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1. Static CMOS Circuits

1. Static CMOS Circuits
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1. Static CMOS Circuits

e Static CMOS circuits are divided into two parts:

— Pull-up network exclusively uses PMOS transistors

— Pull-down network exclusively uses NMOS transistors
* Pull-up network is the complement of the pull-down network

— Every input is connected to exactly one PMOS and one NMOS
— If one network is ON, the other network is OFF

— Both networks are never ON at the same time
(i.e., there is never a direct current path from VDD to ground)

— Both networks are never OFF at the same time
(i.e., the output should never be floating)
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1. Static CMOS Circuits 1.1. Inverter Circuit
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1. Static CMOS Circuits

1.2. NAND2 Circuit

1.2. NAND2 Circuit
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1. Static CMOS Circuits

1.3. NOR2 Circuit

1.3. NOR2 Circuit
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1. Static CMOS Circuits 1.4. AOI21 Circuit

1.4. AOI21 Circuit Switch-Level Model
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1. Static CMOS Circuits 1.5. Multi-Stage Circuits

1.5. Multi-Stage Circuits
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1. Static CMOS Circuits 1.5. Multi-Stage Circuits
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2. Full-Custom vs. Standard Cell Design 2.1. Full-Custom Design

2. Full-Custom vs. Standard Cell Design

2.1. Full-Custom Design

¢ Transistors can be in any position and any orientation

¢ N-well can be any size and in any location

* VDD and ground can use any metal layer and any location

* Substrate and n-well contacts can be in any location

* Metal 2+ routing is unconstrained

¢ Cells can be any height and any width

* Pins can be on any layer and in any location

¢ Cells can have any drive strengths with non-equal rise and fall times
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2. Full-Custom vs. Standard Cell Design

2.1. Full-Custom Design

2.2. Standard-Cell Design

Standard transistor positions and
orientation (PMOS at top, NMOS
at bottom, vertical gates)

Standard n-well size and location
(n-well at top)

Standard VDD and ground metal
layer and locations (on metal 1,
VDD rail 8A tall at top, ground rail
8A tall at bottom)

Standard n-well and substrate
contacts

Standard boundry and extension
of n-well, VDD, and ground rails
beyond boundry (origin is in
lower left)

Standard metal 2+ routing grid (8A
track spacing)

Standard cell height (64A)

Standard cell width (aligned to
routing grid, i.e., 8A, 161, 24A, etc)

Standard pin layer and locations
(on metal 1 and on routing grid)

Standard set of available drive
strengths
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2. Full-Custom vs. Standard Cell Design

2.1. Full-Custom Design

e Standard cells are

designed to be abutted
in rows

- n-wells align

— VDD rails align

— Ground rails align

— N-well contacts align

— Substrate contacts
align

Each row is flipped
vertically with respect
to previous row

— Enables sharing VDD
and ground rails

Standard-cell design
rules ensure composing
standard cells will not
create any DRC
violations

Metal 2+ always routed
on the routing grid
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2. Full-Custom vs. Standard Cell Design 2.3. Standard-Cell Views

2.3. Standard-Cell Views

Behavioral View Logical function of the standard cell, used for
gate-level simulation

Schematic View Transistor-level representation of standard
cell, used for functional verification and
layout-vs-schematic (LVS)

Layout View Layout of standard cell, used for design-rule
checking (DRC), layout-vs-schematic (LVS),
resistance/capacitance extraction (RCX), and

fabrication

Extracted Transistor-level representation with extracted

Schematic View resistance and capacitances, used for
layout-vs-schematic (LVS) and timing
characterization

Front-End View High-level information about standard cell

including area, input capacitance, logical
function, and delay model; used in synthesis

Back-End View Low-level information about standard cell
including height, width, and pin locations;
used in placement and routing
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3. Standard Cells

3. Standard Cells

We will initially focus on the following seven basic standard cells

INVX1
NAND2X1
NOR2X1
AOI21X1
TIEHI
TIELO
FILL

: NOT gate (inverter)

