
ECE 6745 Complex Digital ASIC Design
Topic 4: Full-Custom Design Methodology

Christopher Batten

School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece6745

Design Domains, Abstractions, and Principles Full-Custom Design

Part 1: ASIC Design Overview

P P

MM

Topic 1
Hardware

Description
Languages

Topic 2
CMOS Devices

Topic 3
CMOS Circuits

Topic 4
Full-Custom

Design
Methodology

Topic 5
Automated

Design
Methodologies

Topic 7
Clocking, Power Distribution,

Packaging, and I/O

Topic 8
Testing and Verification

Topic 6
Closing

the
Gap

Topic 4
Full-Custom

Design
Methodology

ECE 6745 T04: Full-Custom Design Methodology 2 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Agenda

Design Domains, Abstractions, and Principles
Modularity
Hierarchy
Encapsulation
Regularity
Extensibility

Full-Custom Design

ECE 6745 T04: Full-Custom Design Methodology 3 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Behavioral, Structural, and Physical Abstractions

Adapted from [Ellervee’04]

ECE 6745 T04: Full-Custom Design Methodology 4 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Behavioral, Structural, and Physical Abstractions

Adapted from [Ellervee’04]

ECE 6745 T04: Full-Custom Design Methodology 5 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Computer Engineering Stack Abstractions

Programming Language

Algorithm

Technology

Application

Operating System

Circuits

Devices

Register-Transfer Level

Instruction Set Architecture

Microarchitecture

Gate Level InterconnectLogic State

WiresTransistors

Processors Memories Networks

Control Datapath Memories

ECE 6745 T04: Full-Custom Design Methodology 6 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principles in VLSI Design

▶ Modularity – Decompose into components with well-defined interfaces

▶ Hierarchy – Recursively apply modularity principle

▶ Encapsulation – Hide implementation details from interfaces

▶ Regularity – Leverage structure at various levels of abstraction

▶ Extensibility – Include mechanisms/hooks to simplify future changes

ECE 6745 T04: Full-Custom Design Methodology 7 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Modularity

6.375 Spring 2006 • L03 Verilog 2 - Design Examples • 21

Try to contain all functionality
in leaf modules
wire [W-1:0] B;
wire [W-1:0] sub_out;
wire [W-1:0] A_mux_out;

vcMux3#(W) A_mux
(
.in0 (operands_bits_A),
.in1 (B),
.in2 (sub_out),
.sel (A_mux_sel),
.out (A_mux_out)

);

wire [W-1:0] A;

vcEDFF_pf#(W) A_pf
(
.clk (clk),
.en_p (A_en),
.d_p (A_mux_out),
.q_np (A)

);

B

A
sel

A
en

B
sel

B
en A < BB = 0

zero? lt
A

sub

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

▶ Separate design into components
w/ well-defined interfaces

▶ Reason, design, and test
components in isolation

▶ Interface may or may not
encapsulate implementation

ECE 6745 T04: Full-Custom Design Methodology 8 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Modularity

Modularity can also impact
electrical and physical

characteristics

Electrical Modularity

What happens if we cascade
many of these tranmission gate

multiplexers?

Physical Modularity

pwr/gnd rails & wells in fixed
locations so they connect via

abutment Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 9 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Hierarchy

GCD

Control Unit Datapath Unit

Multi-Bit
Register

Multi-Bit
Multiplexer

Multi-Bit
Subtracter

Full-AdderSingle-Bit
Multiplexer

Single-Bit
Flip-Flop

Recursively apply modularity principle until
complexity of submodules is manageable

ECE 6745 T04: Full-Custom Design Methodology 10 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Hierarchy

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

System

Processor
Instruction

Cache
Data Cache

Bank
Proc-to-D$

Network

Router
Control

Router
Datapath

Cache
Control

Cache
Datapath

Router
Processor

Control
Processor
Datapath

ECE 6745 T04: Full-Custom Design Methodology 11 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Encapsulation

▶ Modularity requires well-defined interfaces, but these interfaces might
still expose significant implementation details (e.g., interface in
control/datapath split reveals many details of the implementation)

▶ Choose interfaces that hide implementation details where possible to
enable more robost composition

▶ Lab 1 multipliers all use a latency-insenstive val/rdy message interface
to hide timing details, any one of these can be swaped into a
processor and should work without modification
▷ Fixed-latency iterative multiplier
▷ Variable-latency iterative multplier
▷ Pipelined multiplier

