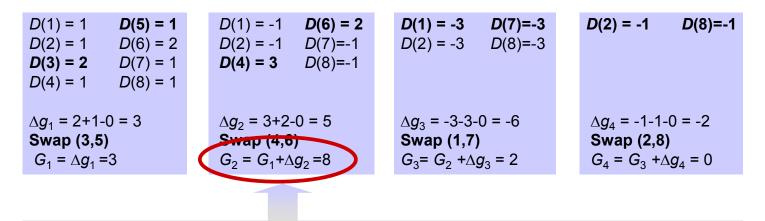


Placement

Global Routing

Detailed Routing

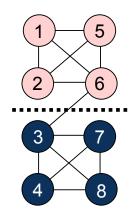
Kernighan-Lin (KL) Algorithm Example



Maximum positive gain $G_m = 8$ with m = 2.

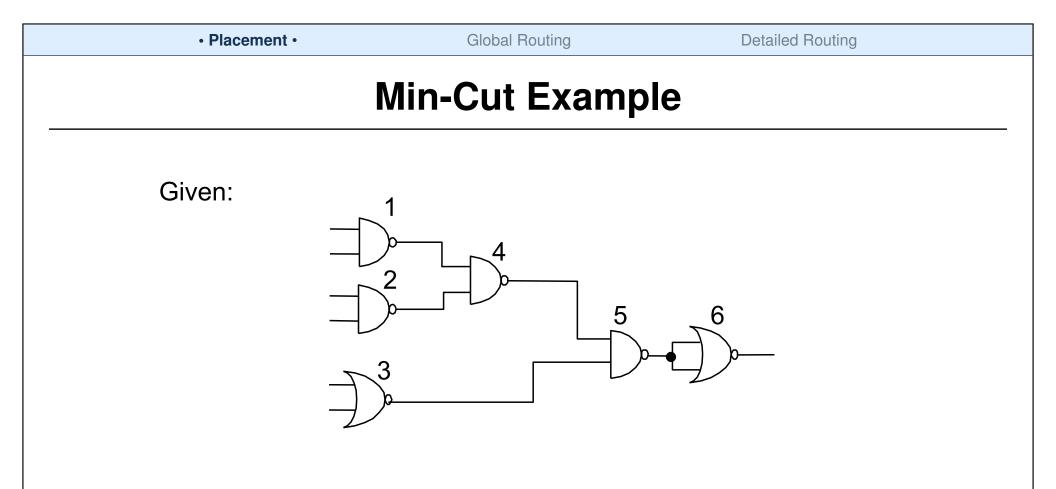
Since $G_m > 0$, the first m = 2 swaps (3,5) and (4,6) are executed.

Since $G_m > 0$, more passes are needed until $G_m \leq 0$.

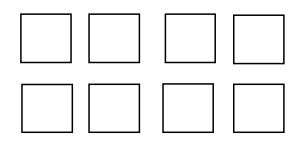


Min-Cut Placement

- Use partitioning algorithm (such as KL) to divide netlist into two regions
- Use partitioning algorithm to recursively divide the two partitions into two smaller regions (four regions total)
- Each cut heuristically minimizes the number of cut nets



Task: 4 x 2 placement with minimum wirelength using alternative cutline directions and the KL algorithm



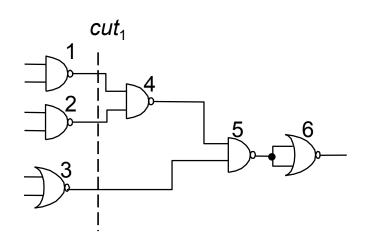
Placement

ECE 6745

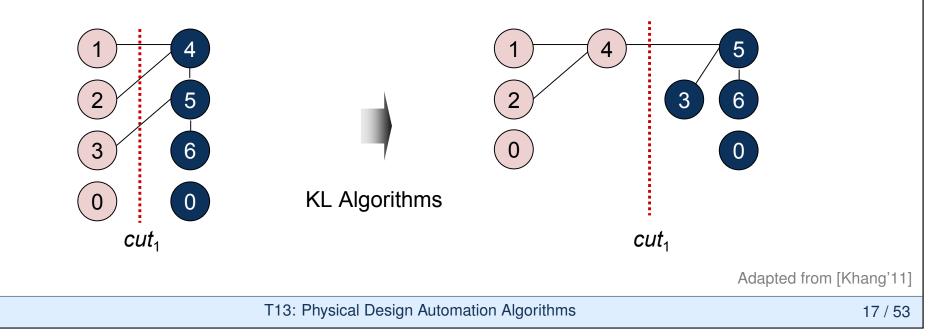
Global Routing

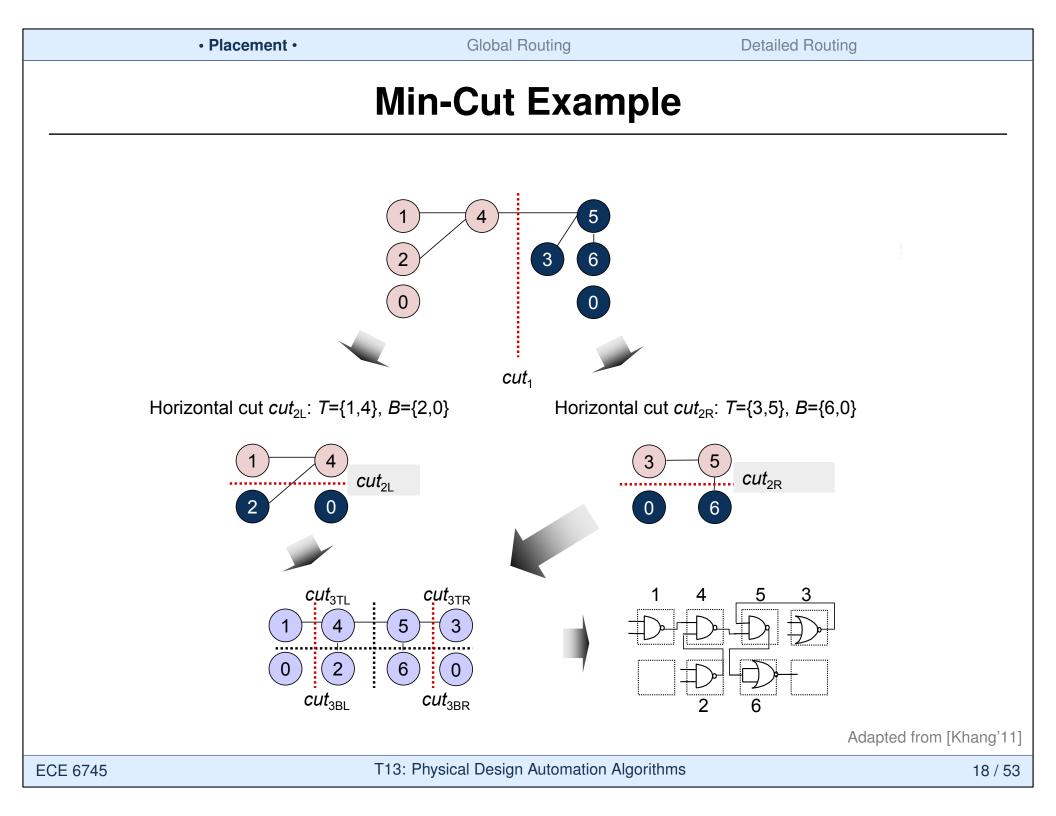
Detailed Routing

Min-Cut Example



Vertical cut *cut*₁: *L*={1,2,3}, *R*={4,5,6}





Analytical Placement with Quadratic Placement Algorithm

 Objective function is quadratic; sum of (weighted) squared Euclidean distance represents placement objective function

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

where *n* is the total number of cells, and c(i,j) is the connection cost between cells *i* and *j*.

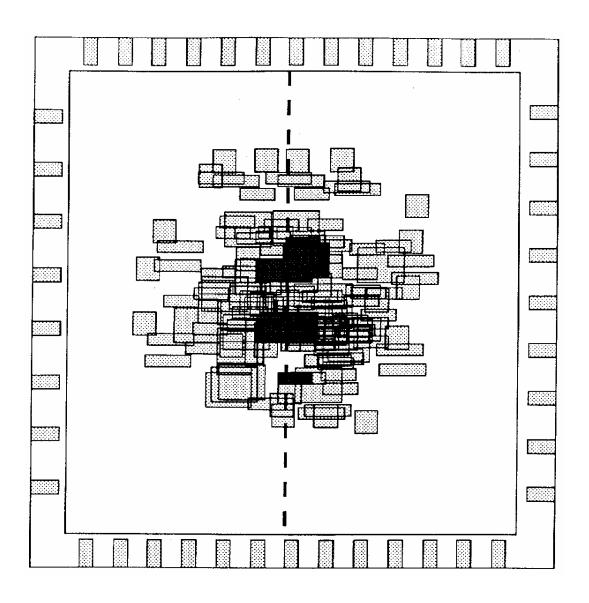
- Only two-point-connections
- Minimize objective function by equating its derivative to zero which reduces to solving a system of linear equations

