
ECE 6745 Complex Digital ASIC Design
Topic 12: Synthesis Algorithms

Christopher Batten

School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece6745

RTL to Logic Synthesis Technology-Independent Synthesis Technology-Dependent Synthesis

Course Structure

Part 1
ASIC Design

Overview

Part 2
Digital CMOS

Circuits

Part 3
CAD Algorithms

P P

MM

Prereq
Computer

Architecture

ECE 6745 T12: Synthesis Algorithms 2 / 43

• RTL to Logic Synthesis • Technology-Independent Synthesis Technology-Dependent Synthesis

Part 3: CAD Algorithms

RTL to Logic

Synthesis

Technology
Independent

Synthesis

Technology
Dependent
Synthesis

x = a'bc + a'bc'
y = b'c' + ab' + ac

x = a'b
y = b'c' + ac

Placement

Detailed
Routing

Global

Routing

Topic 12
Synthesis Algorithms

Topic 13
Physical Design Automation

RTL to Logic

Synthesis

ECE 6745 T12: Synthesis Algorithms 3 / 43

• RTL to Logic Synthesis • Technology-Independent Synthesis Technology-Dependent Synthesis

Step 1: Single Assignment Form

// 1b inputs: y, z, a, q
// 2b inputs: f
// 3b inputs: g, c, b, e

wire x = y && z;

wire [2:0] b
= (a) ? {2’b0,x} : c;

wire [2:0] d, h;
always @(*) begin

d = b + e;
if (q) d = 3’b101;

if (f)
h = 3’b0;

else
h = g << 1;

end

For each output, create exactly
one assignment that is a function
only of the inputs

wire x = y && z;

wire [2:0] b
= (a) ? {2’b0,x} : c;

wire [2:0] d
= (q) ? 3’b101

: ((a) ? {2’b0,x} : c)
+ e;

wire [2:0] h
= (f) ? 3’b0 : (g << 1);

ECE 6745 T12: Synthesis Algorithms 4 / 43

• RTL to Logic Synthesis • Technology-Independent Synthesis Technology-Dependent Synthesis

Step 2: Bit Blast Outputs

// 1b inputs: y, z, a, q
// 2b inputs: f
// 3b inputs: g, c, b, e

wire x = y && z;

wire [2:0] b
= (a) ? {2’b0,x} : c;

wire [2:0] h
= (f) ? 3’b0

: (g << 1);

Generate separate assignment for each
bit, removes arithmetic operators leaving
only boolean operators (assume ternary
operator is short hand for equivalent
boolean operator)

wire x = y && z;

wire b[0] = (a) ? x : c[0];
wire b[1] = (a) ? 1’b0 : c[1];
wire b[2] = (a) ? 1’b0 : c[2];

wire h[0] = (f[0]|f[1]) ? 1’b0 : 1’b0;
wire h[1] = (f[0]|f[1]) ? 1’b0 : g[0];
wire h[2] = (f[0]|f[1]) ? 1’b0 : g[1];

ECE 6745 T12: Synthesis Algorithms 5 / 43

• RTL to Logic Synthesis • Technology-Independent Synthesis Technology-Dependent Synthesis

RTL Datapath Synthesis

wire [15:0] a= b + c;

Ripple-Carry

Carry Lookahead Parallel-Prefix Tree-Based

Adapted from [Weste’11]

ECE 6745 T12: Synthesis Algorithms 6 / 43

• RTL to Logic Synthesis • Technology-Independent Synthesis Technology-Dependent Synthesis

DWBB Quick Reference

DW01_add
Adder

32 Synopsys, Inc. September 2011

Foundation
DesignWare

Building Blocks

><

<=

>=

-
*

+

><

<=

>=

-
*

+

Arith

DW01_add
Adder

! Parameterized word length
! Carry-in and carry-out signals

Table 1-1 Pin Description

Pin Name Width Direction Function

A width bit(s) Input Input data

B width bit(s) Input Input data

CI 1 bit Input Carry-in

SUM width bit(s) Output Sum of (A + B + CI)

CO 1 bit Output Carry-out

Table 1-2 Parameter Description

Parameter Values Description

width ≥1 Word length of A, B, and SUM

Table 1-3 Synthesis Implementationsa

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force
Design Compiler to use one of the architectures described in this table. For more details, please refer to the
DesignWare Building Block IP User Guide.

Implementation Function License Feature Required

rpl Ripple-carry synthesis model none

cla Carry-look-ahead synthesis model none

pparch Delay-optimized flexible parallel-prefix DesignWare

CI

COB

A

SUM

Example from
Synopsys
DesignWare

RTL Datapath
Synthesis directly
transforms arithmetic
operators into
technology
independent
optimized gate-level
netlists

Adapted from [Synopsys’11]

ECE 6745 T12: Synthesis Algorithms 7 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Part 3: CAD Algorithms

RTL to Logic

Synthesis

Technology
Independent

Synthesis

Technology
Dependent
Synthesis

x = a'bc + a'bc'
y = b'c' + ab' + ac

x = a'b
y = b'c' + ac

Placement

Detailed
Routing

Global

Routing

Topic 12
Synthesis Algorithms

Topic 13
Physical Design Automation

Technology
Independent

Synthesis

ECE 6745 T12: Synthesis Algorithms 8 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Technology-Independent Synthesis

▶ Two-level boolean minimization – based on assumption that
reducing the number of product terms in an equation and reducing the
size of each product term will result in a smaller/faster implementation

▶ Optimizing finite-state machines – look for equivalent FSMs (i.e.,
FSMs that produce the same outputs give the same sequence of
inputs) that have fewer states

▶ FSM state encodings – minimize implementation area (= size of state
storage + size of logic to implement next state and output functions).

