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1. Static CMOS Circuits

1. Static CMOS Circuits

• A PMOS
transistor is the
complement of an
NMOS transistor
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1. Static CMOS Circuits

• Static CMOS circuits are divided into two parts:

– Pull-up network exclusively uses PMOS transistors

– Pull-down network exclusively uses NMOS transistors

• Pull-up network is the complement of the pull-down network

– Every input is connected to exactly one PMOS and one NMOS

– If one network is ON, the other network is OFF

– Both networks are never ON at the same time
(i.e., there is never a direct current path from VDD to ground)

– Both networks are never OFF at the same time
(i.e., the output should never be floating)

NMOS
Pull-Down
Network

PMOS
Pull-Up
Network

Output
Inputs

4



1. Static CMOS Circuits 1.1. Inverter Circuit

1.1. Inverter Circuit
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1. Static CMOS Circuits 1.2. NAND2 Circuit

1.2. NAND2 Circuit
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1. Static CMOS Circuits 1.3. NOR2 Circuit

1.3. NOR2 Circuit
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1. Static CMOS Circuits 1.4. AOI21 Circuit

1.4. AOI21 Circuit
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1. Static CMOS Circuits 1.5. Multi-Stage Circuits

1.5. Multi-Stage Circuits
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1. Static CMOS Circuits 1.5. Multi-Stage Circuits
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2. Full-Custom vs. Standard Cell Design 2.1. Full-Custom Design

2. Full-Custom vs. Standard Cell Design

2.1. Full-Custom Design

• Transistors can be in any position and any orientation
• N-well can be any size and in any location
• VDD and ground can use any metal layer and any location
• Substrate and n-well contacts can be in any location
• Metal 2+ routing is unconstrained
• Cells can be any height and any width
• Pins can be on any layer and in any location
• Cells can have any drive strengths with non-equal rise and fall times
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2. Full-Custom vs. Standard Cell Design 2.1. Full-Custom Design

2.2. Standard-Cell Design

• Standard transistor positions and
orientation (PMOS at top, NMOS
at bottom, vertical gates)

• Standard n-well size and location
(n-well at top)

• Standard VDD and ground metal
layer and locations (on metal 1,
VDD rail 8l tall at top, ground rail
8l tall at bottom)

• Standard n-well and substrate
contacts

• Standard boundry and extension
of n-well, VDD, and ground rails
beyond boundry (origin is in
lower left)

• Standard metal 2+ routing grid (8l
track spacing)

• Standard cell height (64l)

• Standard cell width (aligned to
routing grid, i.e., 8l, 16l, 24l, etc)

• Standard pin layer and locations
(on metal 1 and on routing grid)

• Standard set of available drive
strengths
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2. Full-Custom vs. Standard Cell Design 2.1. Full-Custom Design

• Standard cells are
designed to be abutted
in rows

– n-wells align
– VDD rails align
– Ground rails align
– N-well contacts align
– Substrate contacts

align

• Each row is flipped
vertically with respect
to previous row

– Enables sharing VDD
and ground rails

• Standard-cell design
rules ensure composing
standard cells will not
create any DRC
violations

• Metal 2+ always routed
on the routing grid
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2. Full-Custom vs. Standard Cell Design 2.3. Standard-Cell Views

2.3. Standard-Cell Views

Behavioral View Logical function of the standard cell, used for
gate-level simulation

Schematic View Transistor-level representation of standard
cell, used for functional verification and
layout-vs-schematic (LVS)

Layout View Layout of standard cell, used for design-rule
checking (DRC), layout-vs-schematic (LVS),
resistance/capacitance extraction (RCX), and
fabrication

Extracted
Schematic View

Transistor-level representation with extracted
resistance and capacitances, used for
layout-vs-schematic (LVS) and timing
characterization

Front-End View High-level information about standard cell
including area, input capacitance, logical
function, and delay model; used in synthesis

Back-End View Low-level information about standard cell
including height, width, and pin locations;
used in placement and routing
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3. Standard Cells

3. Standard Cells

• We will initially focus on the following seven basic standard cells
– INVX1 : NOT gate (inverter)
– NAND2X1 : 2-input NAND gate
– NOR2X1 : 2-input NOR gate
– AOI21X1 : 3-input AND-OR-Inverting gate
– TIEHI : Tie output to logic one
– TIELO : Tie output to logic zero
– FILL : Filler cell