Placement

Global Routing

Detailed Routing

Minimizing Objective Function Clumps Cells Together



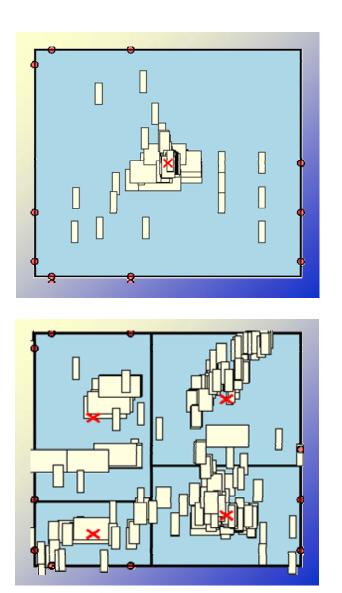
Adapted from [Devadas'06]

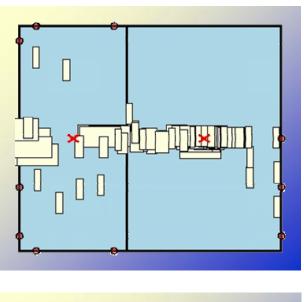
Placement

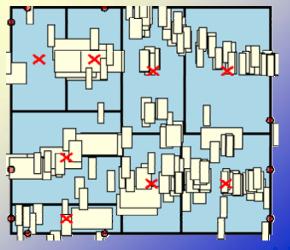
Global Routing

Detailed Routing

Using Partitioning to Pull Cells Apart

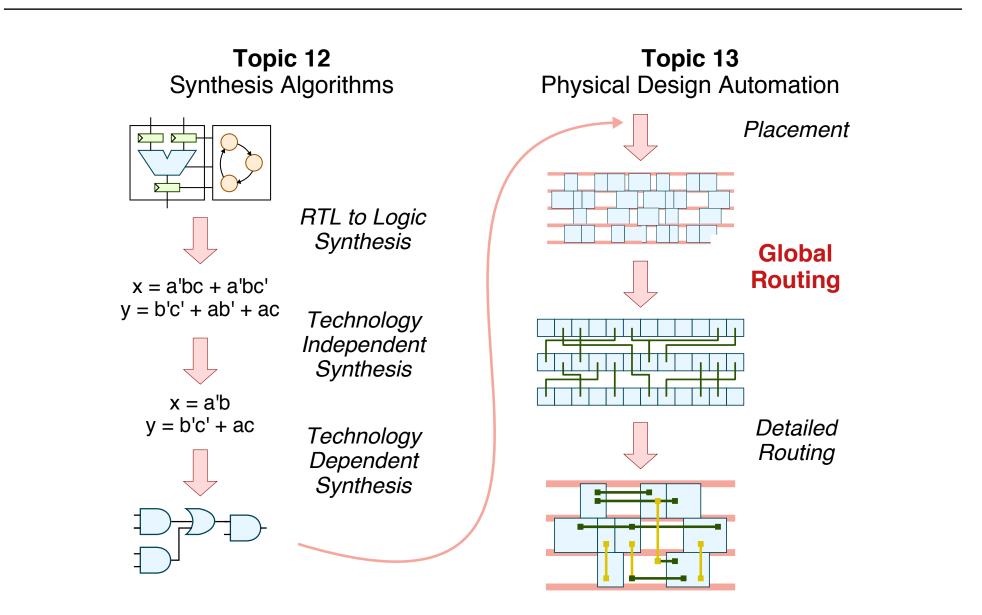






Adapted from [Devadas'06,Kahng'11]

Part 3: CAD Algorithms



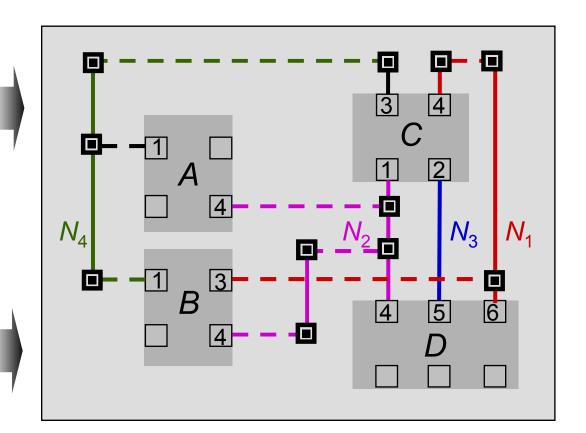
Detailed Routing

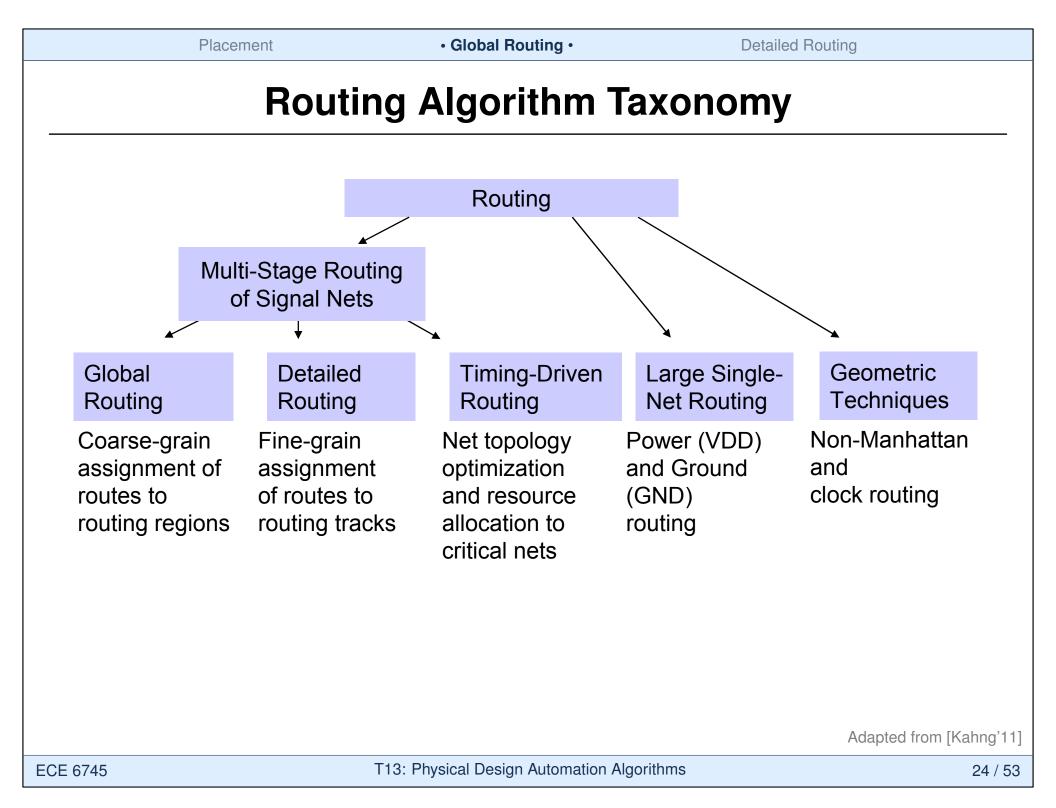
General Routing Problem

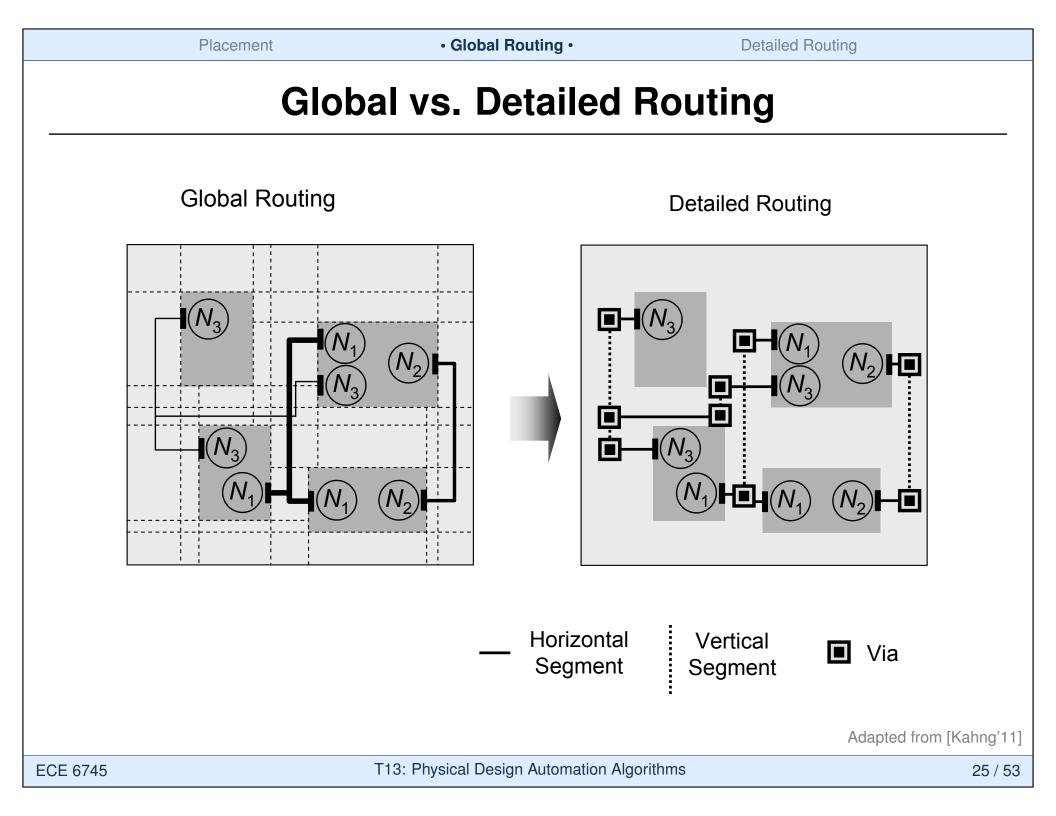
Netlist:

