ECE 6745 Complex Digital ASIC Design Topic 6: Closing the Gap Between ASIC and Custom

Christopher Batten

School of Electrical and Computer Engineering Cornell University

http://www.csl.cornell.edu/courses/ece6745

Overview

Layout Cell Sizing

Sizing Logic Styles

Gating Volta

Voltage Scaling

Part 1: ASIC Design Overview

Overview	Microarchitecture	Layout	Cell Sizing	Logic Styles	Gating	Voltage Scaling		
Agenda								
Explor	ing the Pe	erforn	nance a	Ind Pow	er Ga	p		
Microa	architectur	e: Pi	pelining					
Floorp	lanning a	nd Pl	acemer	nt				
Cell Si	izing							
High-S	Speed Log	gic St	yles					
Data,	Clock, and	d Pow	ver Gati	ng				
Voltage Scaling								
J	C							

Datapath for Processor Register Read Stage

Adapted from [Chang'02]

Area, Energy, Delay Gap between ASIC and Custom

Parameter	Parameter Custom		Parameter Custom Cr		Bit-sliced	Automatic P&R
Area	1	1.64	5.25	14.5		
Delay	1	1.11	2.23	3.72		
Gate Load	1	1.09	2.29	2.29		
M2 Length	1	1.07	4.19	34.9		
M3 Length	1	1.63	2.52	7.92		
Effort	1	0.18	0.06	0.06		

Although standard-cell ASIC design take a fraction of the effort the final design is many factors worse in terms of area, cycle time, and energy

Adapted from [Chang'02]

Area, Energy, Delay Gap between ASIC and Custom

Cell Sizing

Logic Styles

Gating

Layout

Adder	Process (Larawn)	FO4 (ps)	Delay (ns)	Delay (FO4)	Area (χ^2)	Area (relative)	Number of Instances	Transistors (T) or Gates (G)	χ²/T
HP (Naffziger)	0.50	140	0.9	6.6	61500	0.8	7000	Т	8.8
IBM	0.50	125	1.5	12.0	135802	1.7			
Mitsubishi	0.50	250	4.7	18.8	98400	1.2	4280	Т	23.0
MIT/Stanford									
Custom	0.50	250	3.7	14.8	81847	1.0	4666	Т	17.5
Crafted	0.50	250	6.3	25.2	136684	1.7	162	Gate	
ASIC (1998)	0.50	250	10.0	40.0	105600	1.3	1041	Gate	
ASIC - DW	0.15	60	1.6	26.8	124848	1.5	1756	Gate	
ASIC - BK	0.15	60	1.1	18.3	105600	1.3	1097	Gate	

Adapted from [Chang'02]

Voltage Scaling

Overview •

Microarchitecture

Microarchitecture

ASIC vs. Custom High-Performance Processors

	Freq (GHz)	Tech (µm)	Vdd (V)	Pwr (W)	Area (mm ²)	0.13-0).25µm
Pentium III (Katmai)	0.600	0.25	2.05	34.0	123.0	Custom	~1GHz+
Athlon (K7)	0.700	0.25	1.60	50.0	184.0	ASIC <	500MHz
Alpha 21264A	0.750	0.25	2.10	90.0	225.0		
IBM Power PC	1.000	0.25	1.80	6.3	9.8	More F	Recently
Pentium III (Coppermine)	1.130	0.18	1.75	38.0	95.0	Custom	1 > 2GHz
Athlon XP	1.733	0.18	1.75	70.0	128.0	ASIC	<1GHz
Pentium 4 (Willamette)	2.000	0.18	1.75	72.0	217.0	IS	g ns
Pentium III (Tualatin)	1.400	0.13	1.45	31.0	80.0	ss itor	itio
Pentium 4 (Northwood)	2.200	0.13	1.50	55.0	146.0	oce	ndi
ASICs						Pr Co	οΰΰ
Tensilica Xtensa (Base)	0.250	0.25	2.50	0.20	1.0	typical	typical
Tensilica Xtensa (Base)	0.320	0.18	1.80	0.13	0.7	typical	typical
Lexra LX4380	0.266	0.18	1.80		1.8	typical	worst case
Lexra LX4380	0.420	0.13	1.20	0.05	0.8	typical	worst case
ARM1022E	0.325	0.13	1.20	0.23	7.9	worst case	worst case