ECE 6745 T04: Full-Custom Design Methodology 12 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Regularity

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

▶ Modularity, hierarchy, and
encapsulation can still lead to
many different kinds of
modules which can increase
design complexity

▶ Choose a hierarchical
decomposition to leverage
structure and thus faciliate
reuse and reduce complexity

▶ Both structural and physical
regularity can be exploited

ECE 6745 T04: Full-Custom Design Methodology 13 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Regularity

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Physical Regularity
in Datapaths

Physical Regularity
in Memories

Structural Regularity
in Ripple-Carry Adder

Structural Regularity
in Network

C
o
m

m
o
n

 C
a

c
h

e
 D

e
s
ig

n

Common Network Design

ECE 6745 T04: Full-Custom Design Methodology 14 / 53

• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Extensibility

6.375 Spring 2006 • L03 Verilog 2 - Design Examples • 21

Try to contain all functionality
in leaf modules
wire [W-1:0] B;
wire [W-1:0] sub_out;
wire [W-1:0] A_mux_out;

vcMux3#(W) A_mux
(
.in0 (operands_bits_A),
.in1 (B),
.in2 (sub_out),
.sel (A_mux_sel),
.out (A_mux_out)

);

wire [W-1:0] A;

vcEDFF_pf#(W) A_pf
(
.clk (clk),
.en_p (A_en),
.d_p (A_mux_out),
.q_np (A)

);

B

A
sel

A
en

B
sel

B
en A < BB = 0

zero? lt
A

sub

Simple form of polymorphism
enables varying bitwidth of

operands

Difficult with full-custom design
methodology!

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Parameterization of network and
caches enables reuse; static

elaboration could enable varying the
number of cores and the types of

components

ECE 6745 T04: Full-Custom Design Methodology 15 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Agenda

Design Domains, Abstractions, and Principles

Full-Custom Design
Cells
Datapaths
Memories
Control

ECE 6745 T04: Full-Custom Design Methodology 16 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Full Custom Design

Intel 4004

L01 – Introduction 226.884 – Spring 2005 2 Feb 2005

Full Custom Design
Designer is free to do anything, anywhere

– though each design team usually imposes some discipline
Most time consuming design style

– Reserved for very high performance or very high volume
devices (Intel microprocessors, RF power amps for cellphones)

Requires complete customization of all layers of wafer

Piece of full-custom multiplier array,
1.0Pm 2-metalKey is that all circuits and transistors

are optimized for specific context

ECE 6745 T04: Full-Custom Design Methodology 17 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Overview of Full Custom Design Methodology

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 18 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Lambda-Based Design Rules

L12 – CMOS Layout 26.371 – Fall 2002 10/16/02

Lambda-based design rules
One lambda = one half of the “minimum” mask dimension, typically the length
of a transistor channel. Usually all edges must be “on grid”, e.g., in the
MOSIS scalable rules, all edges must be on a lambda grid.

1
2

3

2

1

2

2

3

2x2

33 2
1

2x2 3poly

metal1

diffusion (active)

contact

More info at: http://www.mosis.org/Technical/Designrules/scmos/scmos-main.htmlAdapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 19 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Sample “Lambda” Layout

L12 – CMOS Layout 36.371 – Fall 2002 10/16/02

Sample
O

A Y

vss

vdd

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 20 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Lambda vs. Micron Rules

L12 – CMOS Layout 56.371 – Fall 2002 10/16/02

Lamba vs. Micron rules
Lambda-based design rules are based on the assumption that one can scale
a design to the appropriate size before manufacture. The assumuption is
that all manufacturing dimensions scale equally, an assumption that “works”
only over some modest span of time. For example: if a design is completed
with a poly width of 2O�and a metal width of 3O�then minimum width metal
wires will always be 50% wider than minimum width poly wires.

Consider the following
data from Weste,
Table 3.2: contacted metal pitch

1/2 * contact size
contact surround
metal-to-metal spacing
contact surround
1/2 * contact size

lambda
rule

1O
1O

3O
1O
1O

8O

lambda
= 0.5u

0.5P
0.5P
1.5P

0.5P
0.5P

4P

micron
rule

0.375P
0.5P
1.0P
0.5P

0.375P
2.75P

Scaled design is legal
but much larger than
it needs to be!