 $N_{1} = \{C_{4}, D_{6}, B_{3}\}$ $N_{2} = \{D_{4}, B_{4}, C_{1}, A_{4}\}$ $N_{3} = \{C_{2}, D_{5}\}$ $N_{4} = \{B_{1}, A_{1}, C_{3}\}$

Technology Information (Design Rules)



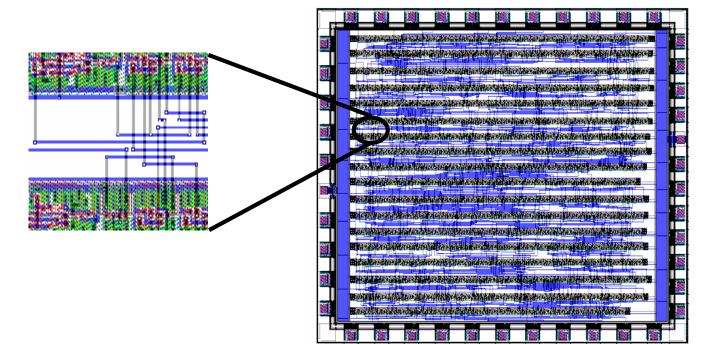




Terminology: Channel

Channel

Rectangular routing region with pins on two opposite sides



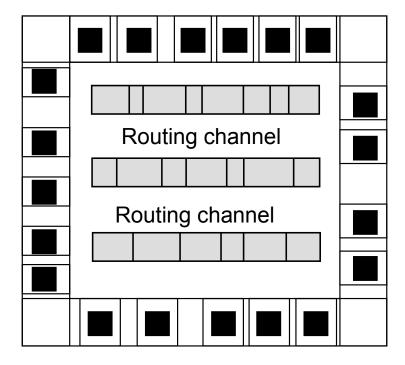
Standard cell layout (Two-layer routing)

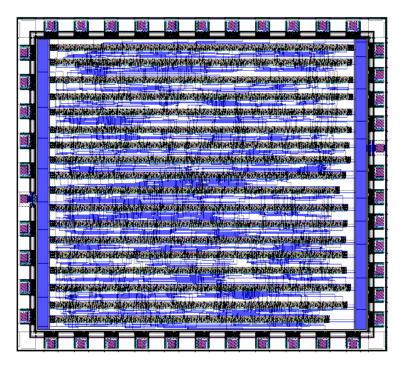
Detailed Routing

Terminology: Channel

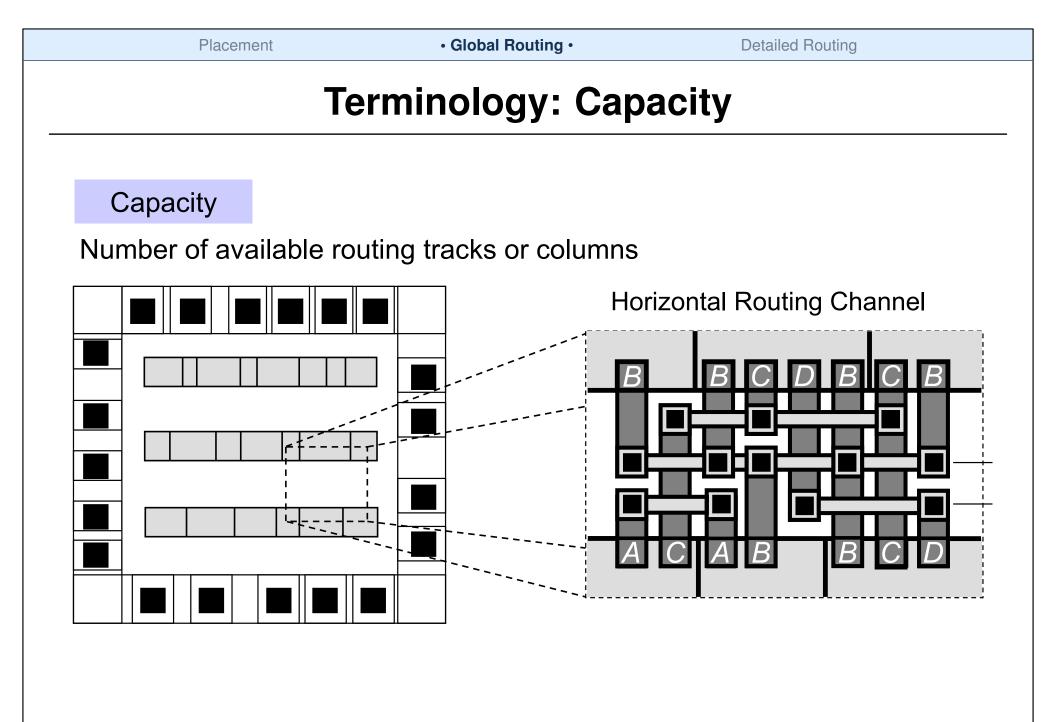
Channel

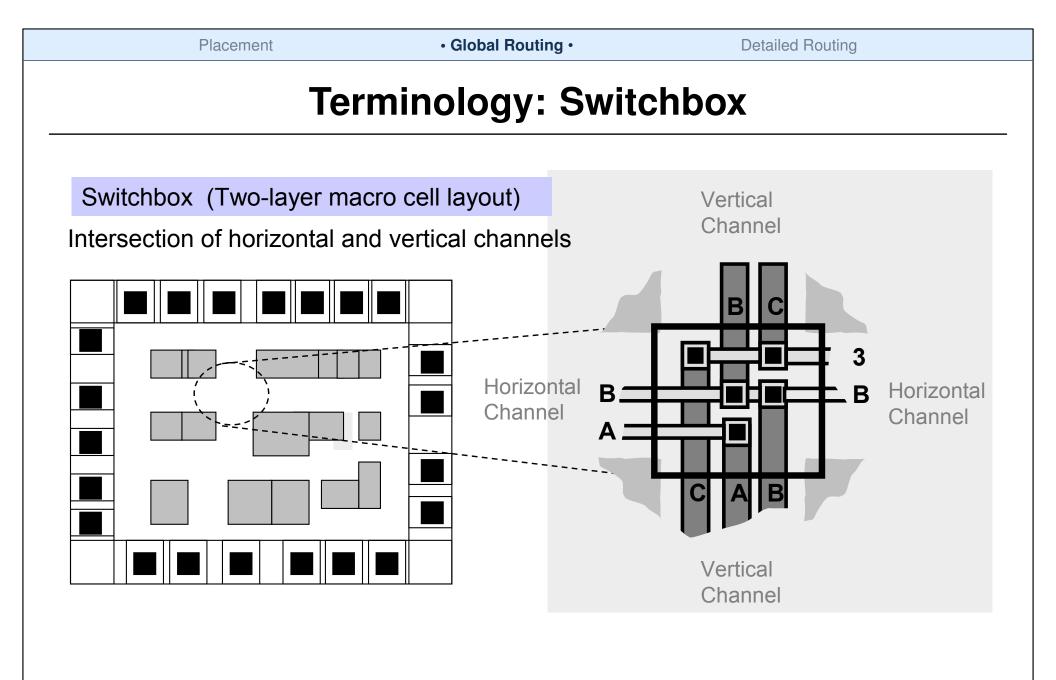
Rectangular routing region with pins on two opposite sides





Standard cell layout (Two-layer routing)