Adapted from [Chinnery'02]

Voltage Scaling

Overview •

ECE 6745

T06: Closing the Gap Between ASIC and Custom

9 / 56

Layout

ASIC (Hard-Macro) vs. Custom Low-Power Processors

	Processor	Technology (um)	Voltage (V)	Frequency (MHz)	MIPS	Power (mW)	MIPS/mW	
	ARM710	0.60	5.0	40	36	424	0.08	
	Burd	0.60	1.2	5	6	3	1.85	
ر	Burd	0.60	3.8	80	85	476	0.18	
nip;	ARM810	0.50	3.3	72	86	500	0.17	StrongARM
Ö	ARM910T	0.35	3.3	120	133	600	0.22	0.45x Vdd
	StrongARM	0.35	1.5	175	210	334	0.63	1.6x perf
Δ	StrongARM	0.35	2.0	233	360	950	0.38	0.55x power
ston	ARM920T	0.25	2.5	200	220	560	0.39	
Sus	ARM1020E	0.18	1.5	400	500	400	1.25	
	XScale	0.18	1.0	400	510	150	3.40	
٦	XScale	0.18	1.8	1000	1250	1600	0.78	Similar vou
	ARM1020E	0.13	1.1	400	500	240	2.08	0.40x power

Adapted from [Chinnery'07]

Hard vs. Soft Macro Low-Power Processors

ARM Core	Technology (um)	Frequency (MHz)	Power (mW)	MIPS/mW
ARM7TDMI	0.25	66	51	1.17
ARM7TDMI-S	0.25	60	66	0.83
ARM7TDMI	0.18	100	30	3.00
ARM7TDMI-S	0.18	90	35	2.28
ARM7TDMI	0.13	130	10	11.06
ARM7TDMI-S	0.13	120	13	8.33

ASIC designs from previous slide are "hard macros" meaning they use extra optimization for a $1.3-1.4 \times$ improvement over a straight-forward fully synthesized soft macro.

Adapted from [Chinnery'07]

Factors Contributing to the Performance Gap

FACTORS CONTRIBUTING TO SUPERIOR CUSTOM PERFORMANCE	vs. Poor ASIC	vs. Best Practice ASIC	Factor Affects
Microarchitecture: e.g. pipelining	×1.80	×1.30	# of stages, IPC
Timing overhead: clock tree design, registers, slack passing	×1.45	×1.10	t timing overhead
High speed logic styles: e.g. dynamic logic	×1.40	×1.20	t _{comb}
Logic design	×1.30	×1.00	t _{comb}
Cell design and wire sizing, including transistor sizing	×1.45	×1.10	t _{comb}
Layout: floorplanning, placement, managing wires	×1.40	×1.00	overall performance
Exploiting process variation and accessibility	×2.00	×1.20	overall performance

These factors cannot really just be multiplied together. Poor ASICs are roughly $3-8 \times$ slower than custom, but with best practices we can potentially close the gap to be less than $3 \times$.

Adapted from [Chinnery'02]

Factors Contributing to the Power Gap

Contributing Factor	Typical ASIC	Excellent ASIC
microarchitecture	5.1×	1.9×
clock gating	1.6×	1.0×
logic style	2.0×	2.0 imes
logic design	1.2×	1.0×
technology mapping	1.4×	1.0×
cell and wire sizing	1.6×	1.1×
voltage scaling	4.0×	1.0×
floorplanning and placement	1.5×	1.1×
process technology	1.6×	1.0×
process variation	2.0×	1.3×

These factors cannot really just be multiplied together. Poor ASICs are roughly $3-4 \times$ less power efficient than custom, but with best practices we can potentially close the gap to be less than $2.5 \times$.

Adapted from [Chinnery'07]

Exploring the Performance and Power Gap Microarchitecture: Pipelining Floorplanning and Placement Cell Sizing High-Speed Logic Styles Data, Clock, and Power Gating Voltage Scaling

Microarchitecture: Pipelining

What is the opportunity?