7 3.5

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 21 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Sticks and Compaction

L12 – CMOS Layout 76.371 – Fall 2002 10/16/02

Sticks and Compaction

Stick diagram Horizontal constraints
for compaction in X

Compact X then Y Compact Y then X Compact X with jog
insertion, then Y

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 22 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Example Stick Diagram

ECE 6745 T04: Full-Custom Design Methodology 23 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Example Stick Diagram

ECE 6745 T04: Full-Custom Design Methodology 24 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Cell “Styles”

L12 – CMOS Layout 86.371 – Fall 2002 10/16/02

Choosing a “style”

Vertical Gates
Good for circuits where fets
sizes are similar and each
gate has limited fanout.
Best choice for multiple
input static gates and for
datapaths.

Horizontal Gates
Good for circuits where long
and short fets are needed
or where nodes must
control many fets. Often
used in multiple-output
complex gates (e.g,
sum/carry circuits).

What about routing
signals between gates?
Note that both layouts
block metal/poly routing
inside the cell. Choices:
metal2 routing over the
cell or routing above/below
the cell.

� avoid long (> 50
squares) poly runs

� don’t “capture” white
space in a cell

� don’t obsess over the
layout, instead make a
second pass, optimizing
where it counts

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 25 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Connections

L12 – CMOS Layout 96.371 – Fall 2002 10/16/02

Optimizing connections

Which is the better gate layout?

� considering node capacitances?

� considering “composibility” with neighboring gates?

Which does this gate do?
Which is better considering node capacitances?

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 26 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Large Transistors

L12 – CMOS Layout 106.371 – Fall 2002 10/16/02

area = 928 area = 1008 area = 1080

Which is the better gate layout?

� considering node capacitances?

� considering “composibility” with neighboring gates?

Which is better considering wire resistances?
Which is better considering node capacitances?

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 27 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Diffusion Sharing

L12 – CMOS Layout 116.371 – Fall 2002 10/16/02

Eliminating Gaps
A B C D E ABC DE

D

A

E

B

C

B C

D

E
A

D E

B

C

B C

D

E
A

A

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 28 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Across Cells

L12 – CMOS Layout 126.371 – Fall 2002 10/16/02

Replicating Cells

What does this cell do?

What if we want to replicate this cell
vertically, i.e., make a stack of the
cells, to process many bits in
parallel?

� what nodes are shared
among the cells?

� what nodes aren’t shared?

� how should we arrange the
cells vertically?

What does this cell do?

What if we want to replicate
this cell vertically to process

many bits in parallel?

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 29 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Across Cells

L12 – CMOS Layout 136.371 – Fall 2002 10/16/02

Vertical Replication

Reflect cell about X axis so that Pfets
are next to each other: this avoids large
ndiff/pdiff spacing.

Place shared geometry symmetrically
about shared boundary.

Place items that aren’t to be shared
1/2 minspacing rule from shared
boundary.

Run shared control signals vertically --
they’ll wire themselves up
automatically?

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 30 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Merging Simple Cells

Two latch implementations: Left implementation composes primitive
gates, while right implementation uses single tightly integrated gate

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 31 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths, Memories, Control

zext

sext

ir[20:16]

ir[25:21]

ir[15:0]

ir[15:0]

ir[25:0]

ir[15:0]

j_targ

br_targ

ir[10:6]

16

op0_mux
_out_X

pc_plus4_D

op1_mux
_out_X

wdata_X

alu_out_Mir_D

pc_F

pc_plus4

br_targ

j_targ
jr

+4

result_W

regfile
(read)

regfile
(write)

decode

alu

dmem_msg
_rw_M

alu_fn_X

wb_mux_sel_M rf_wen_W

rf_waddr_W

branch
_cond_eq_X

Fetch (F) Decode (D) Execute (X) Memory (M) Writeback (W)

br_targ_X

imem

addr rdata

rst_vect

pc_mux
_sel_P

shamt

0

op0_mux
_sel_D

op1_mux
_sel_D

dmem

addr
wdata

rdata

proc2cop_data_W

branch
_cond_zero/neg_X

imuldiv

md_mux

subword

execute
_mux_sel_X

muldiv
_mux_sel_X

dmemresp
_mux_sel_M

muldivreq_msg
_fn_X

ECE 6745 T04: Full-Custom Design Methodology 32 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths, Memories, Control

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 33 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: PC Generation Unit

L08 – Logical Effort and ASIC Design Styles 166.371 – Fall 2002 9/27/02

MIPS PC Generation Unit

+ +

4

Reset
Exc.

