More Pipelining
Announcements

- Lab 3 due Friday at 11:59pm

- Ritchie Zhao (PhD student) will give a tutorial on neural networks this Thursday

- Instructor OH on Thursday is rescheduled to Friday 10/5, 11am-noon

- First student-led seminar is on Thursday 10/16
 - 4 students per group (find you partners now!)
 - 18 mins per presentation
 - Paper bidding instructions will be posted on Piazza soon
Review: Compatibility/Conflict Graph

<table>
<thead>
<tr>
<th>Meeting</th>
<th>Schedule (am)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9:00~11:00</td>
</tr>
<tr>
<td>B</td>
<td>9:30~10:00</td>
</tr>
<tr>
<td>C</td>
<td>10:00~11:00</td>
</tr>
<tr>
<td>D</td>
<td>11:00~11:30</td>
</tr>
</tbody>
</table>

Interval graph

Conflict graph
chromatic number = 2
max clique size = 2

Compatibility graph
max clique size = 3
chromatic number = 3
Outline

▸ Modulo scheduling concepts

▸ Extending SDC formulation for pipelining

▸ Case studies on HLS pipelining
Data dependences of a loop often represented by a dependence graph

- Forward edges: **Intra-iteration** (loop-independent) dependences
- Back edges: **Inter-iteration** (loop-carried) dependences
- Edges are annotated with **distance** values: number of iterations separating the two dependent operations involved

Recurrence manifests itself as a **circuit** in the dependence graph
Modulo Scheduling

- A regular form of loop (or function) pipelining technique
 - Also applies to software pipelining in compiler optimization
 - **Loop iterations use the same schedule, which are initiated at a constant rate**

- **Advantages of modulo scheduling**
 - Easy to analyze: Steady state determines performance & resource
 - Cost efficient: No code or hardware replication

- **Optimization objective:**
 1. minimize II under resource constraints; or
 2. minimize resource usage under II constraint
 - NP-hard in general
 - Optimal polynomial time solution exists without recurrences or resource constraints
Modulo Scheduling Example

Dependence graph:

Schedule:

Initiation Interval (II)

Steady state determines both performance resource usage

Hence it’s called modulo scheduling

Slot = schedule % II

Steady state (II cycles)
Algorithmic Scheme for Modulo Scheduling

- Common scheme of heuristic algorithms
 - Find a lower bound on II, called $M_{II} = \max \{ \text{ResM}_{II}, \text{RecM}_{II} \}$
 - Look for a schedule with the given II
 - If a feasible schedule not found, increase II and try again

```
Find $M_{II}$ and set $II = M_{II}$

Look for a schedule

Found it?  No  Increase II

Yes
```
Calculating Lower Bound of Initiation Interval

- **Minimum possible II (MII)**
 - \(\text{MII} = \max(\text{ResMII}, \text{RecMII}) \)
 - A lower bound, not necessary achievable

- **Resource constrained MII (ResMII)**
 - \(\text{ResMII} = \max_i \left[\frac{\text{OPs}(r_i)}{\text{Limit}(r_i)} \right] \)
 - \(\text{OPs}(r) \): number of operations that use resource of type \(r \)
 - \(\text{Limit}(r) \): number of available resources of type \(r \)

- **Recurrence constrained MII (RecMII)**
 - \(\text{RecMII} = \max_i \left[\frac{\text{Latency}(c_i)}{\text{Distance}(c_i)} \right] \)
 - \(\text{Latency}(c_i) \): total latency in dependence circuit \(c_i \)
 - \(\text{Distance}(c_i) \): total distance in dependence circuit \(c_i \)
Minimum II due to Resource Limits (ResMII)

Compute ResMII: Max among all types of resources

\[\text{ResMII} = \max_i \left\lfloor \frac{\text{OPs}(r_i)}{\text{Limit}(r_i)} \right\rfloor \]
Compute Recurrence Minimum II (**RecMII**):
- Max among all circuits of:
 \[\text{RecMII} = \max_i \left[\frac{\text{Latency}(c_i)}{\text{Distance}(c_i)} \right] \]

- **Latency**(c) : sum of operation latencies along circuit c
- **Distance**(c) : sum of dependence distances along circuit c

Assume single-cycle operations, no chaining
SDC-Based Modulo Scheduling

- The SDC formulation can be extended to support modulo scheduling
 - Unifies intra-iteration and inter-iteration scheduling constraints in a single SDC
 - Iterative algorithm with efficient incremental SDC update
The dependence between two operations from different iterations is termed inter-iteration (loop-carried) dependence.

- Loop-carried dependence \(u \rightarrow v \) with \(\text{Dist}(u, v) = K \)

\[
s_u + \text{Lat}_u \leq s_v + K^* \text{ll}
\]

```latex
\text{for } (i = 0; i < N-2; i++) \\
\{ \\
\quad B[i] = A[i] \times C[i]; \\
\quad A[i+2] = B[i] + C[i]; \\
\}
```

\(\text{Dist}(v_5, v_1) = 2 \)

\(A[i+2] \)
The dependence between two operations from different iterations is termed inter-iteration (loop-carried) dependence

- Loop-carried dependence $u \to v$ with $Dist(u, v) = K$

$$s_u + \text{Lat}_u \leq s_v + K^* II$$

for $(i = 0; i < N-2; i++)$

{\}

$$B[i] = A[i] \times C[i];$$
$$A[i+2] = B[i] + C[i];$$

$$s_5 \leq s_1 + 2*II$$
Inter-Iteration Cycle Time Constraint with SDC

Loop pipelining may result in operation chaining across iterations
- Given a target clock period T, the maximum combinational delay within a clock cycle must not exceed T
 - $T < \text{Delay}(v_i, v_j) = \text{the max combinational delay}$
 - $s_u - s_v \leq \text{Dist}(u, v) \times \text{II} - \text{Lat}_u - 1$

\[
\begin{align*}
S &= 0; \\
\text{for } (i = 0; i < 10; i++) \\
\{ \\
&\quad S = S \times A[i]; \\
&\quad S = S + M; \\
\}
\end{align*}
\]