- Pipelining reduces cycle time which can be used to improve performance or reduce energy (through reduced Vdd)
- What is the challenge for ASICs vs. custom?
 - Traditional standard-cell libs have larger timing overhead (setup, delay)
 - Traditional CAD tools had simplistic clock tree synthesis and poor support for latch-based design

What are possible approaches for closing the gap?

- ▷ Use standard-cell libs with high-quality state-element cells
- Use better clock tree synthesis or even manual global clock tree design
- Use modern CAD tools that support latch-based design and can automatically insert useful clock skew

Review of Sequential Element Timing Parameters

logic propagation delay (delay until new output value stable) t_{pd} logic contamination delay (delay until old output value changes) t_{cd} latch/flip-flop clock-to-output propagation delay *t*_{pcq} latch/flip-flop clock-to-output contamination delay t_{ccq} latch input-to-output propagation delay t_{pdq} latch input-to-output contamination delay t_{cdq} setup time (delay before sampling edge input must be stable) t_{setup} hold time (delay after sampling edge input must be stable) thold

Max-Delay Constraint: $T_C >= t_{pcq} + t_{pd} + t_{setup}$

Min-Delay Constraint: $T_{hold} \le t_{ccq} + t_{cd}$

Overview • Microarchitecture • Layout Cell Sizing Logic Styles Gating Voltage Scaling

Review Latch Timing Constraints

ECE 6745

Balancing Pipeline Stages with Latch-Based Design

Flip-Flop-Based Approach

Benefit of Latch-Based Design

Design	Area	% Area	Clock	% Speed
~B.	(mm ²)	Increase	Period (ns)	Increase
Flip-flop T1030 Base Xtensa	0.367		2.58	
Latch T1030 Base Xtensa	0.379	3.3%	2.34	10.3%
Flip-flop T1040 Base Xtensa	0.382		2.67	
Latch T1040 Base Xtensa	0.402	5.2%	2.40	11.3%
Flip-flop T1040 Base_no_loop_no_pif	0.246		2.60	
Latch T1040 Base_no_loop_no_pif	0.272	10.6%	2.18	19.3%
Flip-flop T1030 MAC16	0.440		2.61	
Latch T1030 MAC16	0.452	2.7%	2.46	6.1%

These results are for a tool which automatically converts flip-flops into latches and then retimes the latches for time borrowing and to hide clock uncertainty

Adapted from [Chinnery'02]

Balancing Pipeline Stages with Useful Clock Skew

Useful Clock Skew

	Flip-Flops	Period (ns)	Slack (ns)	Buffers
Zero-Skew	16,770	5.5	-0.2	1,036
Useful-Skew	16,770	5.5	0.3	1,048

Graphics Processor using Artisan library in 0.15 µm TSMC process

Adapted from [Dai'02]

Overview	Microarchitecture	• Layout •	Cell Sizing	Logic Styles	Gating	Voltage Scaling				
	Agenda									
Explo	ring the P	erform	ance a	nd Pow	er Ga	ρ				
Micro	architectu	re: Pip	elining							
Floor	planning a	and Pla	icemen	it						
Cell S	Sizing									
High-	Speed Lo	gic Sty	les							
Data,	Clock, an	d Pow	er Gati	ng						
Voltaç	ge Scaling	J								

Floorplanning and Placement

What is the opportunity?

Exploiting modularity, hierarchy, and regularity in the physical domain can significantly reduce wire lengths which improves cycle time and reduces energy (less interconnect capacitance) [bonus: reduced tool exec time]

What is the challenge for ASICs vs. custom?

- Support for hierarchical design in traditional CAD tools is cumbersome leading designers to stick with a fully flat methodology
- Wire load models are notoriously inaccurate, so synthesis tools either optimize for wire lengths that are too long or too short

What are possible approaches for closing the gap?

