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Behavioral, Structural, and Physical Abstractions

Adapted from [Ellervee’04]
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Behavioral, Structural, and Physical Abstractions

Adapted from [Ellervee’04]
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Computer Engineering Stack Abstractions
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Design Principles in VLSI Design

▶ Modularity – Decompose into components with well-defined interfaces

▶ Hierarchy – Recursively apply modularity principle

▶ Encapsulation – Hide implementation details from interfaces

▶ Regularity – Leverage structure at various levels of abstraction

▶ Extensibility – Include mechanisms/hooks to simplify future changes

ECE 6745 T04: Full-Custom Design Methodology 7 / 53



• Design Domains, Abstractions, and Principles • Full-Custom Design

Design Principle: Modularity

6.375 Spring 2006 • L03 Verilog 2 - Design Examples • 21

Try to contain all functionality 
in leaf modules
wire [W-1:0] B;
wire [W-1:0] sub_out;
wire [W-1:0] A_mux_out;

vcMux3#(W) A_mux
(
.in0 (operands_bits_A),
.in1 (B),
.in2 (sub_out),
.sel (A_mux_sel),
.out (A_mux_out)

);

wire [W-1:0] A;

vcEDFF_pf#(W) A_pf
(
.clk (clk),
.en_p (A_en),
.d_p (A_mux_out),
.q_np (A)

);

B

A
sel

A
en

B
sel

B
en A < BB = 0

zero? lt
A

sub

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

▶ Separate design into components
w/ well-defined interfaces

▶ Reason, design, and test
components in isolation

▶ Interface may or may not
encapsulate implementation
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Design Principle: Modularity

Modularity can also impact
electrical and physical

characteristics

Electrical Modularity

What happens if we cascade
many of these tranmission gate

multiplexers?

Physical Modularity

pwr/gnd rails & wells in fixed
locations so they connect via

abutment Adapted from [Weste’11]
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Design Principle: Hierarchy

GCD

Control Unit Datapath Unit

Multi-Bit
Register

Multi-Bit
Multiplexer

Multi-Bit
Subtracter

Full-AdderSingle-Bit
Multiplexer

Single-Bit
Flip-Flop

Recursively apply modularity principle until
complexity of submodules is manageable
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Design Principle: Hierarchy
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Design Principle: Encapsulation

▶ Modularity requires well-defined interfaces, but these interfaces might
still expose significant implementation details (e.g., interface in
control/datapath split reveals many details of the implementation)

▶ Choose interfaces that hide implementation details where possible to
enable more robost composition

▶ Lab 1 multipliers all use a latency-insenstive val/rdy message interface
to hide timing details, any one of these can be swaped into a
processor and should work without modification
▷ Fixed-latency iterative multiplier
▷ Variable-latency iterative multplier
▷ Pipelined multiplier
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Design Principle: Regularity

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

▶ Modularity, hierarchy, and
encapsulation can still lead to
many different kinds of
modules which can increase
design complexity

▶ Choose a hierarchical
decomposition to leverage
structure and thus faciliate
reuse and reduce complexity

▶ Both structural and physical
regularity can be exploited
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Design Principle: Regularity

P
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Design Principle: Extensibility

6.375 Spring 2006 • L03 Verilog 2 - Design Examples • 21

Try to contain all functionality 
in leaf modules
wire [W-1:0] B;
wire [W-1:0] sub_out;
wire [W-1:0] A_mux_out;

vcMux3#(W) A_mux
(
.in0 (operands_bits_A),
.in1 (B),
.in2 (sub_out),
.sel (A_mux_sel),
.out (A_mux_out)

);

wire [W-1:0] A;

vcEDFF_pf#(W) A_pf
(
.clk (clk),
.en_p (A_en),
.d_p (A_mux_out),
.q_np (A)

);

B

A
sel

A
en

B
sel

B
en A < BB = 0

zero? lt
A

sub

Simple form of polymorphism
enables varying bitwidth of

operands

Difficult with full-custom design
methodology!