: 2-input NAND gate

: 2-input NOR gate

: 3-input AND-OR-Inverting gate
: Tie output to logic one

: Tie output to logic zero

: Filler cell

X1 suffix means these standard cells all have the same drive strength
(i.e., approximately the same effective resistance)

We will later discuss more advanced standard cells

— More complex combinational logic cells

— Sequential logic cells (i.e., flip-flops)
— Cells with larger drive stengths
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3. Standard Cells

3.1. INVX1

3.1. INVX1

Behavioral View
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3. Standard Cells 3.1. INVX1

Extracted Schematic View
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3. Standard Cells 3.1. INVX1

¢ Let R be the effective resistance of a
minimum-sized NMOS

* Let C be the gate capacitance of a
minimum-sized NMOS

¢ Let C be the diffusion capacitance of a
minimum-sized NMOS

* Recall Ryer = 2 X Ry for same
transistor width
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3. Standard Cells 3.1. INVX1

Front-End View
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3. Standard Cells 3.1. INVX1
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* Let ty be the time until Vy = Vpp /2 (propagation delay)
e Let T = R(3C + Cr) = 3RC + RC|, (time constant)

Vy = Vpp et/ ® fpd1 0= (3RC + RCyp) - In(2)
Vbp v s * We usually just assume effective
p ~ 'pp¢ resistance is scaled by In(2)
1 Vpbp ey
Vpop 2 tpd,1—>0 =3RC+ RCp
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3. Standard Cells 3.1. INVX1
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* Lett, be the time until Vy = Vpp/2 (propagation delay)
e Let 7= R(3C + Cr) = 3RC + RC| (time constant)

v W . .
DD _ v (1—et/7) * We usually just assume effective
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3. Standard Cells 3.1. INVX1

Aside: Inverter with non-equal rise and fall times
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3. Standard Cells 3.1. INVX1

Aside: Inverter with twice the drive strength (INVX2)
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3. Standard Cells 3.2. NAND2X1

3.2. NAND2X1 Layout View
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3. Standard Cells 3.2. NAND2X1

e Stick diagrams enable sketching a plan before detailed layout
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3. Standard Cells 3.2. NAND2X1

Extracted Schematic View

¢ Label the effective resistance and capacitance values to complete the
extracted schematic model
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3. Standard Cells 3.2. NAND2X1

Front-End View
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3. Standard Cells 3.2. NAND2X1

List all possible input conditions

A B Y
0 0 1 A B Y
0 1 1 0 01
1 0 1 0 150
11 0 1 01
1 1-0
........ > 5}: - Q 0—1 0
1—0
A - %R’ %R
4CI | Y 01 1
$ " 2R/2 i 4C 150 1
B
4C
$ R/2 $ 2C

* Estimate propagation delay for all input conditions which result in
an output transition

tpai—o R/2 R/2 y

A=0—1

B =1 >ZE I2(: I4(2 ICL
y I &7
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3. Standard Cells 3.2. NAND2X1

Aside: Elmore’s Delay

¢ Consider the following general RC circuit
R R
Y
P 10 10
* Requires complicated second-order model

e/ — et/

Wy (t) = Vpp Fo——
Ry (&)
R* — 2 * _ 2
® (T
T = R.1C1 + (1;1 + Rz)Cz 1+ 71— 4R*C .
[1+4 (14 R*)C¥]

¢ We do not want to determine the exact waveform for Vy
* So we can use Elmore’s delay to estimate the propagation delay

* Approximate this second-order model with a first-order model that

preserves the propagation delay but not the full waveform shape

Vy =Vppe /T

T=RiC; + (R1 + Rz)Cz

¢ Each capacitor contributes delay proportional to the resistance
between it and the input

¢ Only useful for estimating propagation delay

* Best when one 7 is much larger than the other T

e Evenif 1 = 1, erroris < 15%
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3. Standard Cells 3.2. NAND2X1