- Use modern CAD tools with soft/hard macro-floorplanning and support for hierarchical design with individually implemented macro-blocks
- Use modern CAD tools with support for physical synthesis
- Consider fine-grain standard-cell tiling with automatic routing

Macro-Floorplanning

data	data	data	data
tags I\$0	tags \$1	tags \$2	tags \$3
Core 0	Core 1	Core 2	Core 3
	Netv	work	
tags D\$C	tags D\$1	tags D\$2	tags D\$3
data	data	data	data

Core 0, I\$0, D\$0 highlighted

Physical Synthesis

- Physical synthesis tool performs first-iteration mapping to logic gates before performing a preliminary "rough" placement
- Preliminary placement incorporates macro-floorplanning and does not need to produce a "legal" fine-grain placement of each cell

- Preliminary placement is used to create more accurate wire load estimates, and then tool re-synthesizes design
- Physical synthesis tool iterates until meets timing

Purely Synthesized Datapath

ECE 6745

Adapted from [Chang'02]

			Agenua	1		
Explor	ing the Po	erforr	nance a	nd Pow	er Gap)
Microa	rchitectu	re: Pi	pelining			
Floorp	lanning a	nd Pl	acemer	it		
Cell Si	zing					
High-S	Speed Log	gic St	yles			
Data,	Clock, an	d Pov	ver Gati	ng		
Voltag	e Scaling					

Cell Sizing

What is the opportunity?

Gates with transistors optimally sized according to their context will improve cycle time and reduce energy

- What is the challenge for ASICs vs. custom?
 - Standard-cell libs have a fixed set of gate sizings
- What are possible approaches for closing the gap?
 - Use standard-cell libs with a diverse range of sizings (both large sizes for high performance, and small sizes for low power)
 - Consider emerging CAD tools with support for regenerating customized standard-cells either post place-and-route or as part of logic synthesis

SAED 90 nm Library – NAND Gate Data Sheet

Figure 10.6. Logic Symbol of NAND

Table 10.11. NAND Truth Table (n=2,3,4)

IN1	IN2		INn	QN
0	Х		X	1
Х	0		X	1
				1
Х	Х		0	1
1	1	1	1	0

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
Cell Name			Pov	Power			
	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
		ps	nW	nW/MHz	(um ²)		
NAND2X0	0.5 x Csl	140	38	3583	5.5296		
NAND2X1	1 x Csl	132	78	5208	5.5296		
NAND2X2	2 x Csl	126	157	9191	9.2160		
NAND2X4	4 x Csl	125	314	17902	14.7456		
NAND3X0	0.5 x Csl	128	91	5331	7.3728		
NAND3X1	1 x Csl	192	102	12200	11.9808		
NAND3X2	2 x Csl	212	155	19526	12.9024		
NAND3X4	4 x Csl	241	260	44937	15.6672		
NAND4X0	0.5 x Csl	147	106	5357	8.2944		
NAND4X1	1 x Csl	178	161	15214	12.9024		

Adapted from [SAED'11]

OverviewMicroarchitectureLayout• Cell Sizing •Logic StylesGatingVoltage Scaling

Critical Path Optimization with Transistor Sizing

Critical path goes through falling transition of inverter

Custom inverter cell has been created to optimize falling path

NMOS larger: lower effective R

PMOS smaller: lower parasitic C

Rising transition of inverter is now slower

New Implementation After Generating Custom Cell

0.6

1.68

0.42

0.42

a0

Adapted from [Côté'02]

0.42

a0

1.68

0.42

Overview Microarchitecture Layout • Cell Sizing • Logic Styles Gating Voltage Scaling

Modifying Cell Layout in Same Footprint

- Cells are resized after placeand-route on critical paths
- Cells keep same footprint including pin locations
- In this example, NMOS size is increased while PMOS size is decreased to accelerate pull-down path
- Example bus controller with 12K gates in 0.3 µm: reduced critical path by 13.5% and reduced power by 18% by generating 300 optimized cells

Transition on Input #	Oŗ	iginal	Optimized		
	Rise Time (ns)	Fall Time (ns)	Rise Time (ns)	Fall Time (ns)	
а	0.29	0.34	0.13	0.11	
b	0.18	0.30	0.17	0.13	
с	0.18	0.31	0.16	0.15	
d	0.18	0.27	0.15	0.14	

Adapted from [Bhattacharya'02]

5

(c)

Improvement for customized standard-cell generation during logic synthesis for an adder design in 0.18 µm

Adapted from [Bhattacharya'02]

High-Speed Logic Styles

What is the opportunity?