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Parameterization of network and
caches enables reuse; static

elaboration could enable varying the
number of cores and the types of

components
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Agenda

Design Domains, Abstractions, and Principles

Full-Custom Design
Cells
Datapaths
Memories
Control
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Full Custom Design

Intel 4004

L01 – Introduction 226.884 – Spring 2005 2 Feb 2005

Full Custom Design
Designer is free to do anything, anywhere

– though each design team usually imposes some discipline
Most time consuming design style

– Reserved for very high performance or very high volume 
devices (Intel microprocessors, RF power amps for cellphones)

Requires complete customization of all layers of wafer

Piece of full-custom multiplier array, 
1.0Pm 2-metalKey is that all circuits and transistors

are optimized for specific context
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Overview of Full Custom Design Methodology

Adapted from [Weste’11]
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Custom Cells: Lambda-Based Design Rules

L12 – CMOS Layout   26.371 – Fall 2002 10/16/02

Lambda-based design rules
One lambda = one half of the “minimum” mask dimension, typically the length 
of a transistor channel.  Usually all edges must be “on grid”, e.g., in the 
MOSIS scalable rules, all edges must be on a lambda grid.

1
2

3

2

1

2

2

3

2x2

33 2
1

2x2 3poly

metal1

diffusion (active)

contact

More info at: http://www.mosis.org/Technical/Designrules/scmos/scmos-main.htmlAdapted from [Terman’02]
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Custom Cells: Sample “Lambda” Layout

L12 – CMOS Layout   36.371 – Fall 2002 10/16/02

Sample 
O

A Y

vss

vdd

Adapted from [Terman’02]
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Custom Cells: Lambda vs. Micron Rules

L12 – CMOS Layout   56.371 – Fall 2002 10/16/02

Lamba vs. Micron rules
Lambda-based design rules are based on the assumption that one can scale 
a design to the appropriate size before manufacture.  The assumuption is 
that all manufacturing dimensions scale equally, an assumption that “works” 
only over some modest span of time.  For example: if a design is completed 
with a poly width of 2O�and a metal width of 3O�then minimum width metal 
wires will always be 50% wider than minimum width poly wires.

Consider the following
data from Weste,
Table 3.2: contacted metal pitch

1/2 * contact size
contact surround
metal-to-metal spacing
contact surround
1/2 * contact size

lambda
rule

1O
1O

3O
1O
1O

8O

lambda
= 0.5u

0.5P
0.5P
1.5P

0.5P
0.5P

4P

micron
rule

0.375P
0.5P
1.0P
0.5P

0.375P
2.75P

Scaled design is legal
but much larger than
it needs to be!

7 3.5

Adapted from [Terman’02]
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Custom Cells: Sticks and Compaction

L12 – CMOS Layout   76.371 – Fall 2002 10/16/02

Sticks and Compaction

Stick diagram Horizontal constraints
for compaction in X

Compact X then Y Compact Y then X Compact X with jog
insertion, then Y

Adapted from [Terman’02]
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Custom Cells: Example Stick Diagram
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Custom Cells: Example Stick Diagram
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Custom Cells: Cell “Styles”

L12 – CMOS Layout   86.371 – Fall 2002 10/16/02

Choosing a “style”

Vertical Gates
Good for circuits where fets
sizes are similar and each 
gate has limited fanout.  
Best choice for multiple 
input static gates and for 
datapaths.

Horizontal Gates
Good for circuits where long 
and short fets are needed 
or where nodes must 
control many fets.   Often 
used in multiple-output 
complex gates (e.g, 
sum/carry circuits).

What about routing 
signals between gates?  
Note that both layouts 
block metal/poly routing 
inside the cell.  Choices: 
metal2 routing over the 
cell or routing above/below 
the cell.

� avoid long (> 50 
squares) poly runs

� don’t “capture” white 
space in a cell

� don’t obsess over the 
layout, instead make a 
second pass, optimizing 
where it counts

Adapted from [Terman’02]
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Custom Cells: Optimizing Connections

L12 – CMOS Layout   96.371 – Fall 2002 10/16/02

Optimizing connections

Which is the better gate layout?