Jump
Seq

Branch

Jump Register PC

Instruction Register
PC to Instruction Memory

PC for Link Register

Routing every path as a
separate 32-bit bus

would take a large area

32

32

32
32

32
32

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 34 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: Bitslices

L08 – Logical Effort and ASIC Design Styles 176.371 – Fall 2002 9/27/02

Datapath Bitslices

� Implement datapath as single bit slices, contain one bit
from each functional unit

� Route each bus bit position within bitslice

+ + Bit 0

+ + Bit 1

+ + Bit 2
Carry chain
connections

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 35 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: Bit Pitch

L08 – Logical Effort and ASIC Design Styles 186.371 – Fall 2002 9/27/02

Datapath Bit Pitch

� Height of each bit slice depends on:
– height of tallest cell in entire bitslice

– maximum number of buses running through any cell in
bitslice

Bit Pitch

Two layers
metal, buses
run by side

of cells

Three+ layers
metal, buses run

over cells

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 36 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: PC Gen Example

L08 – Logical Effort and ASIC Design Styles 196.371 – Fall 2002 9/27/02

Buses
routed by
side of
cells

Datapath Example

In 1.0Pm, 2-metal CMOS process

Bus rip out at right angles

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 37 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: Datapath Library Cells

L08 – Logical Effort and ASIC Design Styles 206.371 – Fall 2002 9/27/02

Datapath Library Cells

� Have to choose maximum datapath cell height
– Too high, wastes area in simple cells
– Too small, squeezes complex cells. Grow superlinearly

in length dimension, so also wastes area.

� Compromise, around 8-12 metal tracks works OK

12 track pitch in M3
(buses fly over cell

horizontally)

Width varies according
to cell type

Control lines run
vertically in M2,

e.g., mux selects,
clocks

VDDPower run
vertically in M2

GND

(example metal assignment,
others possible)

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 38 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: Optimizing Datapath Layout

+ +

m
u
x

+ +

m
u
x

Reduce congestion by rearranging datapath components to minimize
required number of vertical tracks per bitslice

1 2 4 5 3 1 2 4 4 3

2 4 5 5 2 4 4 4

Count number of wires
between each component

Count number of wires
crossing over each cell

Bus Writer

Bus Reader
Datapath
Input or
Output

Bit cells must be >5 tracks high Bit cells must be >4 tracks high

Carefully account for buses
going in opposite directions

ECE 6745 T04: Full-Custom Design Methodology 39 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: MIPS Datapath Track Allocation

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 40 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: MIPS Datapath Example (1)

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 41 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Datapaths: MIPS Datapath Example (2)

L08 – Logical Effort and ASIC Design Styles 226.371 – Fall 2002 9/27/02

MIPS Datapath Example

32
bits

Log shifter
layout

MIPS
register

file Load data
arrives here

Program
counter

generation
Instruction bits

arrive here
(also in bypass)

Memory address
leaves here

Bypass network
for six-stage Pipe

Multiply/Divide
Unit

Fetch
address
leaves
here

Adder

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 42 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories:
Array Structure

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 43 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories: Register File Circuits

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 44 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories: Register File Circuits

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 45 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories: SRAM Circuits

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 46 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories: SRAM Layout

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 47 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Memories: SRAM

L08 – Logical Effort and ASIC Design Styles 236.371 – Fall 2002 9/27/02

Memory Layout
� Regular arrays built with cells that abut in two dimensions

– Have to pitch match in both dimensions

SRAM Cell

Word Line
Drivers

Sense Amps

Address
Predecoders

Final Decode

Power Buses

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 48 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Finite-State-Machine Control Unit

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 49 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Full Custom Control Logic with PLA

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 50 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Top-Level Chip Floorplan

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 51 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Final Full-Custom MIPS Processor

Adapted from [Weste’11]

ECE 6745 T04: Full-Custom Design Methodology 52 / 53

Design Domains, Abstractions, and Principles • Full-Custom Design •

Acknowledgments

▶ [Weste’11] N. Weste and D. Harris, “CMOS VLSI Design: A Circuits and
Systems Perspective,” 4th ed, Addison Wesley, 2011.

▶ [Terman’02] C. Terman and K. Asanović, MIT 6.371 Introduction to VLSI
Systems, Lecture Slides, 2002.

▶ [Ellervee’04] P. Ellervee, IAY3714 VLSI Synthesis and HDLs, Lecture Slides,
2004.

ECE 6745 T04: Full-Custom Design Methodology 53 / 53