- Cycle time: 6ns
- Add: 2ns
- Mult: 5ns
Inter-Iteration Cycle Time Constraint with SDC

Loop pipelining may result in operation chaining across iterations
- Given a target clock period T, the maximum combinational delay within a clock cycle must not exceed T
 - $T < \text{Delay}(v_i, v_j) = \text{the max combinational delay}$
 - $s_u - s_v \leq \text{Dist}(u, v) \times \|I\| - \text{Lat}_u - 1$

S = 0;
for (i = 0; i < 10; i++)
{
 S = S * A[i];
 S = S + M;
}

- Cycle time: 6ns
- Add: 2ns
- Mult: 5ns

$S_4 \leq S_3 + \|I\| - 1$
Case Study: Prefix Sum

- Prefix sum computes a cumulative sum of a sequence of numbers
 - commonly used in many applications such as radix sort, histogram, etc.

```c
void prefixsum ( int in[N], int out[N] )
out[0] = in[0];
for ( int i = 1; i < N; i++ ) {
    #pragma HLS pipeline II=1
    out[i] = out[i-1]+ in[i];
}
```

out[0] = in[0];
out[1] = in[0] + in[1];
...

Prefix Sum: RecMII

- Loop-carried dependence exists between to reads on ‘out’
- Assume chaining is not possible on memory reads (ld) and writes (st) due to target cycle time
 - $\text{RecMII} = 3$

```
out[0] = in[0];
for ( int i = 1; i < N; i++ )
  out[i] = out[i-1] + in[i];
```

<table>
<thead>
<tr>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>ld_1</td>
<td>+</td>
<td>st</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>ld_1</td>
<td>+</td>
<td>st</td>
</tr>
</tbody>
</table>

Assume chaining is not possible on memory reads (i.e., ld) and writes (i.e., st) due to cycle time constraint.
Prefix Sum: Code Optimization

- Introduce an intermediate variable ‘tmp’ to hold the running sum from the previous ‘in’ values
- Shorter dependence circuit leads to $\text{RecMII} = 1$

```c
int tmp = in[0];
for ( int i = 1; i < N; i++ ) {
    tmp += in[i];
    out[i] = tmp;
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ld</td>
<td>+</td>
<td>st</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ld</td>
<td>+</td>
<td>st</td>
<td></td>
</tr>
</tbody>
</table>

$\text{ld} – \text{Load}$
$\text{st} – \text{Store}$
Case Study: Convolution for Image Processing

- A common computation of image/video processing is performed over overlapping stencils, termed as **convolution**

\[
(l_{mg} \otimes f)[\frac{n+k-1}{2}, \frac{m+k-1}{2}] = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} l_{mg}[n+i][m+j] \cdot f[i,j]
\]
Achieving High Throughput with Pipelining

for (r = 1; r < R; r++)
for (c = 1; c < C; c++) {
#pragma HLS pipeline II=?
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
out[r][c] += img[r+i-1][c+j-1] * f[i][j];
}

- Inner loops (i & j) are automatically unrolled
- With a 3x3 convolution kernel, 9 pixels are required for calculating the value of one output pixel
- If the entire input image is stored in an on-chip buffer with **two read ports**
 - ResMII = \(\lceil \frac{R}{2} \rceil \) reads from img after unrolling
 - What about RecMII?
 - No loop-carried dependence
Achieving II=1 for 3x3 Convolution

Push three pixels into shift register window: one new pixel plus two pixels from line buffer.

Pixels in line buffer (2 lines stored)

New pixel fetched from input stream or frame buffer in off-chip memory

Output pixel produced by one convolution operation
Resulting Specialized Memory Hierarchy

- Memory architecture customized for convolution

Input pixel stream → Flip-Flops → Convolve → Output pixel stream

Processing window

Line buffers

On-chip SRAMs

Frame buffers

Off-chip DDR

Frame n-2

Frame n-1

Frame n
HLS Code Snippet

```c
1  LineBuffer<2,C,pixel_t> linebuf;
2  Window<3,3,pixel_t> window;
3  for (int r = 1; r < R+1; r++) {
4       for (int c = 1; c < C+1; c++) {
5             #pragma HLS pipeline II=1
6             pixel_t new_pixel = img[r][c];
7             // Update shift window
8             window.shift_left();
9             if (r < R && c < C) {
10                 for (int i = 0; i < 2; i++)
11                     window.insert(buf[i][c]);
12             }
13             else { // zero padding
14                 for (int i = 0; i < 2; i++)
15                     window.insert(0);
16             }
17             window.insert(new_pixel);
18             // Update line buffer
19             linebuf.shift_up(c);
20             if (r < R && c < C)
21                 linebuf[1].insert(c, new_pixel);
22             else // Zero padding
23                 linebuf[1].insert(c, 0);
24             // Perform 3x3 convolution
25             out[r-1][c-1] = convolve(window, weights);
26         }
27     }
```
Summary

- Pipelining is one of the most commonly used techniques in HLS to boost performance of the synthesized hardware

- Recurrences and resource restrictions limit the pipeline throughput

- Modulo scheduling
 - A regular form of software pipeline technique
 - Also applies to loop pipelining for hardware synthesis
 - NP-hard problem in general
Acknowledgements

- These slides contain/adapt materials developed by
 - Prof. Ryan Kastner (UCSD)
 - Prof. Scott Mahlke (UMich)
 - Dr. Stephen Neuendorffer (Xilinx)