• X1 suffix means these standard cells all have the same drive strength
(i.e., approximately the same effective resistance)

• We will later discuss more advanced standard cells
– More complex combinational logic cells
– Sequential logic cells (i.e., flip-flops)
– Cells with larger drive stengths
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3. Standard Cells 3.1. INVX1

3.1. INVX1
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3. Standard Cells 3.1. INVX1

Extracted Schematic View

2

1

A Y

p-type body

n+ n+

Vds Vgs

YA
Cdbn

Csbn

Csbp

CdbpCgsp

Cgsn

Rpeff

Rneff

• Csb capacitors do not
actually switch, so ignore

• Cd and Cg capacitors tied to
constant voltage sources so
lump together

YA
CdCg

Rpeff

Rneff
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3. Standard Cells 3.1. INVX1

• Let R be the effective resistance of a
minimum-sized NMOS

• Let C be the gate capacitance of a
minimum-sized NMOS

• Let C be the diffusion capacitance of a
minimum-sized NMOS

• Recall Rpeff = 2 ⇥ Rneff for same
transistor width

YA
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3. Standard Cells 3.1. INVX1

Front-End View

Cell Area
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3. Standard Cells 3.1. INVX1

tpd,1! 0

A = 0 ! 1 Y
3C CL

R

0

VDD
2

VDD

• Let tpd be the time until VY = VDD/2 (propagation delay)
• Let t = R(3C + CL) = 3RC + RCL (time constant)

VY = VDD e�t/t

VDD
2

= VDD e�t/t

1
VDD

VDD
2

= e�t/t

ln
✓

1
2

◆
=

�t
t

�t ln
✓

1
2

◆
= t

t = t ln(2)

• tpd,1! 0 = (3RC + RCL) · ln(2)

• We usually just assume effective
resistance is scaled by ln(2)

tpd,1! 0 = 3RC + RCL
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3. Standard Cells 3.1. INVX1

tpd,0! 1

A = 1 ! 0
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• Let tpd be the time until VY = VDD/2 (propagation delay)
• Let t = R(3C + CL) = 3RC + RCL (time constant)
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3. Standard Cells 3.1. INVX1

Aside: Inverter with non-equal rise and fall times
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3. Standard Cells 3.1. INVX1

Aside: Inverter with twice the drive strength (INVX2)

4

2

A Y

Y
4C CL

R/2

Y
4C CL

R/2

23



3. Standard Cells 3.2. NAND2X1

3.2. NAND2X1

Behavioral View
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3. Standard Cells 3.2. NAND2X1

• Stick diagrams enable sketching a plan before detailed layout
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3. Standard Cells 3.2. NAND2X1

Extracted Schematic View

• Label the effective resistance and capacitance values to complete the
extracted schematic model

Y
A

B
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3. Standard Cells 3.2. NAND2X1

Front-End View
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3. Standard Cells 3.2. NAND2X1

A B Y
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List all possible input conditions

A B Y

0 0 ! 1

0 1 ! 0

1 0 ! 1

1 1 ! 0

0 ! 1 0

1 ! 0 0

0 ! 1 1

1 ! 0 1

• Estimate propagation delay for all input conditions which result in
an output transition

tpd,1! 0

A = 0 ! 1
B = 1

Y
4C CL

R/2

2C

R/2
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3. Standard Cells 3.2. NAND2X1

Aside: Elmore’s Delay

• Consider the following general RC circuit

Y
C2C1

R2R1

• Requires complicated second-order model

VY(t) = VDD
t1e�t/t1 � t2e�t/t2

t1 � t2

R⇤ =
R2
R1

C⇤ =
C2
C1

t1,2 =
R1C1 + (R1 + R2)C2

2

 
1 ±

s
1 � 4R⇤C⇤

[1 + (1 + R⇤)C⇤]2

!