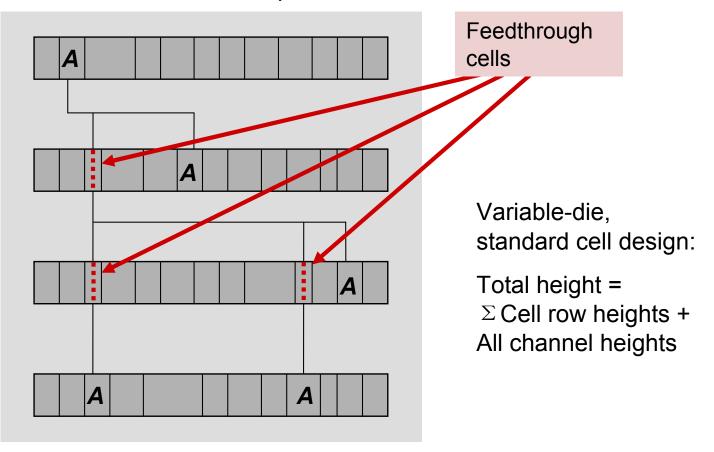


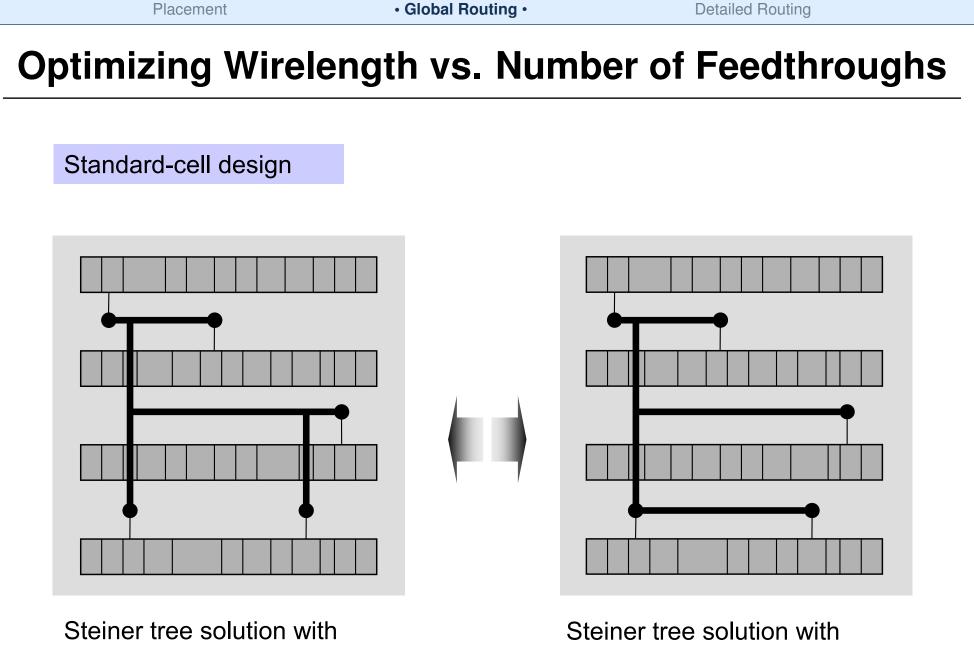


Terminology: Feed-Through Cells

Standard-cell design

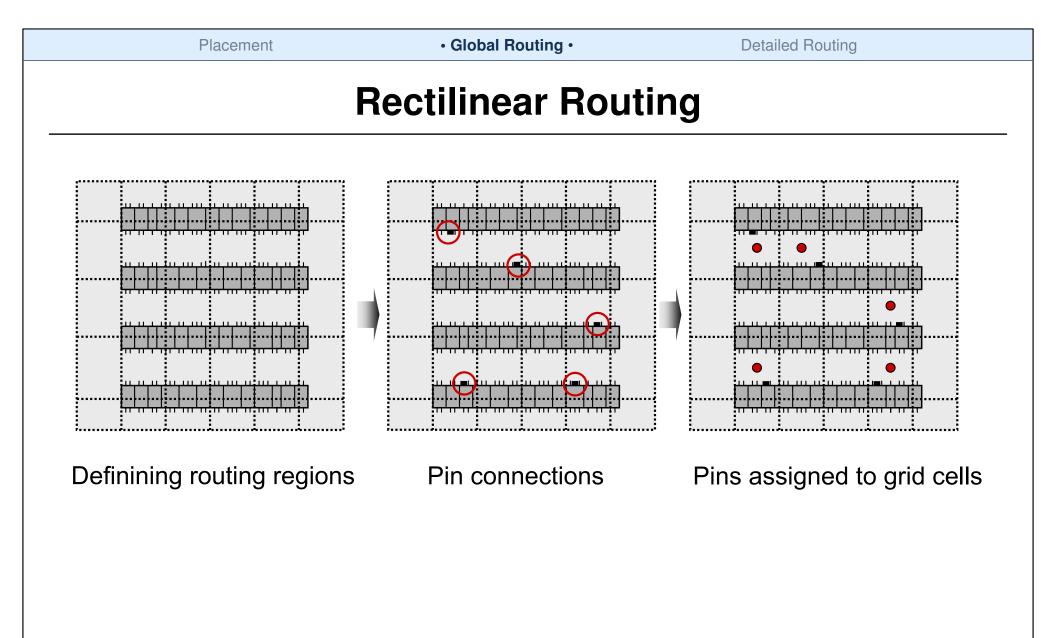
If number of metal layers is limited, feedthrough cells must be used to route across multiple cell rows

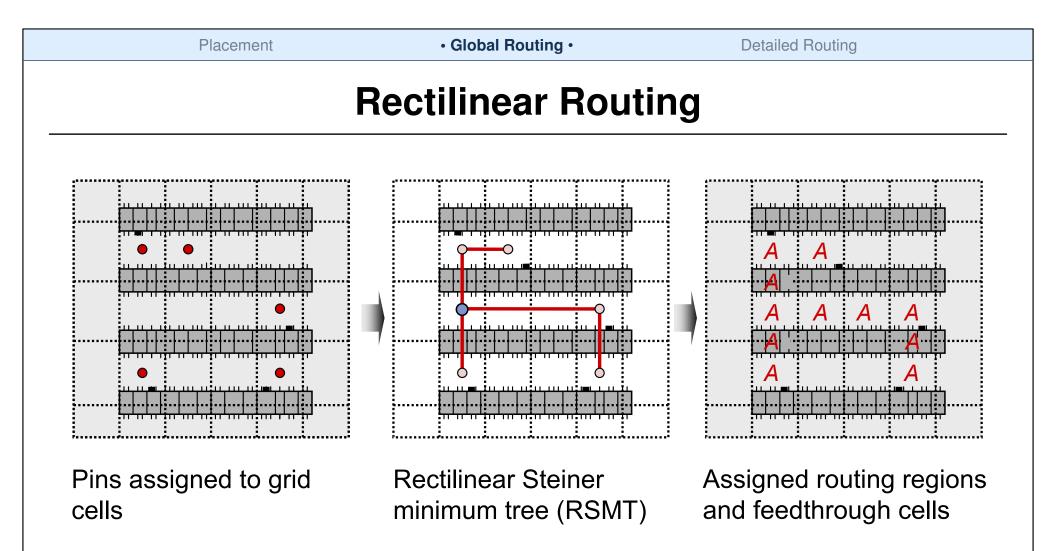




minimal wirelength

Steiner tree solution with fewest feedthrough cells





Heuristic Sequential Steiner Tree Algorithm

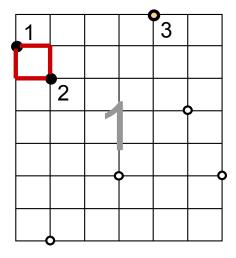
- 1. Find the closest (in terms of rectilinear distance) pin pair, construct their minimum bounding box (MBB)
- 2. Find the closest point pair (p_{MBB} , p_C) between any point p_{MBB} on the MBB and p_C from the set of pins to consider
- **3**. Construct the MBB of p_{MBB} and p_C
- 4. Add the *L*-shape that p_{MBB} lies on to *T* (deleting the other *L*-shape). If p_{MBB} is a pin, then add any *L*-shape of the MBB to *T*.
- 5. Goto step 2 until the set of pins to consider is empty

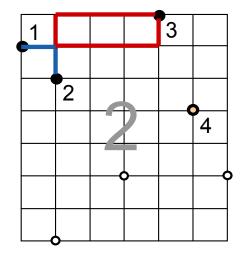
Placement

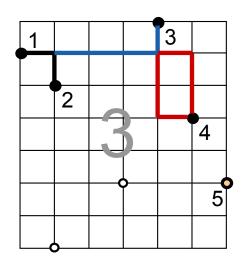
Global Routing

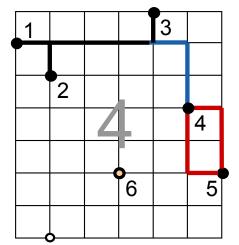
Detailed Routing

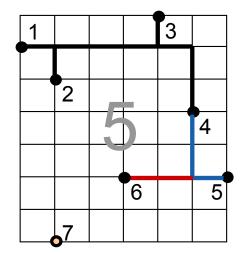
Heuristic Sequential Steiner Tree Example

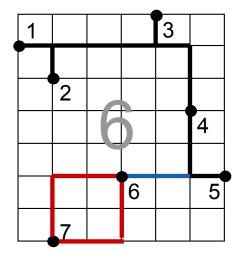










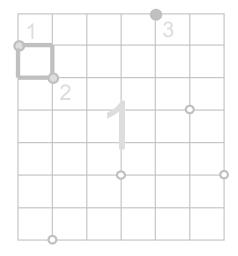


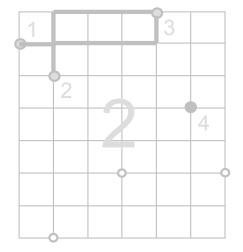
Placement

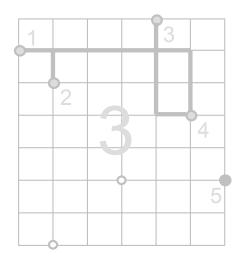
Global Routing

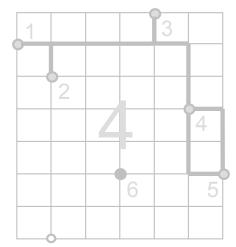
Detailed Routing

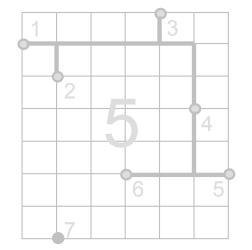
Heuristic Sequential Steiner Tree Example