MY tpa = R1C1 + (R1 4+ R2) G,
G G

tpg = RiC1 +R1Gy

Y tpa = RiC1 + (R1 + Rp) G,
>( I I I + (R1+R2+R3)C3

tpd = RiC1 + R1Cy 4+ R1C5

tpd =Ri1C1+ (R1 + R)C,
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3. Standard Cells 3.2. NAND2X1

Use Elmore’s delay to estimate propagation delay of NAND2X1

tpa1—o0 R/2 R/2

A=0-1 VIR S I
B =1 i ;Ezc $4c ch
R R R
tpa1—0 = E(ZC) + (E + E)(4C+CL)

= RC+ R(4C +Cp) = 5RC + RCy

tpd1—0
A:
B=0—=1

tpd0—1
A=1
B=1—=0

tpd0—1
A=1—-0
B =1
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3. Standard Cells 3.2. NAND2X1

Aside: Delay Models

* Value-, Path-, and Load-Dependent Linear Delay Model

A B Y

1 0—1 tpd,l S0 = 4RC + RCL

1 1—0 tpd,0—>1 :4RC+RCL
0—1 1 tpd1—0 = 5RC + RCp
1—-0 1 tpd,0—>1 =6RC + RCg

¢ Path- and Load-Dependent Linear Delay Model

tpd,B—)Y =4RC + RCp
tpd,A—>Y = 6RC + RC

¢ Load-Dependent Linear Delay Model
tpa = 6RC + RCp
¢ Constant Delay Model

t,q = 6RC + R(3C) = 9RC
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3. Standard Cells 3.3. NOR2X1

3.3. NOR2X1 Layout View

(Stick Diagram without Fingers)
Behavioral View
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Schematic View

(Stick Diagram with Fingers)
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3. Standard Cells 3.3. NOR2X1

Extracted Schematic View

¢ Label the effective resistance and capacitance values to complete the
extracted schematic model

* Assume using fingers for equal rise and fall times
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3. Standard Cells 3.3. NOR2X1

Front-End View

Cell Area

A Input Cap

B Input Cap

Y Logic Function

Y Propagation Delay

Back-End View
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A Pin Location
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Y Pin Location
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3. Standard Cells

3.3. NOR2X1
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List all possible input conditions

A B Y
0 0—1

0 1—-0

1 0—1

1 1—0

0—1 0

1-0

0—1 1

1—0 1
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3. Standard Cells 3.3. NOR2X1

Use Elmore’s delay to estimate propagation delay of NOR2X1

tpd1—o0

A =0
B=0—1
tpd0—1
A=0
B=1—=0
tpd,1—>1
A=0—-1
B =
tpd,0—>1
A=1—-0
B =0
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3. Standard Cells

3.4. AOI21X1

3.4. AOI21X1

Behavioral View
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3. Standard Cells 3.4. AOI21X1

Extracted Schematic View
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3. Standard Cells 3.4. AOI21X1

Front-End View
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3. Standard Cells

3.5. TIEHI

3.5. TIEHI

* Standard cell for connecting output to a constant logic one

¢ Do not directly connect a single net to the VDD supply rail
— Power rails and signal nets can require different design rules
— ESD on power rail can destroy fragile transistor gate
Power supply noise can cause signal to exceed noise margins
— ... among other reasons ...
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3. Standard Cells 3.6. TIELO

3.6. TIELO

* Standard cell for connecting output to a constant logic zero

* Do not directly connect a single net to the ground rail

Ground rails and signal nets can require different design rules
ESD on ground rail can destroy fragile transistor gate

Ground noise can cause signal to exceed noise margins

— ... among other reasons ...
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3. Standard Cells 3.7. FILL

3.7. FILL

* Standard cell for “filling in empty space”
* Needs to connect the power rail, ground rail, and n-well

* Needs poly to satisfy poly density design rules
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