Note that none of these optimizations are completely isolated from the
target technology, but experience has shown that it’s advantageous to
reduce the size of the problem as much as possible before starting the

technology-dependent optimizations.

ECE 6745 T12: Synthesis Algorithms 9 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Karnaugh Map Method Review

▶ 1. Choose an element of ON-set not already covered by an implicant

▶ 2. Find “maximal” groups of 1’s and X’s adjacent to that element.
Remember to consider top/bottom row, left/right column, and corner
adjacencies. This forms prime implicants.

▶ Repeat steps 1 and 2 to find all prime implicants

▶ 3. Revise the 1’s elements in the K-map. If covered by single prime
implicant, it is essential, and participates in the final cover. The 1’s it
covers do not need to be revisited.

▶ 4. If there remain 1’s not covered by essential prime implicants, then
select the smallest number of prime implicants that cover the
remaining 1’s

ECE 6745 T12: Synthesis Algorithms 10 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Karnaugh Map Method Example

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 11 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Quine-McCluskey (QM) Method

▶ Quine-McCluskey method is an exact alogorithm which finds a
minimum-cost sum-of-products implementation of a boolean function

▶ Four main steps
▷ 1. Generate prime implicants

▷ 2. Construct prime implicant table

▷ 3. Reduce prime implicant table
a. Remove essential prime implicants
b. Row dominance
c. Column dominance
d. Iterate at this step until no further reductions

▷ 4. Solve prime implicant table

ECE 6745 T12: Synthesis Algorithms 12 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #1 – Step 1

L04 – Synthesis 96.371 – Fall 2002 09/13/02

Prime Term Generation
Start by expressing your Boolean function using 0-

terms (product terms with no don’t care care entries).

For compactness the table for example 4-input, 1-

output function F(w,x,y,z) shown to the right includes

only entries where the output of the function is 1 and

we’ve labeled each entry with it’s decimal equivalent.

W X Y Z label
0 0 0 0 0
0 1 0 1 5
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 1 0 14
1 1 1 1 15

Look for pairs of 0-terms that differ in only one bit position and merge

them in a 1-term (i.e., a term that has exactly one ‘–’ entry). Next 1-terms

are examined in pairs to see if the can be merged into 2-terms, etc. Mark

k-terms that get merged into (k+1) terms so we can discard them later.

0, 8 -000
5, 7 01-1
7,15 -111
8, 9 100-
8,10 10-0
9,11 10-1

10,11 101-
10,14 1-10
11,15 1-11
14,15 111-

1-terms: 8, 9,10,11 10--
10,11,14,15 1-1-

2-terms:

3-terms: none!

Label unmerged terms:

these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to
Srini Devadas

Adapted from [Terman’02]

ECE 6745 T12: Synthesis Algorithms 13 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #1 – Step 2, Step 3a

L04 – Synthesis 106.371 – Fall 2002 09/13/02

Prime Term Table
An “X” in the prime term table in row R and column C signifies that the 0-
term corresponding to row R is contained by the prime corresponding to
column C.

A B C D E
0000 X
0101 . X . . .
0111 . X X . .
1000 X . . X .
1001 . . . X .
1010 . . . X X
1011 . . . X X
1110 X
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding 0-term is not contained in any other prime.

A is essential
B is essential

D is essential

E is essential

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum
set of primes (columns)
such that there is at least
one “X” in every row. This
is the classical minimum
covering problem.

Goal: select the minimum
set of primes (columns)
such that there is at least
one “X” in every row. This
is the classical minimum
covering problem.

Adapted from [Terman’02]

ECE 6745 T12: Synthesis Algorithms 14 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Column Dominance

▶ 5 prime implicants, each
covers 2 ON-set minterms

▶ A’C’D’ and ACD are essential
prime implicants, must be in
final cover

▶ Pick min subset of remaining
3 prime implicants which
covers ON-set

00 01 11 10

00

01

11

10

A B

CD

1 1

1 1

1 1

0

0

0 0

0

0 0

0

00

Karnaugh map with set of prime implicants:
 illustrating "column dominance"

essential

essential

Column Dominance

Consider the following Karnaugh map of a 4-input Boolean function:

There are 5 prime implicants, each of which covers 2 ON-set minterms. First, we note that two implicants
are essential prime implicants: A′C ′D′ andACD. These implicants must be added to the final cover. There
are 3 remaining prime implicants. We must pick a minimum subset of these to cover the uncovered ON-set
minterms.