� considering node capacitances?

� considering “composibility” with neighboring gates?

Which does this gate do?
Which is better considering node capacitances?

Adapted from [Terman’02]
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Custom Cells: Optimizing Large Transistors

L12 – CMOS Layout   106.371 – Fall 2002 10/16/02

area = 928 area = 1008 area = 1080

Which is the better gate layout?

� considering node capacitances?

� considering “composibility” with neighboring gates?

Which is better considering wire resistances?
Which is better considering node capacitances?

Adapted from [Terman’02]
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Custom Cells: Optimizing Diffusion Sharing

L12 – CMOS Layout   116.371 – Fall 2002 10/16/02

Eliminating Gaps
A B C D E ABC DE

D

A

E

B

C

B C

D

E
A

D E

B

C

B C

D

E
A

A

Adapted from [Terman’02]

ECE 6745 T04: Full-Custom Design Methodology 28 / 53



Design Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Across Cells

L12 – CMOS Layout   126.371 – Fall 2002 10/16/02

Replicating Cells

What does this cell do?

What if we want to replicate this cell 
vertically, i.e., make a stack of the 
cells, to process many bits in 
parallel?

� what nodes are shared 
among the cells?

� what nodes aren’t shared?

� how should we arrange the 
cells vertically?

What does this cell do?

What if we want to replicate
this cell vertically to process

many bits in parallel?

Adapted from [Terman’02]
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Custom Cells: Optimizing Across Cells

L12 – CMOS Layout   136.371 – Fall 2002 10/16/02

Vertical Replication

Reflect cell about X axis so that Pfets
are next to each other: this avoids large 
ndiff/pdiff spacing.

Place shared geometry symmetrically 
about shared boundary.

Place items that aren’t to be shared 
1/2 minspacing rule from shared 
boundary.

Run shared control signals vertically --
they’ll wire themselves up 
automatically?

Adapted from [Terman’02]
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Custom Cells: Merging Simple Cells

Two latch implementations: Left implementation composes primitive
gates, while right implementation uses single tightly integrated gate

Adapted from [Weste’11]
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Custom Datapaths, Memories, Control

zext

sext

ir[20:16]

ir[25:21]

ir[15:0]

ir[15:0]

ir[25:0]

ir[15:0]

j_targ

br_targ

ir[10:6]

16

op0_mux
_out_X

pc_plus4_D

op1_mux
_out_X

wdata_X

alu_out_Mir_D

pc_F

pc_plus4

br_targ

j_targ
jr

+4

result_W

regfile
(read)

regfile
(write)

decode

alu

dmem_msg
_rw_M

alu_fn_X

wb_mux_sel_M rf_wen_W

rf_waddr_W

branch
_cond_eq_X

Fetch (F) Decode (D) Execute (X) Memory (M) Writeback (W)

br_targ_X

imem

addr rdata

rst_vect

pc_mux
_sel_P

shamt

0

op0_mux
_sel_D

op1_mux
_sel_D

dmem

addr
wdata

rdata

proc2cop_data_W

branch
_cond_zero/neg_X

imuldiv

md_mux

subword

execute
_mux_sel_X

muldiv
_mux_sel_X

dmemresp
_mux_sel_M

muldivreq_msg
_fn_X
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Custom Datapaths, Memories, Control

Adapted from [Weste’11]
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Custom Datapaths: PC Generation Unit

L08 – Logical Effort and ASIC Design Styles   166.371 – Fall 2002 9/27/02

MIPS PC Generation Unit

+ +

4

Reset
Exc.