More aggressive logic styles (e.g., DCVSL, pass-transistor logic, dynamic domino logic, dynamic bitlines in memories) can significantly reduce cycle time compared to static CMOS logic

What is the challenge for ASICs vs. custom?

Aggressive logic styles often require carefully designing the context for each cell (glitching, precharge/evaluate, and noise for dynamic logic; cascaded voltage drops and effective resistances for pass-transitor logic)

What are possible approaches for closing the gap?

- Use SRAM and register-file generators whenever possible
- Consider creating crafted cells for critical blocks

Microarchitecture

Overview

Cell Sizing

Logic Styles

Gating Voltage Scaling

High-Speed Logic Styles

(c) pass transistor logic (PTL)

T06: Closing the Gap Between ASIC and Custom

Adapted from [Chang'02]

Overview Microarchitecture Layout Cell Sizing • Logic Styles • Gating Voltage Scaling

64-bit FPU with Domino-Logic Crafted Multiplier

Domino-Logic Crafted 64x64 Multiplier

Tiled Static CMOS Logic

Multiplier	FO4 delays	Area (10 ⁶ χ2)	Relative Area	Transistors	Area Efficiency (χ2/T)
Mitsubishi	24.3	1.53	0.82		
NEC Multiplier	27.0	2.19	1.18	135,318	16.2
MIT/Stanford	29.8	1.86	1.00	124,574	14.9
Fujitsu	32.5	1.63	0.88	82,500	19.8
Mitsubishi	35.2	2.35	1.26	78,800	29.8
Fujitsu Multiplier	41.0	1.65	0.89	60,797	27.1

Adapted from [Chang'02]

Overview Microarchitecture Cell Sizing Voltage Scaling Layout Logic Styles
 Gating **Benefit of Crafted Cells** 11% of area 30% of delay **Tiled Standard Cells** w/ Several Crafted Cells and Automatic Routing

Purely Synthesized Datapath

Adapted from [Chang'02]

T06: Closing the Gap Between ASIC and Custom

			лусп			
Explori	ng the P	erforr	nance	and Pov	wer Ga	ρ
Microa	rchitectu	re: Pi	ipelinin	g		
Floorpl	anning a	and P	laceme	ent		
Cell Siz	zing					
High-S	peed Lo	gic St	yles			
Data, C	lock, an	id Pov	wer Ga	ting		
Voltage	Scalino					

Layout

Data, Clock, and Power Gating

What is the opportunity?

Eliminating activity with data and clock gating reduces dynamic energy and disconnecting power supply with power gating reduces static power

What is the challenge for ASICs vs. custom?

- Traditional standard-cell libs may not have clock and power gating cells
- Traditional CAD tools have poor support for logic in the clock network and for expressing power gating at the register-transfer level
- Creating data, clock, and power gating enable signals which do not impact timing can be difficult

What are possible approaches for closing the gap?

- Use standard-cell libs with diverse clock and power gating cells
- Use modern CAD tools with support for automatic clock gating
- Use modern design formats to specify low-power intent (e.g., UPF)

Overview Microarchitecture Layout Cell Sizing Logic Styles • Gating • Voltage Scaling Data Gating enable enable Image: Cell Sizing • Gating • Voltage Scaling • Use enable signal to prevent data bits from toggling when module is inactive

Enable signal needs to be ready early in the cycle

- can be automatically inferred by CAD tools
- Coarse-grain clock gating: entire module, must be managed explicitly in the RTL
- Clock gating in StrongARM processor reduced power consumption by 33%

local gated clk

global clk

Power Gating

- Use enable signal to disconnect module from power or ground
- Reduces leakage, but extra energy/delay to switch sleep transistor and charge up internal cap upon wakeup
- Break-even point can be >10K cycles in a large module, so power gating must be used carefully
- Power gating in XScale processor reduced leakage by 5× while retaining state

Exploi	ring the P	erforr	nance	and Po	wer G	ар
Microa	architectu	ire: Pi	pelinin	g		
Floorp	lanning a	and Pl	aceme	ent		
Cell S	izing					
High-S	Speed Lo	gic St	yles			
Data,	Clock, an	nd Pov	ver Ga	ting		
Voltad	e Scalinc	2				

Voltage Scaling

What is the opportunity?