Here is the prime implicant table for the Karnaugh map. The 5 prime implicants are listed as columns, and
the 6 ON-set minterms are listed as rows.

A′C ′D′ A′BC ′ BC ′D ABD ACD
(0,4) (4,5) (5,13) (13,15) (11,15)

0 X
4 X X
5 X X
11 X
13 X X
15 X X

We cross out columns A′C ′D′ and ACD and mark them with asterisks, to indicate that these are essential.
Each row intersected by one of these columns is also crossed out, because that minterm is now covered.
At this point, prime implicant BC ′D covers 2 remaining ON-set minterms (5 and 13). However, prime
implicant A′BC ′ covers only one of these (namely, 5), as does ABD (namely, 13). Therefore we can
always use BC ′D instead of either A′BC or ABD, since it covers the same minterms. That is, BC ′D
column-dominates A′BC, and BC ′D column-dominates ABD. The dominated prime implicants can be
crossed out, and only column BC ′D remains.

2

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 15 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Column Dominance

▶ Cross out columns A’C’D’ and
ACD since they are essential

▶ Each row intersected by one
of the essential prime
columns is also crossed out
because that minterm is
already covered

00 01 11 10

00

01

11

10

A B

CD

1 1

1 1

1 1

0

0

0 0

0

0 0

0

00

Karnaugh map with set of prime implicants:
 illustrating "column dominance"

essential

essential

Column Dominance

Consider the following Karnaugh map of a 4-input Boolean function:

There are 5 prime implicants, each of which covers 2 ON-set minterms. First, we note that two implicants
are essential prime implicants: A′C ′D′ andACD. These implicants must be added to the final cover. There
are 3 remaining prime implicants. We must pick a minimum subset of these to cover the uncovered ON-set
minterms.

Here is the prime implicant table for the Karnaugh map. The 5 prime implicants are listed as columns, and
the 6 ON-set minterms are listed as rows.

A′C ′D′ A′BC ′ BC ′D ABD ACD
(0,4) (4,5) (5,13) (13,15) (11,15)

0 X
4 X X
5 X X
11 X
13 X X
15 X X

We cross out columns A′C ′D′ and ACD and mark them with asterisks, to indicate that these are essential.
Each row intersected by one of these columns is also crossed out, because that minterm is now covered.
At this point, prime implicant BC ′D covers 2 remaining ON-set minterms (5 and 13). However, prime
implicant A′BC ′ covers only one of these (namely, 5), as does ABD (namely, 13). Therefore we can
always use BC ′D instead of either A′BC or ABD, since it covers the same minterms. That is, BC ′D
column-dominates A′BC, and BC ′D column-dominates ABD. The dominated prime implicants can be
crossed out, and only column BC ′D remains.

2

▶ BC’D covers minterm 5 and 13, but A’BC’ only covers minterm 5 and
ABD only covers minterm 13

▶ BC’D column dominates A’BC’ and ABD, dominated prime implicants
can be crossed out

▶ Only column BC’D remains
Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 16 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Row Dominance

▶ 4 prime implicants, no
essential prime implicants

▶ Pick min subset of the 4
prime implicants to cover the
5 ON-set minterms

00 01 11 10

00

01

11

10

A B

CD
1

0 0

00

Karnaugh map with set of prime implicants:
 illustrating "row dominance"

− 0

1 − −

1 1 0 0

1 −

no essential
 prime implicants

Row Dominance

Consider the following Karnaugh map of a 4-input Boolean function:

There are 4 prime implicants: A′B′, C ′D, A′D and A′C. None of these is an essential prime implicant. We
must pick a minimum subset of these to cover the 5 ON-set minterms. Here is the prime implicant table for
the Karnaugh map. The 4 prime implicants are listed as columns, and the 5 ON-set minterms are listed as
rows.

A′B′ C ′D A′D A′C
(1,2,3) (1,5) (1,3,5,7) (2,3,7)

1 X X X
2 X X
3 X X X
5 X X
7 X X

Note that row 3 is contained in three columns: A′B′, A′D, and A′C. Row 2 is covered by two of these
three columns: A′B′ and A′C, and row 7 is also covered by two of these three columns: A′D and A′C.
In this case, any prime implicant which contains row 2 also contains row 3. Similarly, any prime implicant
which contains row 7 also contains row 3. Therefore, we can ignore the covering of row 3: it will always be
covered as long as we cover row 2 or row 7. To see this, note that row 3 row dominates row 2, and row 3
row dominates row 7. The situation is now the reverse of column dominance: we cross out the dominating
(larger) row. In this case, row 3 can be crossed out; it no longer needs to be considered.

Similarly, row 1 row dominates row 5. Therefore row 1 can be crossed out. We are guaranteed that row 1
will still be covered, since any prime implicant which covers row 5 will also cover row 1.