• We do not want to determine the exact waveform for VY
• So we can use Elmore’s delay to estimate the propagation delay
• Approximate this second-order model with a first-order model that

preserves the propagation delay but not the full waveform shape

VY = VDD e�t/t

t = R1C1 + (R1 + R2)C2

• Each capacitor contributes delay proportional to the resistance
between it and the input

• Only useful for estimating propagation delay
• Best when one t is much larger than the other t

• Even if t1 = t2, error is < 15%
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3. Standard Cells 3.2. NAND2X1

Y
C2C1

R2R1 tpd = R1C1 + (R1 + R2)C2

Y

C2C1

R2R1
tpd = R1C1 + R1C2

C2C1

R2R1
Y
C3

R3 tpd = R1C1 + (R1 + R2)C2

+ (R1 + R2 + R3)C3

C2C1

R2R1

C3

R3
Y tpd = R1C1 + R1C2 + R1C3

Y

C2C1

R2R1

C3

R3
tpd = R1C1 + (R1 + R2)C2

+ (R1 + R2)C3
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3. Standard Cells 3.2. NAND2X1

Use Elmore’s delay to estimate propagation delay of NAND2X1

tpd,1! 0

A = 0 ! 1
B = 1

Y
4C CL

R/2

2C

R/2

tpd,1! 0 =
R
2
(2C) + (

R
2
+

R
2
)(4C + CL)

= RC + R(4C + CL) = 5RC + RCL

tpd,1! 0

A = 1
B = 0 ! 1

tpd,0! 1

A = 1
B = 1 ! 0

tpd,0! 1

A = 1 ! 0
B = 1
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3. Standard Cells 3.2. NAND2X1

Aside: Delay Models

• Value-, Path-, and Load-Dependent Linear Delay Model

A B Y

1 0 ! 1 tpd,1! 0 = 4RC + RCL

1 1 ! 0 tpd,0! 1 = 4RC + RCL

0 ! 1 1 tpd,1! 0 = 5RC + RCL

1 ! 0 1 tpd,0! 1 = 6RC + RCL

• Path- and Load-Dependent Linear Delay Model

tpd,B!Y = 4RC + RCL

tpd,A!Y = 6RC + RCL

• Load-Dependent Linear Delay Model

tpd = 6RC + RCL

• Constant Delay Model

tpd = 6RC + R(3C) = 9RC
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3. Standard Cells 3.3. NOR2X1

3.3. NOR2X1

Behavioral View
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Layout View
(Stick Diagram without Fingers)

(Stick Diagram with Fingers)

33



3. Standard Cells 3.3. NOR2X1

Extracted Schematic View

• Label the effective resistance and capacitance values to complete the
extracted schematic model

• Assume using fingers for equal rise and fall times

A

B
Y
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3. Standard Cells 3.3. NOR2X1

Front-End View

Cell Area

A Input Cap

B Input Cap

Y Logic Function
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3. Standard Cells 3.3. NOR2X1

A B Y

0 0 1

0 1 0
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List all possible input conditions

A B Y
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1 ! 0 1
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3. Standard Cells 3.3. NOR2X1

Use Elmore’s delay to estimate propagation delay of NOR2X1

tpd,1! 0

A = 0
B = 0 ! 1

tpd,0! 1

A = 0
B = 1 ! 0

tpd,1! 1

A = 0 ! 1
B = 0

tpd,0! 1

A = 1 ! 0
B = 0
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3. Standard Cells 3.4. AOI21X1

3.4. AOI21X1

Behavioral View
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3. Standard Cells 3.4. AOI21X1

Extracted Schematic View
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3. Standard Cells 3.4. AOI21X1
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3. Standard Cells 3.5. TIEHI

3.5. TIEHI

• Standard cell for connecting output to a constant logic one

• Do not directly connect a single net to the VDD supply rail
– Power rails and signal nets can require different design rules
– ESD on power rail can destroy fragile transistor gate
– Power supply noise can cause signal to exceed noise margins
– ... among other reasons ...

2

1

Y
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3. Standard Cells 3.6. TIELO

3.6. TIELO

• Standard cell for connecting output to a constant logic zero

• Do not directly connect a single net to the ground rail
– Ground rails and signal nets can require different design rules
– ESD on ground rail can destroy fragile transistor gate
– Ground noise can cause signal to exceed noise margins
– ... among other reasons ...

2

1

Y
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3. Standard Cells 3.7. FILL

3.7. FILL

• Standard cell for “filling in empty space”
• Needs to connect the power rail, ground rail, and n-well
• Needs poly to satisfy poly density design rules
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