Jump
Seq

Branch

Jump Register PC

Instruction Register
PC to Instruction Memory

PC for Link Register

Routing every path as a 
separate 32-bit bus 

would take a large area

32

32

32
32

32
32

Adapted from [Terman’02]
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Custom Datapaths: Bitslices

L08 – Logical Effort and ASIC Design Styles   176.371 – Fall 2002 9/27/02

Datapath Bitslices

� Implement datapath as single bit slices, contain one bit 
from each functional unit

� Route each bus bit position within bitslice

+ + Bit 0

+ + Bit 1

+ + Bit 2
Carry chain 
connections

Adapted from [Terman’02]
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Custom Datapaths: Bit Pitch

L08 – Logical Effort and ASIC Design Styles   186.371 – Fall 2002 9/27/02

Datapath Bit Pitch

� Height of each bit slice depends on:
– height of tallest cell in entire bitslice

– maximum number of buses running through any cell in 
bitslice

Bit Pitch

Two layers 
metal, buses 
run by side 

of cells

Three+ layers 
metal, buses run 

over cells

Adapted from [Terman’02]
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Custom Datapaths: PC Gen Example

L08 – Logical Effort and ASIC Design Styles   196.371 – Fall 2002 9/27/02

Buses 
routed by 
side of 
cells

Datapath Example

In 1.0Pm, 2-metal CMOS process

Bus rip out at right angles

Adapted from [Terman’02]
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Custom Datapaths: Datapath Library Cells

L08 – Logical Effort and ASIC Design Styles   206.371 – Fall 2002 9/27/02

Datapath Library Cells

� Have to choose maximum datapath cell height
– Too high, wastes area in simple cells
– Too small, squeezes complex cells.  Grow superlinearly 

in length dimension, so also wastes area.

� Compromise, around 8-12 metal tracks works OK

12 track pitch in M3 
(buses fly over cell 

horizontally)

Width varies according 
to cell type

Control lines run 
vertically in M2, 

e.g., mux selects, 
clocks

VDDPower run 
vertically in M2

GND

(example metal assignment, 
others possible)

Adapted from [Terman’02]
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Custom Datapaths: Optimizing Datapath Layout

+ +

m
u
x

+ +

m
u
x

Reduce congestion by rearranging datapath components to minimize
required number of vertical tracks per bitslice 

1 2 4 5 3 1 2 4 4 3

2 4 5 5 2 4 4 4

Count number of wires
between each component

Count number of wires
crossing over each cell

Bus Writer

Bus Reader
Datapath
Input or 
Output

Bit cells must be >5 tracks high Bit cells must be >4 tracks high

Carefully account for buses
going in opposite directions
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Custom Datapaths: MIPS Datapath Track Allocation

Adapted from [Weste’11]
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Custom Datapaths: MIPS Datapath Example (1)

Adapted from [Weste’11]
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Custom Datapaths: MIPS Datapath Example (2)

L08 – Logical Effort and ASIC Design Styles   226.371 – Fall 2002 9/27/02

MIPS Datapath Example

32 
bits

Log shifter 
layout

MIPS 
register 

file Load data 
arrives here

Program 
counter 

generation
Instruction bits 

arrive here 
(also in bypass)

Memory address 
leaves here

Bypass network 
for six-stage Pipe

Multiply/Divide 
Unit

Fetch 
address 
leaves 
here

Adder

Adapted from [Terman’02]
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Custom Memories:
Array Structure

Adapted from [Weste’11]
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Custom Memories: Register File Circuits

Adapted from [Weste’11]
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Custom Memories: Register File Circuits

Adapted from [Weste’11]
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Custom Memories: SRAM Circuits

Adapted from [Weste’11]
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Custom Memories: SRAM Layout

Adapted from [Weste’11]
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Custom Memories: SRAM

L08 – Logical Effort and ASIC Design Styles   236.371 – Fall 2002 9/27/02

Memory Layout
� Regular arrays built with cells that abut in two dimensions

– Have to pitch match in both dimensions

SRAM Cell

Word Line 
Drivers

Sense Amps

Address 
Predecoders

Final Decode

Power Buses

Adapted from [Terman’02]
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Finite-State-Machine Control Unit

Adapted from [Weste’11]
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Full Custom Control Logic with PLA

Adapted from [Weste’11]
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Top-Level Chip Floorplan

Adapted from [Weste’11]
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Final Full-Custom MIPS Processor

Adapted from [Weste’11]
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