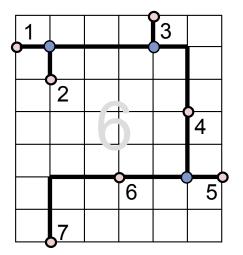








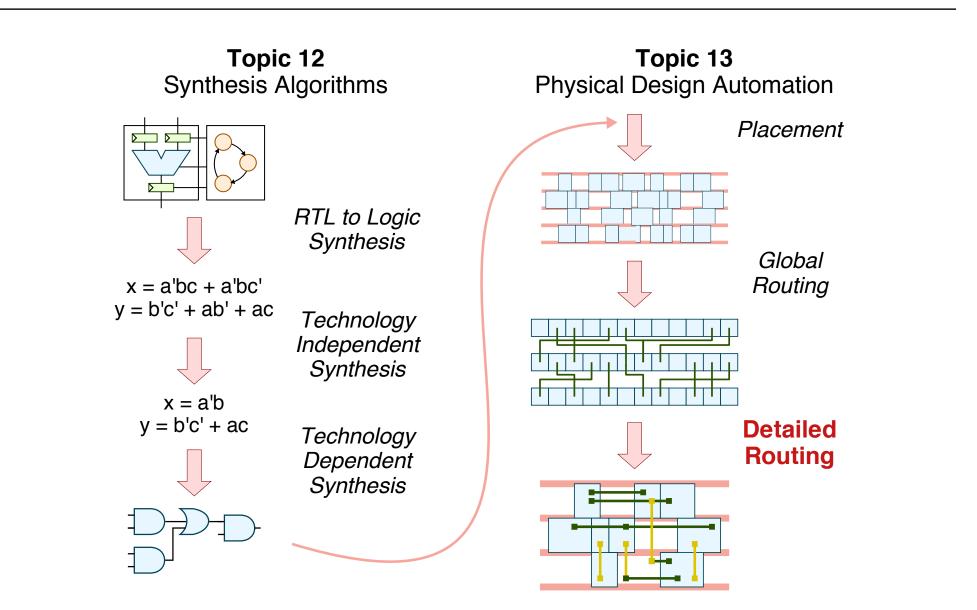


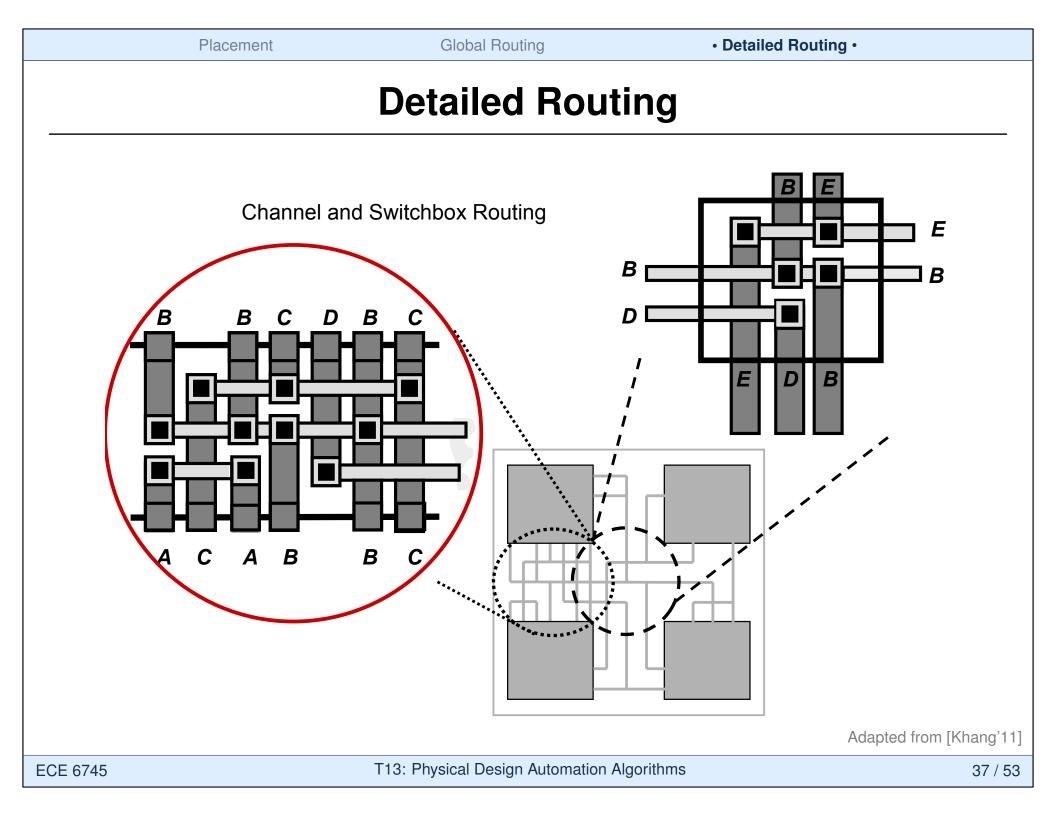


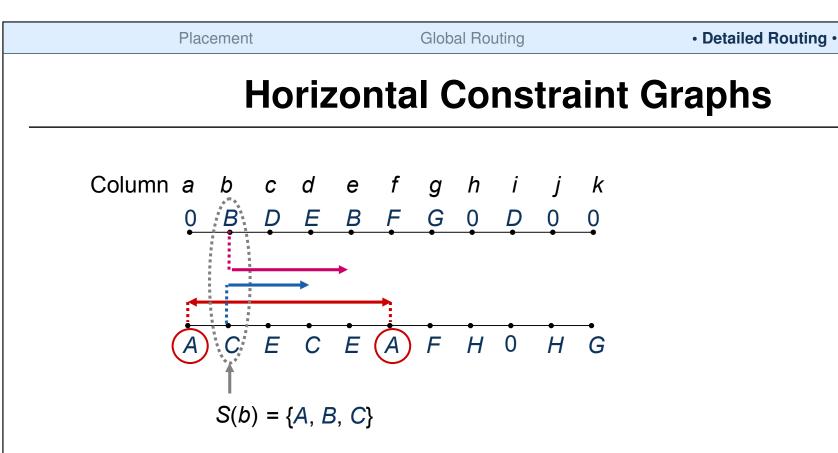
Global Routing

Detailed Routing

Part 3: CAD Algorithms





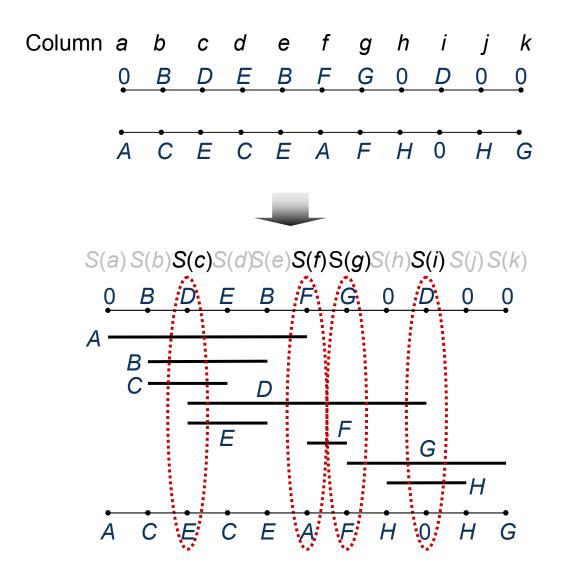


- Let *S*(*col*) denote the set of nets that pass through column *col*
- S(col) contains all nets that either (1) are connected to a pin in column col or (2) have pin connections to both the left and right of col
- Since horizontal segments cannot overlap, each net in *S*(*col*) must be assigned to a different track in column *col*
- S(col) represents the lower bound on the number of tracks in colum col; lower bound of the channel height is given by maximum cardinality of any S(col)