3

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 17 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Row Dominance

▶ Row 3 is contained in 3
columns: A’B’, A’D, and A’C

▶ Row 2 is covered by two of
these three columns, so any
prime implicant which
contains row 2 also contains
row 3

00 01 11 10

00

01

11

10

A B

CD
1

0 0

00

Karnaugh map with set of prime implicants:
 illustrating "row dominance"

− 0

1 − −

1 1 0 0

1 −

no essential
 prime implicants

Row Dominance

Consider the following Karnaugh map of a 4-input Boolean function:

There are 4 prime implicants: A′B′, C ′D, A′D and A′C. None of these is an essential prime implicant. We
must pick a minimum subset of these to cover the 5 ON-set minterms. Here is the prime implicant table for
the Karnaugh map. The 4 prime implicants are listed as columns, and the 5 ON-set minterms are listed as
rows.

A′B′ C ′D A′D A′C
(1,2,3) (1,5) (1,3,5,7) (2,3,7)

1 X X X
2 X X
3 X X X
5 X X
7 X X

Note that row 3 is contained in three columns: A′B′, A′D, and A′C. Row 2 is covered by two of these
three columns: A′B′ and A′C, and row 7 is also covered by two of these three columns: A′D and A′C.
In this case, any prime implicant which contains row 2 also contains row 3. Similarly, any prime implicant
which contains row 7 also contains row 3. Therefore, we can ignore the covering of row 3: it will always be
covered as long as we cover row 2 or row 7. To see this, note that row 3 row dominates row 2, and row 3
row dominates row 7. The situation is now the reverse of column dominance: we cross out the dominating
(larger) row. In this case, row 3 can be crossed out; it no longer needs to be considered.

Similarly, row 1 row dominates row 5. Therefore row 1 can be crossed out. We are guaranteed that row 1
will still be covered, since any prime implicant which covers row 5 will also cover row 1.

3

▶ Row 7 is covered by two of these three columns, so any prime
implicant which contains row 7 also contains row 3

▶ Thus we can ignore row 3, it will always be covered as long as cover
row 2 or row 7

▶ Cross out row 3, similarly row 1 dominates row 5 so cross out row 1

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 18 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #2 – Step 1

Column I Column II
0 0000

√
(0,2) 00-0

2 0010
√

(0,8) -000
8 1000

√
(2,6) 0-10

5 0101
√

(2,10) -010
6 0110

√
(8,10) 10-0

10 1010
√

(8,12) 1-00
12 1100

√
(5,7) 01-1

7 0111
√

(5,13) -101
13 1101

√
(6,7) 011-

14 1110
√

(6,14) -110
15 1111

√
(10,14) 1-10
(12,13) 110-
(12,14) 11-0
(7,15) -111
(13,15) 11-1
(14,15) 111-

Combine Pairs of Products from Column II

A check (
√
) is written next to every product which can combined with another product.

Column I Column II Column III
0 0000

√
(0,2) 00-0

√
(0,2,8,10) -0-0

2 0010
√

(0,8) -000
√

(0,8,2,10) -0-0
8 1000

√
(2,6) 0-10

√
(2,6,10,14) –10

5 0101
√

(2,10) -010
√

(2,10,6,14) –10
6 0110

√
(8,10) 10-0

√
(8,10,12,14) 1–0

10 1010
√

(8,12) 1-00
√

(8,12,10,14) 1–0
12 1100

√
(5,7) 01-1

√
(5,7,13,15) -1-1

7 0111
√

(5,13) -101
√

(5,13,7,15) -1-1
13 1101

√
(6,7) 011-

√
(6,7,14,15) -11-

14 1110
√

(6,14) -110
√

(6,14,7,15) -11-
15 1111

√
(10,14) 1-10

√
(12,13,14,15) 11–

(12,13) 110-
√

(12,14,13,15) 11–
(12,14) 11-0

√

(7,15) -111
√

(13,15) 11-1
√

(14,15) 111-
√

Column III contains a number of duplicate entries, e.g. (0,2,8,10) and (0,8,2,10). Duplicate entries appear
because a product in Column III can be formed in several ways. For example, (0,2,8,10) is formed by com-
bining products (0,2) and (8,10) from Column II, and (0,8,2,10) (the same product) is formed by combining
products (0,8) and (2,10).

Duplicate entries should be crossed out. The remaining unchecked products cannot be combined with other
products. These are the prime implicants: (0,2,8,10), (2,6,10,14), (5,7,13,15), (6,7,14,15), (8,10,12,14) and

5

Eliminate redundant
entries in table

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 19 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #2 – Step 2, Step 3a

(12,13,14,15); or, using the usual product notation: B′D′, CD′, BD, BC, AD′ and AB.

Step 2: Construct Prime Implicant Table.

B′D′ CD′ BD BC AD′ AB
(0,2,8,10) (2,6,10,14) (5,7,13,15) (6,7,14,15) (8,10,12,14) (12,13,14,15)

0 X
2 X X
5 X
6 X X
7 X X
8 X X
10 X X X
12 X X
13 X X
14 X X X X
15 X X X

Step 3: Reduce Prime Implicant Table.

Iteration #1.