- Reducing the supply voltage and frequency can result in significant energy and power savings at reduced performance
- What is the challenge for ASICs vs. custom?
 - Traditional standard-cell libs are usually characterized at one supply at each process and temperature corner
 - Dynamic voltage and frequency regulation can require tight mixed-signal integration

What are possible approaches for closing the gap?

- Consider emerging CAD tools with support for multi-Vdd and multi-Vt cells
- Consider limited mixed-signal integration for applications where DVFS can \triangleright have significant energy/performance benefits

Scale Processor: Power vs Voltage at 100 MHz

Overview Microarchitecture Layout Cell Sizing Logic Styles Gating • Voltage Scaling •

Scale Processor: Energy vs Frequency and Voltage

Tools can automatically use low-Vdd and/or low-Vt standard cells for logic gates off the critical path

Low V_{dd}

Benefit of Static Fine-Grain Clustered Voltage Scaling

Logic Styles

Gating

Voltage Scaling

Cell Sizing

Г	VDDL =	= 0.6V	VDDL = 0.8V		
Circuit	CVS	GECVS	CVS	GECVS	
c432	1.0%	1.5%	0.8%	0.8%	
c880	8.2%	10.3%	15.0%	21.3%	
c1355	0.0%	0.0%	0.0%	1.0%	
c1908	4.3%	7.7%	3.4%	8.4%	
c2670	21.1%	25.5%	16.5%	25.0%	
c3540	3.2%	8.3%	2.9%	9.7%	
c5315	7.6%	19.0%	8.3%	22.0%	
c7552	14.9%	20.2%	22.0%	28.8%	
Huffman	6.6%	12.7%	6.7%	14.4%	
Average	7.4%	11.7%	8.4%	14.6%	

Nearly 15% reduction in dynamic power just by using low-Vdd (0.8 V) for logic gates off the critical path (high-Vdd is 1.2 V in this 0.13 µm process); notice that using an even lower Vdd (0.6 V) has less power savings due to the overhead of level converters

Adapted from [Kulkarni'07]

Overview

Microarchitecture

Layout

Acknowledgments

- [Artisan] "ARM Artisan Embedded Memory IP," 2013. http://www.arm.com/products/physical-ip/embedded-memory-ip
- [Bhattacharya'02] D. Bhattacharya and V. Boppana, "Design Optimization with Automated Flex-Cell Creation," Chapter 10 in [Chinnery'02].
- [Chang'02] A. Chang and W.J. Dally, "Exploiting Structure and Managing Wires to Increase Density and Performance," Chapter 11 in [Chinnery'02].
- [Chinnery'02] D. Chinnery and K. Keutzer, "Closing the Gap Between ASIC & Custom: Tools and Techniques for High-Performance ASIC Design," Springer, 2002.

Acknowledgments

- [Chinnery'07] D. Chinnery and K. Keutzer, "Closing the Power Gap Between ASIC & Custom: Tools and Techniques for Low-Power ASIC Design," Springer, 2002.
- [Côté'02] M. Côté and P. Hurat, "Fater and Lower Power Cell-Based Designs with Transistor-Level Cell Sizing," Chapter 9 in [Chinnery'02].
- [Kulkarni'07] S. Kulkarni et al., "Power Optimization Using Multiple Supply Voltages," Chapter 8 in [Chinnery'07].
- [Dai'02] W. Dai and D. Staepelaere, "Useful-Skew Clock Synthesis Boosts ASIC Performance," Chapter 8 in [Chinnery'02].
- [Weste'11] N. Weste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 4th ed, Addison Wesley, 2011.