Global Routing

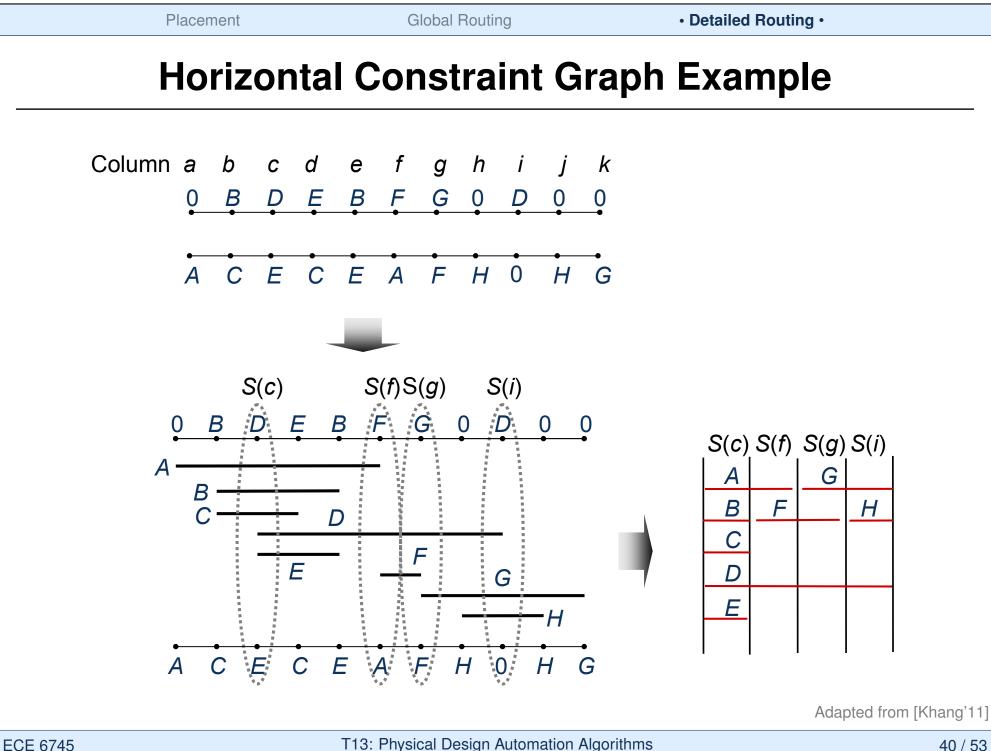
Detailed Routing

Horizontal Constraint Graph Example



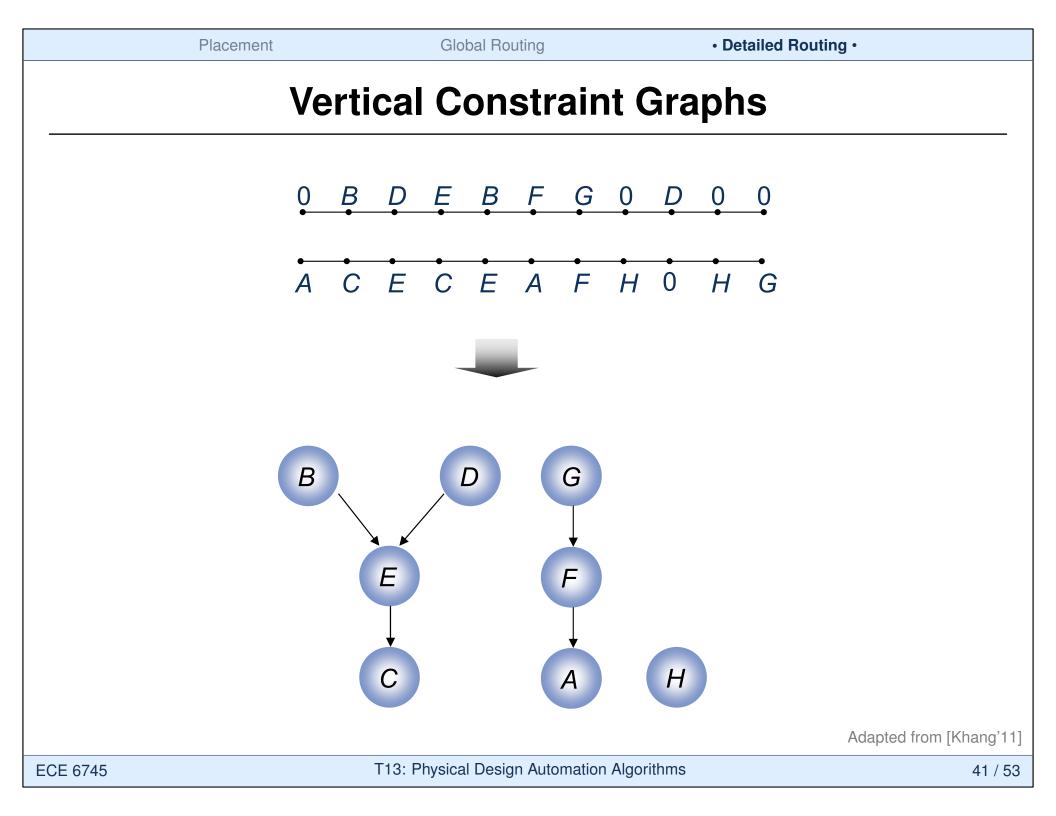
Focus on columns which are not subsets of any other column

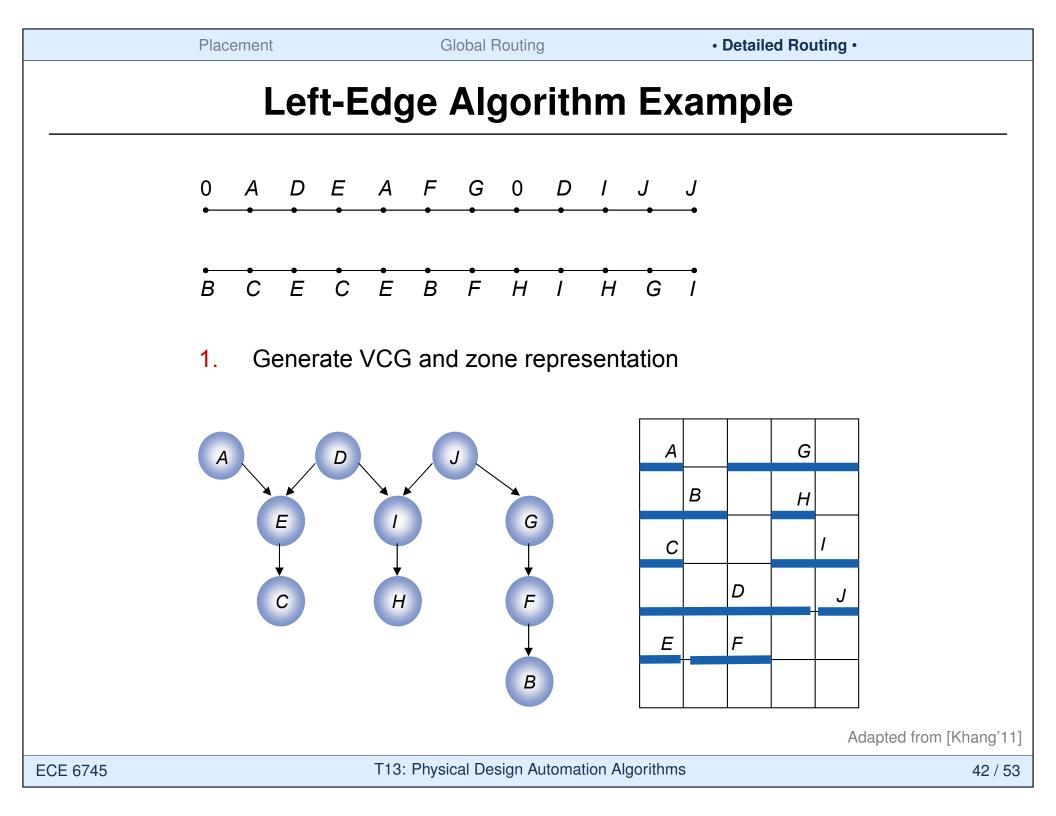
 $S(a) = \{A\}$ $S(b) = \{A,B,C\}$ $S(c) = \{A,B,C,D,E\}$ $S(d) = \{A,B,C,D,E\}$ $S(e) = \{A,B,D,E\}$ $S(f) = \{A,D,F\}$ $S(f) = \{A,D,F\}$ $S(g) = \{D,F,G\}$ $S(h) = \{D,G,H\}$ $S(i) = \{D,G,H\}$ $S(j) = \{G,H\}$ $S(k) = \{G\}$