(i) Remove Primary Essential Prime Implicants

B′D′(∗) CD′ BD(∗) BC AD′ AB
(0,2,8,10) (2,6,10,14) (5,7,13,15) (6,7,14,15) (8,10,12,14) (12,13,14,15)

(◦)0 X
2 X X

(◦)5 X
6 X X
7 X X
8 X X
10 X X X
12 X X
13 X X
14 X X X X
15 X X X

* indicates an essential prime implicant

◦ indicates a distinguished row, i.e. a row covered by only 1 prime implicant

In step #1, primary essential prime implicants are identified. These are implicants which will appear in any
solution. A row which is covered by only 1 prime implicant is called a distinguished row. The prime im-
plicant which covers it is an essential prime implicant. In this step, essential prime implicants are identified

6

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 20 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #2 – Step 3b, 3c, 3a

and removed. The corresponding column is crossed out. Also, each row where the column contains anX is
completely crossed out, since these minterms are now covered. These essential implicants will be added to
the final solution. In this example, B′D′ and BD are both primary essentials.

(ii) Row Dominance

The table is simplified by removing rows and columns which were crossed out in step (i). (Note: you do
not need to do this, but it makes the table easier to read. Instead, you can continue to mark up the original
table.)

CD′ BC AD′ AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)

6 X X
12 X X
14 X X X X

Row 14 dominates both row 6 and row 12. That is, row 14 has an “X” in every column where row 6 has an
“X” (and, in fact, row 14 has “X”’s in other columns as well). Similarly, row 14 has in “X” in every column
where row 12 has an “X”. Rows 6 and 12 are said to be dominated by row 14.

A dominating row can always be eliminated. To see this, note that every product which covers row 6 also
covers row 14. That is, if some product covers row 6, row 14 is guaranteed to be covered. Similarly, any
product which covers row 12 will also cover row 14. Therefore, row 14 can be crossed out.

(iii) Column Dominance

CD′ BC AD′ AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)

6 X X
12 X X

Column CD′ dominates column BC. That is, column CD′ has an “X” in every row where column BC has
an “X”. In fact, in this example, columnBC also dominates column CD′, so each is dominated by the other.
(Such columns are said to co-dominate each other.) Similarly, columns AD′ and AB dominate each other,
and each is dominated by the other.

A dominated column can always be eliminated. To see this, note that every row covered by the dominated
column is also covered by the dominating column. For example, C ′D covers every row which BC covers.
Therefore, the dominating column can always replace the dominated column, so the dominated column is
crossed out. In this example, CD′ and BC dominate each other, so either column can be crossed out (but
not both). Similarly, AD′ and AB dominate each other, so either column can be crossed out.

7

and removed. The corresponding column is crossed out. Also, each row where the column contains anX is
completely crossed out, since these minterms are now covered. These essential implicants will be added to
the final solution. In this example, B′D′ and BD are both primary essentials.

(ii) Row Dominance

The table is simplified by removing rows and columns which were crossed out in step (i). (Note: you do
not need to do this, but it makes the table easier to read. Instead, you can continue to mark up the original
table.)

CD′ BC AD′ AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)

6 X X
12 X X
14 X X X X

Row 14 dominates both row 6 and row 12. That is, row 14 has an “X” in every column where row 6 has an
“X” (and, in fact, row 14 has “X”’s in other columns as well). Similarly, row 14 has in “X” in every column
where row 12 has an “X”. Rows 6 and 12 are said to be dominated by row 14.

A dominating row can always be eliminated. To see this, note that every product which covers row 6 also
covers row 14. That is, if some product covers row 6, row 14 is guaranteed to be covered. Similarly, any
product which covers row 12 will also cover row 14. Therefore, row 14 can be crossed out.

(iii) Column Dominance

CD′ BC AD′ AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)

6 X X
12 X X

Column CD′ dominates column BC. That is, column CD′ has an “X” in every row where column BC has
an “X”. In fact, in this example, columnBC also dominates column CD′, so each is dominated by the other.
(Such columns are said to co-dominate each other.) Similarly, columns AD′ and AB dominate each other,
and each is dominated by the other.

A dominated column can always be eliminated. To see this, note that every row covered by the dominated
column is also covered by the dominating column. For example, C ′D covers every row which BC covers.
Therefore, the dominating column can always replace the dominated column, so the dominated column is
crossed out. In this example, CD′ and BC dominate each other, so either column can be crossed out (but
not both). Similarly, AD′ and AB dominate each other, so either column can be crossed out.

7

Iteration #2.

(i) Remove Secondary Essential Prime Implicants

CD′(∗∗) AD′(∗∗)
(2,6,10,14) (8,10,12,14)

(◦)6 X
(◦)12 X

** indicates a secondary essential prime implicant

◦ indicates a distinguished row

In iteration #2 and beyond, secondary essential prime implicants are identified. These are implicants which
will appear in any solution, given the choice of column-dominance used in the previous steps (if 2 columns
co-dominated each other in a previous step, the choice of which was deleted can affect what is an “essential”
at this step). As before, a row which is covered by only 1 prime implicant is called a distinguished row. The
prime implicant which covers it is a (secondary) essential prime implicant.

