More Pipelining
Announcements

- HW 2 released: Due Friday, but no late penalty

- Yichi Zhang (ECE PhD student) will give a tutorial on deep neural networks (DNNs) this Thursday

- Lab 4 (on DNN acceleration) will be posted next week
 - TWO students per group
 - Start looking for a teammate
Agenda

- Modulo scheduling concepts
- Extending SDC formulation for pipelining
- Case studies
Recap: Mapping MM to a Systolic Array

Uniform Recurrence Equations (UREs)

\[Z[i, j, k] = 0, \text{ when } k = 0 \]
\[Z[i, j, k] = Z[i, j, k - 1] + A[i, k] \cdot B[k, j], \text{ when } k > 0 \]
\[C[i, j] = Z[i, j, N - 1] \]
Recap: Restrictions of Pipeline Throughput

- **Resource limitations**
 - Limited compute resources
 - Limited memory resources (esp. memory port limitations)
 - Restricted I/O bandwidth
 - Low throughput of subcomponent

- **Recurrences**
 - Also known as feedbacks, carried dependences
 - Fundamental limits of the throughput of a pipeline
Data dependences of a loop are often represented by a dependence graph

- Forward edges: **Intra-iteration** (loop-independent) dependences
- Back edges: **Inter-iteration (loop-carried)** dependences
- Edges are annotated with **distance** values: number of iterations separating the two dependent operations involved

Recurrence manifests itself as a **circuit** in the dependence graph
Modulo Scheduling

- A regular form of loop (or function) pipelining technique
 - Also applies to software pipelining in compiler optimization
 - Loop iterations use the same schedule, which are initiated at a constant rate
 - Typical objective: minimize II under resource constraints
 - NP-hard in general: optimal polynomial time solution exists without recurrences or resource constraints

- Advantages of modulo scheduling
 - Cost efficient: No code or hardware replication
 - Easy to analyze: steady state determines performance & resource
Steady state determines both performance and resource usage.
Algorithmic Scheme for Modulo Scheduling

- Common scheme of heuristic algorithms
 - Find a lower bound on II: \(M_{II} = \max(\text{Res}_{MII}, \text{Rec}_{MII}) \)
 - Look for a schedule with the given II
 - If a feasible schedule not found, increase II and try again

```
Find \( M_{II} \) and set \( II = M_{II} \)

Look for a schedule

Found it?

Yes

No

Increase II
```
Calculating Lower Bound of Initiation Interval

- **Minimum possible II (MII)**
 - $MII = \max (\text{ResMII}, \text{RecMII})$
 - A lower bound, not necessarily achievable

- **Resource constrained MII (ResMII)**
 - $\text{ResMII} = \max_i \left\lceil \frac{\text{OPs}(r_i)}{\text{Limit}(r_i)} \right\rceil$
 - OPs(r): number of operations that use resource of type r
 - Limit(r): number of available resources of type r

- **Recurrence constrained MII (RecMII)**
 - $\text{RecMII} = \max_i \left\lceil \frac{\text{Latency}(c_i)}{\text{Distance}(c_i)} \right\rceil$
 - Latency(c_i): total latency in dependence circuit c_i
 - Distance(c_i): total distance in dependence circuit c_i
Minimum II due to Resource Limits (ResMII)

- **Compute ResMII**: Max among all types of resources
 - \(\text{ResMII} = \max_i \left[\frac{\text{OPs}(r_i)}{\text{Limit}(r_i)} \right] \)

<table>
<thead>
<tr>
<th>Dependence</th>
<th>Resource Allocation & Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 adders</td>
<td>time</td>
</tr>
<tr>
<td>0 1 2 3 4 5</td>
<td>a0 (\begin{bmatrix} i0 & i1 & i2 & i3 & i4 & i5 \end{bmatrix})</td>
</tr>
<tr>
<td>2 adders</td>
<td>a1 (\begin{bmatrix} i0 & i1 & i2 & i3 \end{bmatrix})</td>
</tr>
<tr>
<td>0 1 2 3</td>
<td>a2 (\begin{bmatrix} i0 & i1 & i2 \end{bmatrix})</td>
</tr>
<tr>
<td></td>
<td>a3 (\begin{bmatrix} i0 & i1 & i2 \end{bmatrix})</td>
</tr>
<tr>
<td>0, 1, 2, 3, …: time (clock cycles)</td>
<td></td>
</tr>
<tr>
<td>a0, a1, a2, a3: available adders</td>
<td></td>
</tr>
<tr>
<td>i0, i1, i2, …: loop iterations</td>
<td></td>
</tr>
</tbody>
</table>

due to limited resources, cannot initiate iterations less than 2 cycles apart
Minimum II due to Recurrences (RecMII)

Compute recurrence MII (RecMII)
- Max among all circuits: \(\text{RecMII} = \max_i \left[\frac{\text{Latency}(c_i)}{\text{Distance}(c_i)} \right] \)
- \text{Latency}(c)\): sum of operation latencies along circuit \(c \)
- \text{Distance}(c)\): sum of dependence distances along circuit \(c \)

Assume (1) single-cycle operations; (2) no chaining
SDC-Based Modulo Scheduling

- The SDC formulation can be extended to support modulo scheduling
 - Unifies intra-iteration and inter-iteration scheduling constraints in a single SDC
 - Iterative algorithm with efficient incremental SDC update

Flowchart Diagram

1. **Find Minimum II**
 - **Loop**
 - **Model intra-iteration scheduling constraints**
 - **Model inter-iteration scheduling constraints**
 - **SDC feasible?**
 - **Yes** → **Incremental scheduling** → **Schedule**
 - **No** → **Increase II**
 - **Fail**