T13: Physical Design Automation Algorithms

40 / 53



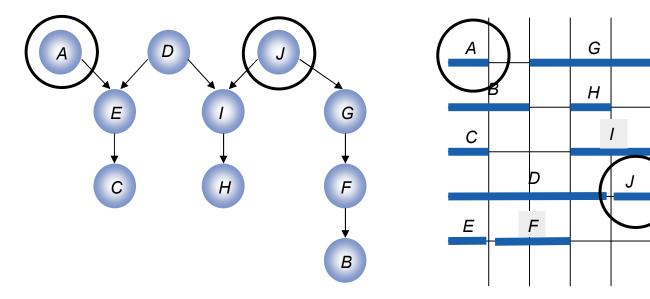


Placement

Global Routing

Detailed Routing

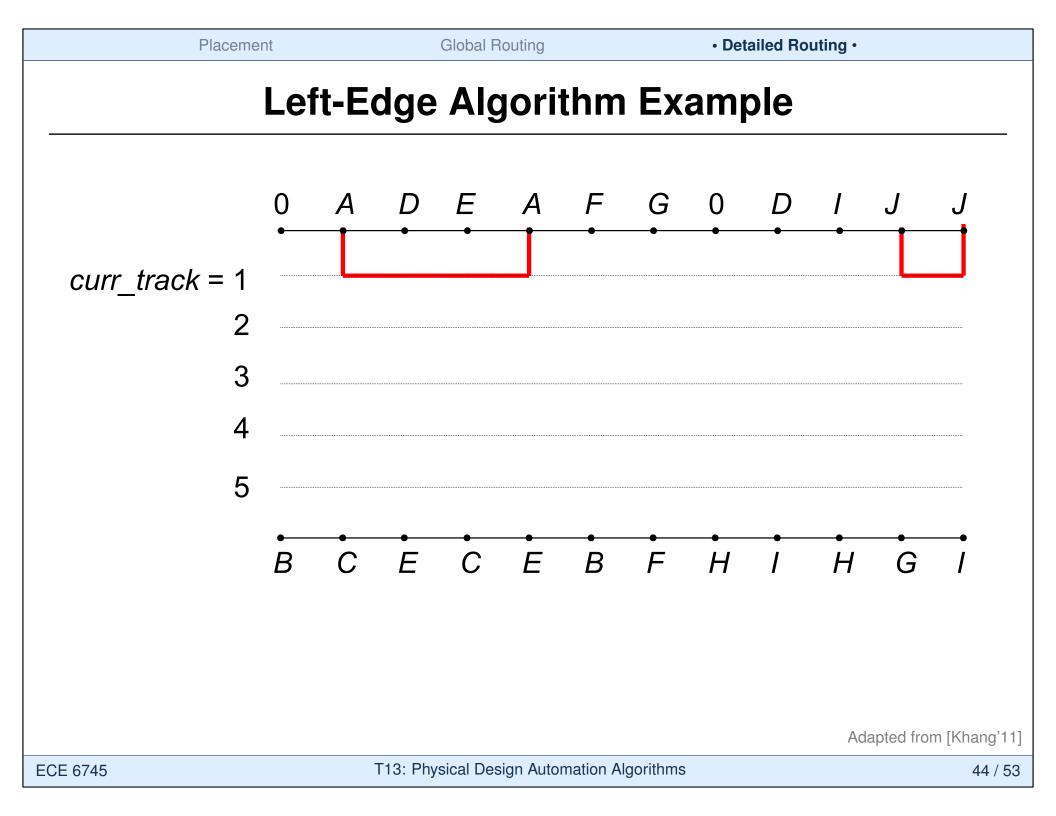
Left-Edge Algorithm Example

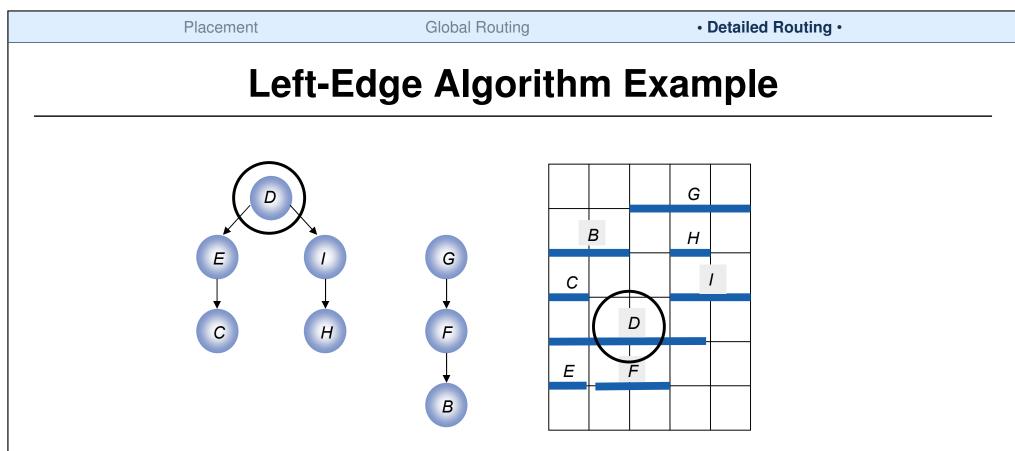


- 2. Consider next track
- Find left-to-right ordering of all unassigned nets If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

curr_track = 1: Net *A* Net *J*

4. Delete placed nets (A, J) in VCG and zone representation

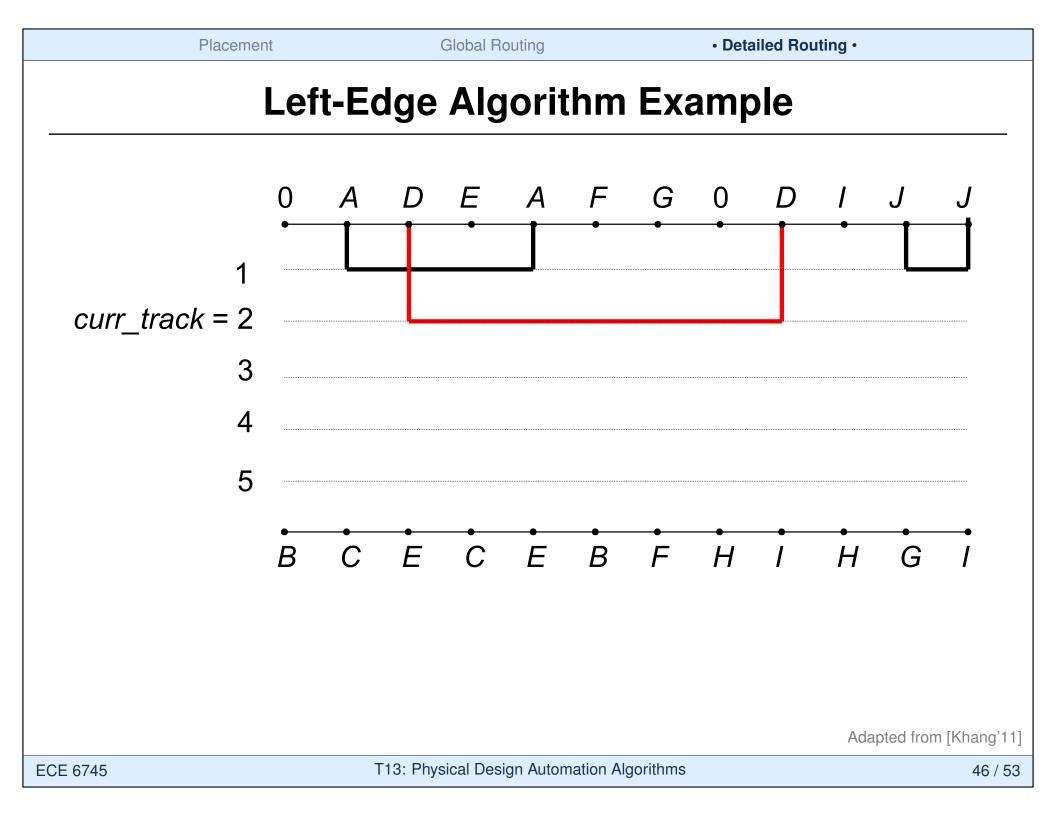


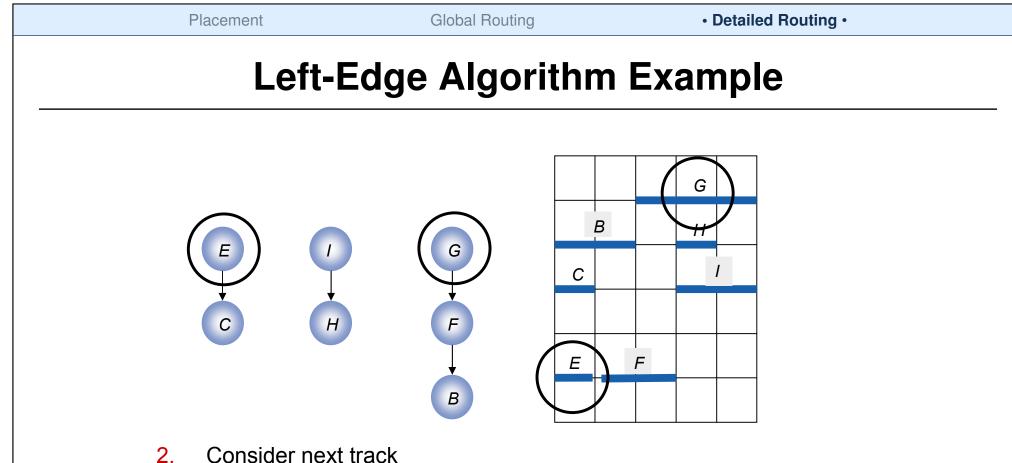


- 2. Consider next track
- Find left-to-right ordering of all unassigned nets If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

curr_track = 2: Net *D*

4. Delete placed nets (*D*) in VCG and zone representation

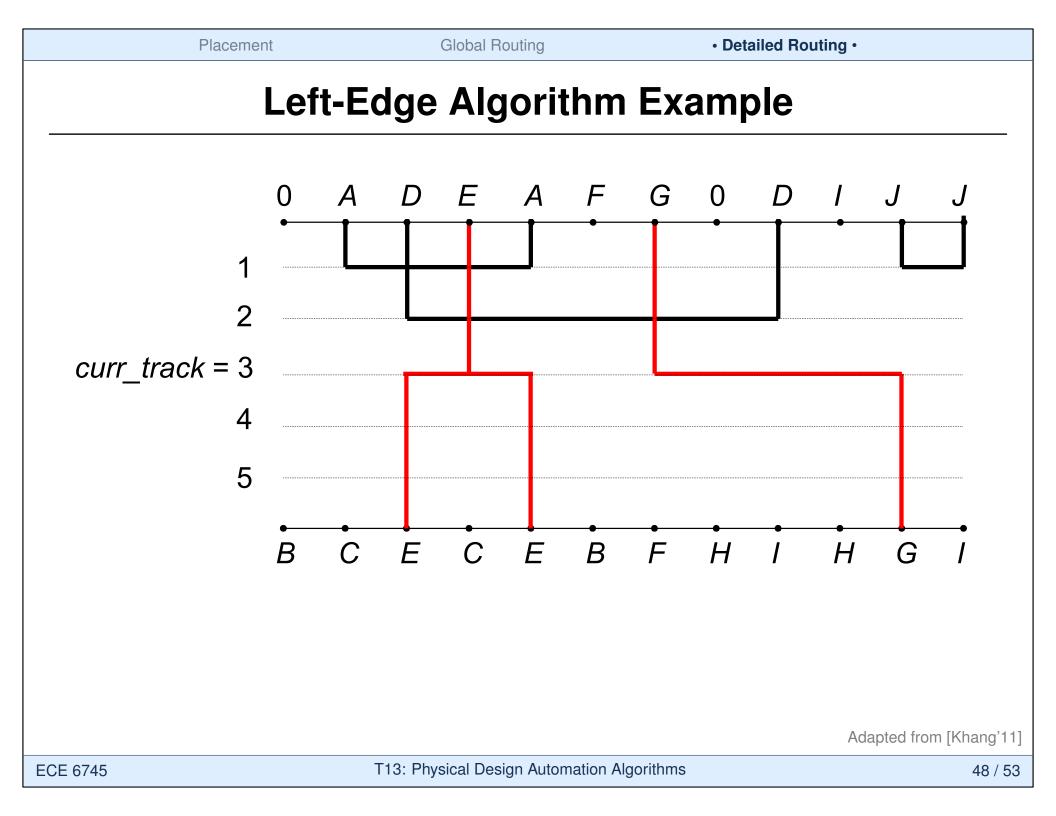




3. Find left-to-right ordering of all unassigned nets If *curr_net* has no parents and does not cause conflicts on *curr_track* assign *curr_net*

curr_track = 3: Net *E* Net *G*

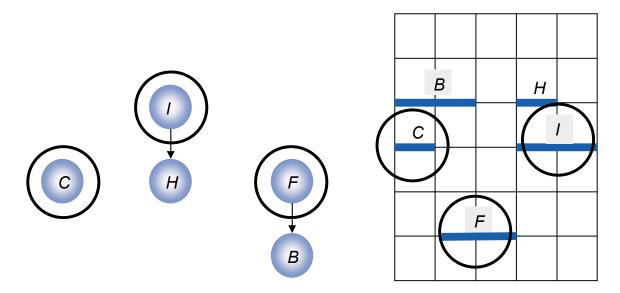
4. Delete placed nets (*E*, *G*) in VCG and zone representation