Secondary essential prime implicants are identified and removed. The corresponding columns are crossed
out. Also, each row where the column contains an X is completely crossed out, since these minterms are
now covered. These essential implicants will be added to the final solution. In this example, both CD′ and
AD′ are secondary essentials.

Step 4: Solve Prime Implicant Table.

No other rows remain to be covered, so no further steps are required. Therefore, the minimum-cost solution
consists of the primary and secondary essential prime implicants B′D′, BD, CD′ and AD′:

F = B′D′ + BD + CD′ + AD′

8

3.b Row Dominance – row 14
dominates both row 6 and 12;
remove row 14 since if some
product covers row 6, row 14 is
guaranteed to be covered

3.c Column Dominance – column
CD’ dominates column BC (actually
they co-dominate each other);
remove column BC since it is
redundant with column CD’

3.a Remove Essential Prime
Implicants – second iteration of
step 3, both remaining prime
implicants are essential

F = B’D’ + BD + CD’ + AD’
Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 21 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #3 – Step 2Example #2:

F (A, B, C, D) = Σm(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Step 1: Generate Prime Implicants.

Use the method described in Example #1.

Step 2: Construct Prime Implicant Table.

A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
2 X X X X
3 X X
4 X X X X
5 X X
6 X X X
7 X X
8 X X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X

Step 3: Reduce Prime Implicant Table.
Iteration #1.
(i) Remove Primary Essential Prime Implicants
There are no primary essential prime implicants: each row is covered by at least two products.

9

Example #2:

F (A, B, C, D) = Σm(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Step 1: Generate Prime Implicants.

Use the method described in Example #1.

Step 2: Construct Prime Implicant Table.

A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
2 X X X X
3 X X
4 X X X X
5 X X
6 X X X
7 X X
8 X X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X

Step 3: Reduce Prime Implicant Table.
Iteration #1.
(i) Remove Primary Essential Prime Implicants
There are no primary essential prime implicants: each row is covered by at least two products.

9

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 22 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #3 – Step 3a, 3b, 3c, 3a

▶ 3a. No essential prime implicants

▶ 3b. Row dominance: 2>3, 4>5, 6>7, 8>9, 10>11, 12>13

(ii) Row Dominance
A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
2 X X X X
3 X X
4 X X X X
5 X X
6 X X X
7 X X
8 X X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X

There are many instances of row dominance. Row 2 dominates 3, 4 dominates 5, 6 dominates 7, 8 dominates
9, 10 dominates 11, 12 dominates 13. Dominating rows are removed.

(iii) Column Dominance
A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
3 X X
5 X X
7 X X
9 X X
11 X X
13 X X

Columns A′D′, B′D′ and C ′D′ each dominate one another. We can remove any two of them.

Iteration #2.
(i) Remove Secondary Essential Prime Implicants

A′D′(∗∗) A′C B′C A′B BC ′ AB′ AC ′

(◦)0 X
3 X X
5 X X
7 X X
9 X X
11 X X
13 X X

** indicates a secondary essential prime implicant

◦ indicates a distinguished row

Product A′D′ is a secondary essential prime implicant; it is removed from the table.

10

(ii) Row Dominance
A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
2 X X X X
3 X X
4 X X X X
5 X X
6 X X X
7 X X
8 X X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X

There are many instances of row dominance. Row 2 dominates 3, 4 dominates 5, 6 dominates 7, 8 dominates
9, 10 dominates 11, 12 dominates 13. Dominating rows are removed.

(iii) Column Dominance
A′D′ B′D′ C ′D′ A′C B′C A′B BC ′ AB′ AC ′

0 X X X
3 X X
5 X X
7 X X
9 X X
11 X X
13 X X

Columns A′D′, B′D′ and C ′D′ each dominate one another. We can remove any two of them.

Iteration #2.
(i) Remove Secondary Essential Prime Implicants

A′D′(∗∗) A′C B′C A′B BC ′ AB′ AC ′

(◦)0 X
3 X X
5 X X
7 X X
9 X X
11 X X
13 X X

** indicates a secondary essential prime implicant

◦ indicates a distinguished row

Product A′D′ is a secondary essential prime implicant; it is removed from the table.

10

3.c Column Dominance – column
A’D’, B’D’, and C’D’ dominate each
other; remove any two of them

3.a Remove Essential Prime
Implicants – second iteration of
step 3, remove A’D’

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 23 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

QM Example #3 – Step 4

(ii) Row Dominance

No further row dominance is possible.

(iii) Column Dominance

No further column dominance is possible.

Step 4: Solve Prime Implicant Table.

A′C B′C A′B BC ′ AB′ AC ′

3 X X
5 X X
7 X X
9 X X
11 X X
13 X X

There are no additional secondary essential prime implicants, and no further row- or column-dominance is
possible. The remaining covering problem is called a cyclic covering problem. A solution can be obtained
using one of two methods: (i) Petrick’s method or (ii) the branching method. We use Petrick’s method
below; see Devadas et al. and Hachtel/Somenzi books for a discussion of the branching method.