[Z. Zhang & B. Liu, ICCAD 2013]
Modeling Loop-Carried Dependence with SDC

- Loop-carried dependence $u \rightarrow v$ with $\text{Distance}(u, v) = K$

```c
for (i = 0; i < N-2; i++)
{
    B[i] = A[i] * C[i];
    A[i+2] = B[i] + C[i];
}
```

$K = \text{Dist}(v_5, v_1) = 2$
Modeling Loop-Carried Dependence with SDC

- Loop-carried dependence $u \rightarrow v$ with $\text{Distance}(u, v) = K s_u + \text{Lat}_u \leq s_v + K \times II$

```c
for (i = 0; i < N-2; i++)
{
    B[i] = A[i] * C[i];
    A[i+2] = B[i] + C[i];
}
```

$s_5 \leq s_1 + 2 \times II$
Case Study: Prefix Sum

- Prefix sum computes a cumulative sum of a sequence of numbers
 - commonly used in many applications such as radix sort, histogram, etc.

```c
void prefixsum ( int in[N], int out[N] )
out[0] = in[0];
for ( int i = 1; i < N; i++ ) {
    #pragma HLS pipeline II=?
    out[i] = out[i-1]+ in[i];
}
}
```

```
out[0] = in[0];
out[1] = in[0] + in[1];
...
```
Prefix Sum: RecMII

- Loop-carried dependence exists between to reads on ‘out’
 - Assume chaining is not possible on memory reads (ld) and writes (st) due to target cycle time
 - RecMII = 3

![Diagram of memory accesses]

\[
\begin{align*}
\text{out}[0] &= \text{in}[0]; \\
\text{for} \ (\text{int} \ i = 1; \ i < N; \ i++) \ &\text{out}[i] = \text{out}[i-1] + \text{in}[i];
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i = 0</td>
<td>ld_1</td>
<td>ld_2</td>
<td>+</td>
<td>st</td>
</tr>
<tr>
<td>i = 1</td>
<td>ld_1</td>
<td>ld_2</td>
<td>+</td>
<td>st</td>
</tr>
</tbody>
</table>

\(\text{ld} - \text{Load}\)
\(\text{st} - \text{Store}\)
Prefix Sum: Code Optimization

- Introduce an intermediate variable ‘tmp’ to hold the running sum from the previous ‘in’ values
 - Shorter dependence circuit leads to RecMII = 1

```
int tmp = in[0];
for ( int i = 1; i < N; i++ ) {
    tmp += in[i];
    out[i] = tmp;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ld</td>
<td>+</td>
<td>st</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ld</td>
<td>+</td>
<td>st</td>
<td></td>
</tr>
<tr>
<td></td>
<td>// = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ld – Load
st – Store
Case Study: Convolution for Image Processing

- **Convolution** is pervasive in image/video processing and ML – performed over overlapping windows (aka stencils)

\[
(Lmg \otimes f)[n+\frac{k-1}{2},m+\frac{k-1}{2}] = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} Lmg[n+i][m+j] \cdot f[i,j]
\]

![Diagram](image)
Exercise: Pipelining 3x3 Convolution

```c
for (r = 1; r < H; r++)
    for (c = 1; c < W; c++) {
        #pragma HLS pipeline II=
        for (i = 0; i < 3; i++)
            for (j = 0; j < 3; j++)
                out[r][c] += img[r+i-1][c+j-1] * f[i][j];
    }
```

- Inner loops (i & j) are automatically unrolled
- The 3x3 filter array (f) is partitioned into 9 registers
- The entire input image (img) is stored in an on-chip buffer with **two read ports**

ResMII = ? What about **RecMII**?
Achieving II=1 for 3x3 Convolution using a Line Buffer and Shift Registers

1. Push 3 pixels into shift registers – 1 new pixel + 2 from line buffer
2. Update line buffer by removing the oldest pixel and shifting in the new one

Pixels in line buffer (stores 2 lines using on-chip SRAM)

Line Buffer + Shift Registers: a custom “cache” + a custom “register file”
Resulting Specialized Memory Hierarchy

- Memory architecture customized for convolution
HLS Code Snippet

```c
1 LineBuffer<2,C,pixel_t> linebuf;
2 Window<3,3,pixel_t> window;
3 for (int r = 1; r < R+1; r++) {
4    for (int c = 1; c < C+1; c++) {
5        #pragma HLS pipeline II=1
6        pixel_t new_pixel = img[r][c];
7        // Update shift window
8        window.shift_left();
9        if (r < R && c < C) {
10           for (int i = 0; i < 2; i++)
11              window.insert(buf[i][c]);
12        }
13        else { // zero padding
14           for (int i = 0; i < 2; i++)
15              window.insert(0);
16        }
17        window.insert(new_pixel);
18        // Update line buffer
19        linebuf.shift_up(c);
20        if (r < R && c < C)
21           linebuf[1].insert(c, new_pixel);
22        else // Zero padding
23           linebuf[1].insert(c, 0);
24        // Perform 3x3 convolution
25        out[r-1][c-1] = convolve(window, weights);
26    }
27 }
```
Summary

- Pipelining is one of the most commonly-used techniques in HLS to boost the performance
 - Recurrences and resource restrictions limit the pipeline throughput

- Modulo scheduling
 - A regular form of software pipeline technique
 - Also applies to loop pipelining for hardware synthesis
 - NP-hard problem in general
 - SDC-based approach provides an efficient heuristic
Next Lecture

- Neural network tutorial
Acknowledgements

- These slides contain/adapt materials developed by
 - Prof. Ryan Kastner (UCSD)
 - Prof. Scott Mahlke (UMich)
 - Dr. Stephen Neuendorffer (AMD Xilinx)