Global Routing

Detailed Routing

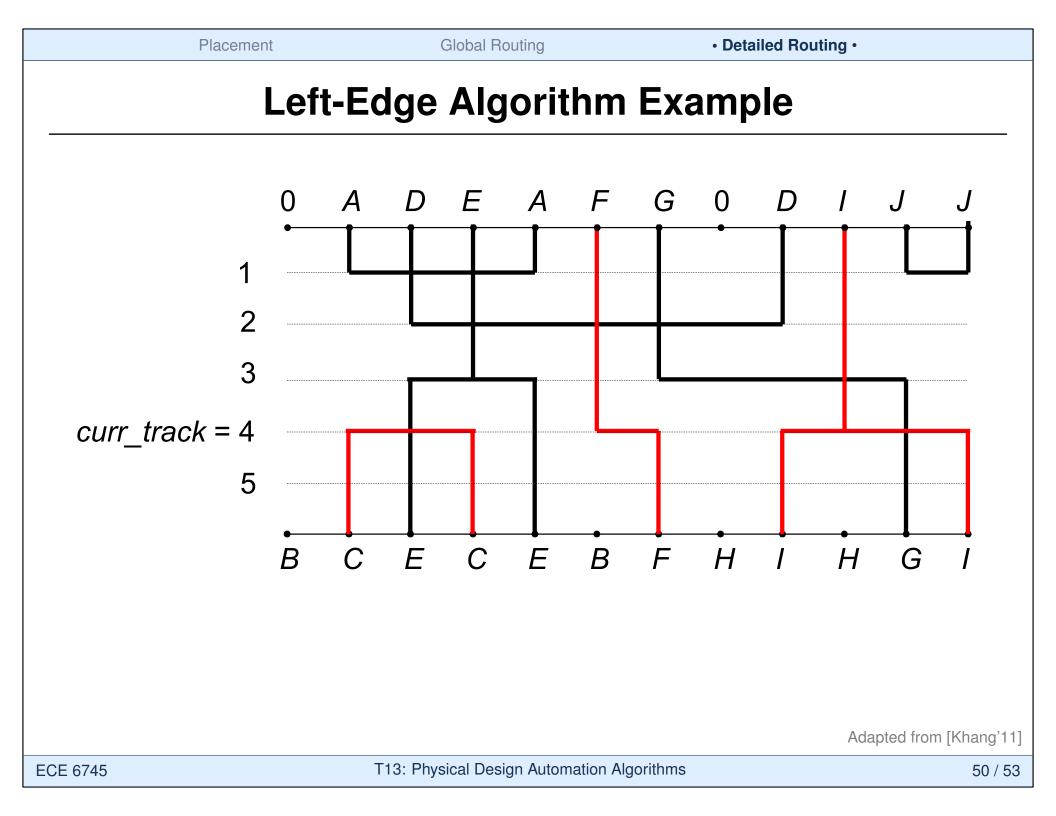
Left-Edge Algorithm Example

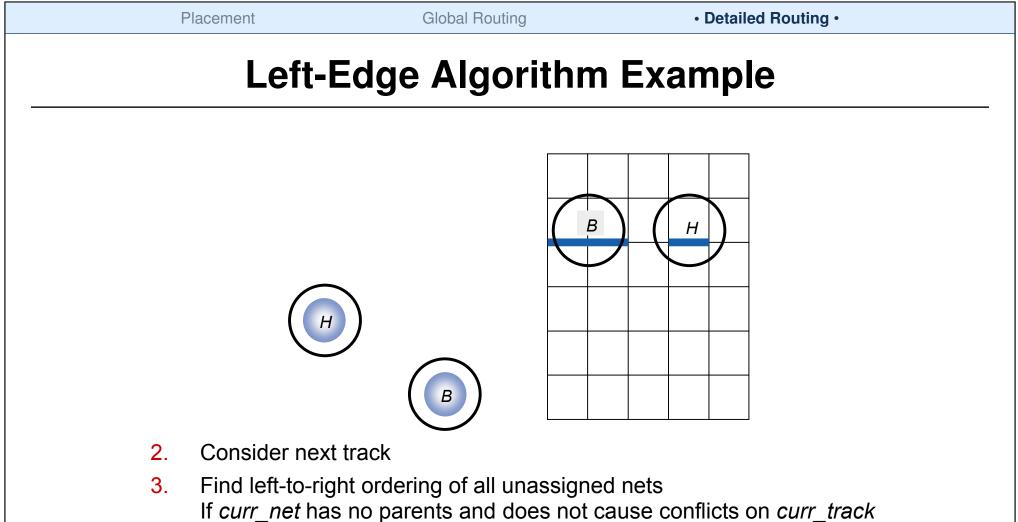


- 2. Consider next track
- Find left-to-right ordering of all unassigned nets If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

curr_track = 4: Net *C* Net *F* Net *I*

4. Delete placed nets (*C*, *F*, *I*) in VCG and zone representation

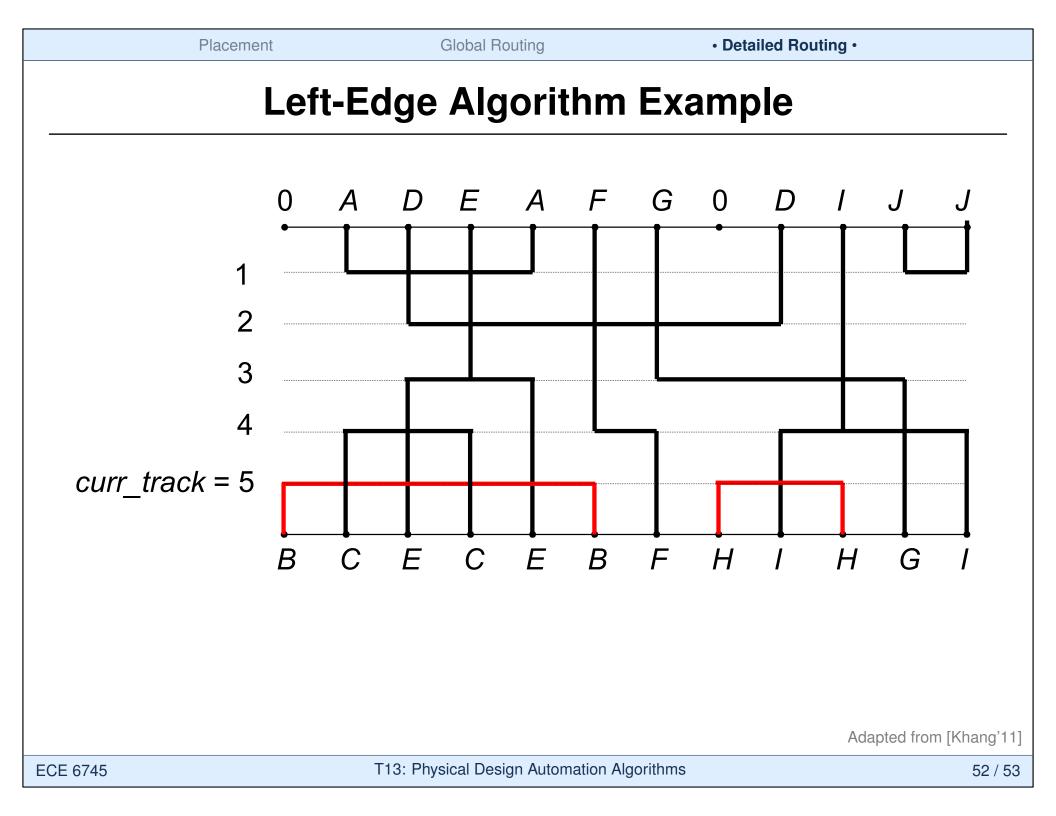




assign *curr_net*

curr_track = 5: Net *B* Net *H*

4. Delete placed nets (*B*, *H*) in VCG and zone representation



Acknowledgments

- [Devadas'06] S. Devadas, "VLSI CAD Flow: Logic Synthesis, Placement, and Routing," MIT 6.375 Complex Digital Systems Guest Lecture Slides, 2006.
- [Kahng'11] A.B. Kahng, J. Liening, I.L. Markov, and J. Hu. Companion Slides for "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer 2011.