Petrick’s Method

In Petrick’s method, a Boolean expression P is formed which describes all possible solutions of the table.
The prime implicants in the table are numbered in order, from 1 to 6: p1 = A′C, p2 = B′C, p3 = A′B,
p4 = BC ′, p5 = AB′, p6 = AC ′. For each prime implicant pi, a Boolean variable Pi is used which is
true whenever prime implicant pi is included in the solution. Note the difference!: pi is an implicant, while
Pi is a corresponding Boolean proposition (i.e., true/false statement) which has a true (1) or false (0) value.
Pi = 1 means “I select prime implicant pi for inclusion in the cover”, while Pi = 0 means “I do not select
prime implicant pi for inclusion in the cover.

Using thesePi variables, a larger Boolean expressionP can be formed, which captures the precise conditions
for every row in the table to be covered. Each clause in P is a disjunction (OR) of several possible column
selections to cover a particular row. The conjunction (AND) of all of these clauses is the Boolean expression
P , which describes precisely the conditions to be satisfied for all rows are covered.

For the above prime implicant table, the covering requirements can be captured by the Boolean equation:

P = (P1 + P2)(P3 + P4)(P1 + P3)(P5 + P6)(P2 + P5)(P4 + P6)

If Boolean variable P = 1, each of the disjunctive clauses is satisfied (1), and all rows are covered. In
this case, the set of P ′

is which are 1 indicate a valid cover using the corresponding selection of primes p′
is

11

No essential prime implicants; no row dominance; no column dominance
Cyclic covering problem – can be solved using a branch-and-bound

search technique (see notes for details)

Adapted from [Nowick’12]

ECE 6745 T12: Synthesis Algorithms 24 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Heuristic Espresso Method

▶ Quine-McCluskey
▷ Number of prime implicants grows rapidly with number of inputs
▷ Finding a minimum cover is NP-complete (i.e., computationally expensive)

▶ Espresso
▷ Don’t generate all prime implicants (i.e., QM step 1)
▷ Carefully select a subset of primes that still covers ON-set
▷ Heuristically explore space of covers
▷ Similar in spirit (but more structured) to finding primes in K-map

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 25 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Redundancy in Boolean Space

▶ Every point in boolean space is an assignment of values to variables
▶ Redundancy involves inclusion or covering in boolean space
▶ Irredundant cover has no redundancy

111

001

101

100 110

000 010

011

111

001

101

100 110

000 010

011

g = AB'C, h = AB'
g is redundant

f = AC, g = B'C', h = AB'
h is redundant

Can exhaustively check if each
prime is redundant with any other prime

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 26 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Irredundant Covers vs. Minimal Covers

▶ Irredundant cover is not necessarily a minimal cover
▶ Can use reduce, expand, remove redundancy operations to explore

space of irredundant covers
BC

A 00 01 11 10

0

1 1 1

110

0 0

0

BC

A 00 01 11 10

0

1 1 1

110

0 0

0

BC

A 00 01 11 10

0

1 1 1

110

0 0

0

BC

A 00 01 11 10

0

1 1 1

110

0 0

0

Original Irredundant Cover Reduce

Expand New Irredundant Cover

F = B'C + A'C + AB'C' F = AB'C + A'C + AB'C'

F = AB' + A'CF = AB' + A'C + AB'C'
Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 27 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Espresso Algorithm

▶ 1. EXPAND implicants (choice of which implicants requires heuristic)

▶ 2. REMOVE-REDUNDANCY

▶ 3. REDUCE implicants (choice of which implicants requires heuristic)

▶ 4. EXPAND implicants (choice of which implicants requires heuristic)

▶ 5. REMOVE-REDUNDANCY

▶ 6. Goto step 3

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 28 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Espresso Example

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 29 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Espresso Example

Adapted from [Zhou’02]

ECE 6745 T12: Synthesis Algorithms 30 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Two-Level Logic vs. Multi-Level Logic

4

Two-Level versus Multilevel

2-Level:

6 product terms which cannot be shared.
24 transistors in static CMOS

Multi-level:

Note that B + C is a common term in f1 and f2

K = B + C 3 Levels
20 transistors in static CMOS
not counting inverters

f1 AB � AC � AD
f2 AB � AC � AE

f1 $.� AD

f2 = AK + AE
Adapted from [Devadas’06]

ECE 6745 T12: Synthesis Algorithms 31 / 43

RTL to Logic Synthesis • Technology-Independent Synthesis • Technology-Dependent Synthesis

Two-Level Logic vs. Multi-Level Logic

▶ Two-Level Logic
▷ At most two gates between primary input and primary output
▷ Real life circuits: programmable logic arrays
▷ Exact optimization methods: well-developed, feasible
▷ Heuristic methods also possible

▶ Multi-Level Logic
▷ Any number of gates between primary input and primary output
▷ Most circuits in real life are multi-level
▷ Smaller, less power, and (in many cases) faster
▷ Exact optimization methods: few, high complexity, impractical
▷ Heuristic methods pretty much required

ECE 6745 T12: Synthesis Algorithms 32 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Part 3: CAD Algorithms

RTL to Logic

Synthesis

Technology
Independent

Synthesis

Technology
Dependent
Synthesis

x = a'bc + a'bc'
y = b'c' + ab' + ac

x = a'b
y = b'c' + ac

Placement

Detailed
Routing

Global

Routing

Topic 12
Synthesis Algorithms

Topic 13
Physical Design Automation

Technology
Dependent
Synthesis

ECE 6745 T12: Synthesis Algorithms 33 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Technology Mapping

▶ Once minimized logic equations, next step is to map each equation to
the gates in the target standard cell library

▶ Classic approach uses DAG covering (K. Keutzer)
▷ “Normal Form” : use basic gates (e.g., 2-input NAND gates, inverters)
▷ Represent logic equations as input netlist in normal form (subjective DAG)
▷ Represent each library gate in normal form (primitive DAG)
▷ GOAL: Find a min cost covering of subjective DAG by primitive DAGs

▶ Sound algorithmic approach, but is NP-hard optimization problem

25

Sound Algorithmic approach

NP-hard optimization problem

Tree covering heuristic: If subject and primitive
DAGs are trees, efficient algorithm can find
optimum cover in linear time
� dynamic programming formulation

DAG Covering

multiple fanout

Adapted from [Devadas’06]

ECE 6745 T12: Synthesis Algorithms 34 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Tree Heuristic Transformation

If subject and primitive DAGs are trees, efficient algorithm can find
optimum cover in linear time via dynamic programming, so use tree

covering heuristic approach by partitioning graph into subtrees

26

Partitioning a Graph

Original Graph 27

Resulting Trees

Break at multiple fanout points

Partitioned Graph

Adapted from [Devadas’06]

ECE 6745 T12: Synthesis Algorithms 35 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Technology Mapping Example

L04 – Synthesis 146.371 – Fall 2002 09/13/02

Mapping Example

Example due to
Kurt Keutzer

Problem statement: find an “optimal” mapping of this circuit:

Into this library:

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 36 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Primitive DAGs for Standard-Cell Library Gates

L04 – Synthesis 156.371 – Fall 2002 09/13/02

Primitive DAGs for library gates

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 37 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Possible Covers

L04 – Synthesis 166.371 – Fall 2002 09/13/02

Possible Covers

Hmmm. Seems promising but
is there a systematic and
efficient way to arrive at the
optimal answer?

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 38 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Use Dynamic Programming!

L04 – Synthesis 176.371 – Fall 2002 09/13/02

Use dynamic programming!

Principle of optimality: Optimal cover for a tree consists of a best match
at the root of the tree plus the optimal cover for the sub-trees starting
at each input of the match.

Best cover for this
match uses best
covers for P & Z

X

Y Z

Best cover for this
match uses best
covers for P, X & Y

P

Complexity:
To determine the optimal cover for a
tree we only need to consider a
best-cost match at the root of the
tree (constant time in the number of
matched cells), plus the optimal
cover for the subtrees starting at
each input to the match (constant
time in the fanin of each match) o
O(N)

Complexity:
To determine the optimal cover for a
tree we only need to consider a
best-cost match at the root of the
tree (constant time in the number of
matched cells), plus the optimal
cover for the subtrees starting at
each input to the match (constant
time in the fanin of each match) o
O(N)

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 39 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Optimal Tree Covering Example

L04 – Synthesis 186.371 – Fall 2002 09/13/02

Optimal tree covering example

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 40 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Optimal Tree Covering Example

L04 – Synthesis 196.371 – Fall 2002 09/13/02

Example (II)

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 41 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Optimal Tree Covering Example

L04 – Synthesis 206.371 – Fall 2002 09/13/02

Example (III)

This matches our earlier intuitive cover,
but accomplished systematically.

Refinements: timing optimization
incorporating load-dependent delays,
optimization for low power.

Adapted from [Terman’02,Devadas’06]

ECE 6745 T12: Synthesis Algorithms 42 / 43

RTL to Logic Synthesis Technology-Independent Synthesis • Technology-Dependent Synthesis •

Acknowledgments

▶ [Weste’11] N. Weste and D. Harris, “CMOS VLSI Design: A Circuits and Systems
Perspective,” 4th ed, Addison Wesley, 2011.

▶ [Synopsys’11] “DesignWare Datapath and Building Block IP: Quick Reference,”
Synopsys, 2011.

▶ [Zhou’02] H. Zhou, Northwestern ECE 303 Advanced Digital Design, Lecture Slides,
2002.

▶ [Terman’02] C. Terman and K. Asanović, MIT 6.371 Introduction to VLSI Systems,
Lecture Slides, 2002.

▶ [Nowick’12] S. Nowick, “The Quine-McCluskey Method,” Columbia CSEE E6861y
Computer-Aided Design of Digital Systems, Handout, 2012.

▶ [Devadas’06] S. Devadas, “VLSI CAD Flow: Logic Synthesis, Placement, and
Routing,” MIT 6.375 Complex Digital Systems Guest Lecture Slides, 2006.

ECE 6745 T12: Synthesis Algorithms 43 / 43

