ECE 5775
High-Level Digital Design Automation
Fall 2022

More CFG
Static Single Assignment
Announcements

- Links to lecture recordings and past quizzes are pinned on Ed
Agenda

- More control flow analysis
 - Dominator tree
 - Dominance frontier

- Dataflow analysis – static single assignment (SSA)
 - SSA definition
 - PHI node (Φ-node) placement
 - Code optimizations with SSA

- A brief overview of LLVM
Recap: Dominance Relation

- **Definition:** Let $G = (V, E, s)$ denote a CFG, where
 - V : set of nodes
 - E : set of edges
 - s : entry node and
 let $p \in V$, $q \in V$
 - p dominates q, written $p \leq q$
 - $p \in \text{DOM}(q)$
 - p properly (strictly) dominates q, written $p < q$ if $p \leq q$ and $p \neq q$
 - p immediately (or directly) dominates q, written $p <_d q$ if $p < q$ and there is no $t \in V$ such that $p < t < q$
 - $p = \text{IDOM}(q)$
A node (basic block) \(N \) in CFG may have multiple dominators, but **only one of them will be closest to \(N \) and be dominated by all other dominators of \(N \)**.

A dominator tree is a useful way to represent the dominance relation:
- The entry node \(s \) is the root.
- Each node in the dominator tree is the immediate dominator of its children.
 - Each node \(d \) dominates only its descendants in the tree.
Example: Dominator Tree

CFG

Dominator Tree
Dominance Frontier

- A basic block F is in the **dominance frontier set (DF)** of basic block D if and only if
 - D does **NOT** strictly dominate F
 - D dominates some predecessor(s) of F
 If above two conditions hold, F ∈ DF(D)

- Intuitively, for an F ∈ DF(D), F is *almost strictly dominated* by D

- Useful for efficiently computing the SSA form
Example: Dominance Frontiers

- F is in the dominance frontier set (DF) of D iff
 - D does NOT strictly dominate F
 - D dominates some predecessor(s) of F

If above two conditions hold, F ∈ DF(D)
Algorithm to compute DF sets

foreach convergence point\(^1\) \(X\) in CFG
foreach predecessor \(P\) of \(X\) in CFG
Run up to \(Q=\text{IDOM}(X)\) in the dominator tree,
adding \(X\) to \(DF(Y)\) for each \(Y\) between \([P, Q)\)

\(^1\) convergence point is a node (basic block) with more than one predecessors
Static Single Assignment

- Static single assignment (SSA) form is a restricted IR where
 - Each variable definition has a unique name
 - Each variable use refers to a single definition

- SSA simplifies data flow analysis and many compiler optimizations
 - Eliminates artificial dependences (on scalars)
 - Write-after-write
 - Write-after-read
SSA within a Basic Block

- Assign each variable definition a unique name
- Update the uses accordingly

Original code:

```
x = read()
x = x * 5
x = x + 1
y = x * 9
```

SSA form:

```
x_0 = read()
x_1 = x_0 * 5
x_2 = x_1 + 1
y = x_2 * 9
```

Corresponding data flow graph:

![Diagram of the data flow graph]
SSA with Control Flow

Consider a situation where two control-flow paths merge
- e.g., due to an if-then-else statement or a loop

```plaintext
x = read()
if (x > 0)
y = 5
else
y = 10
x = y

should this be y₀ or y₁?
```
Introducing ϕ-Node

- Inserts special join functions (called ϕ-nodes or PHI nodes) at points where different control flow paths converge.

$$y_0 = 5 \quad y_1 = 10 \quad y_2 = \phi(y_0, y_1) \quad x_1 = y_2$$

Note: ϕ is not an executable function!

To generate executable code from this form, appropriate copy statements need to be generated in the predecessors (in other words, reversing the SSA process for code generation).
SSA in a Loop

- Insert ϕ-nodes in the loop header block

```c
x = 0
i = 1
while (i<10) {
    x = x+i
    i = i+1
}
```
ϕ-Node Placement

- **When and where to add ϕ-nodes?**
 - If two control paths A → C and B → C converge at a node C, and both A and B contain assignments to variable X, then ϕ-node for X must be placed at C
 - We often call C a join node or convergence point
 - Can be generalized to more than two converging control paths

- **Objective:** Minimize the number of ϕ-nodes
 - Need to compute **dominance frontier sets**
Example: Dominance Frontier and SSA

- B7 is in the dominance frontier set of B3
 - In other words, B7 is the destination of some edge(s) leaving a region dominated by B3

- For each variable definition in B3, a ϕ node is needed in B7
Place ϕ node(s) of a variable x in the dominance frontier set of the block(s) where x gets defined.
ϕ-Node Placement: Iterative Insertion

<table>
<thead>
<tr>
<th>D</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

- **x** is defined in 0, 3
 => insert φ in 7,
 then *x* also defined in 7
 => insert φ in 1

- **y** is defined in 0, 2, 6
 => insert φ in 7
 then *y* also defined in 7
 => insert φ in 1

- **z** is defined in 0, 2, 5
 => insert φ in 6, 7
 then *z* also defined in 7
 => insert φ in 1

Afterwards, assign a unique name to each variable definition (including φ nodes) and update all uses.
SSA Applications

- SSA form simplifies data flow analysis and many code transformations
 - Primarily due to explicit & simplified (sparse) def-use chains

- Here we show two simple examples
 - Dead code elimination
 - Loop induction variable detection
Dead Code in CDFG

▷ A dead statement is either
 (1) Unreachable code
 (2) Definitions never used

▷ How to efficiently Identify the dead statements?
Dead Code Elimination (DCE) with SSA

Iteratively remove unused definitions: remove y_1, z_2 (and B4) \rightarrow then remove z_1
An induction variable is a variable that
- Gets increased or decreased by a fixed amount (loop invariant) on every iteration of a loop
 - \(i = i + c \)
 (basic induction variable)
- or is an affine function of another induction variable
 - \(j = a \times i + b \)
 (mutual induction variable)
Identifying Basic Loop Induction Variable

- Find basic loop induction variable(s)

1. Inspect back edges in the loop

2. Each back edge points to a \(\phi \) node in the loop header, which may indicate a basic induction variable

3. \(\phi \) is a function of an initialized variable and a definition in the form of “\(i + c \)” (i.e., increment operation)
LLVM Compiler Infrastructure

LLVM is not Compiler but a Compiler Infrastructure
What is LLVM?

▸ Formerly Low Level Virtual Machine
 ➣ Brainchild of Chris Lattner and Vikram Adve back in 2000
 ➣ 2012 ACM Software System Award

▸ The core of LLVM is the SSA-base IR
 ➣ Language independent, target independent, easy to use
 ➣ RISC-like virtual instructions, unlimited registers, exception handling, etc.

▸ Provides modular & reusable components for building compilers
 ➣ Components are ideally language/target independent
 ➣ Allows choice of the right component for the job
 ➣ Many high-quality libraries (components) with clean interfaces
 • Optimizations, analyses, modular code generator, profiling, link time optimization, ARM/X86/PPC/SPARC code generator …
 • Tools built from the libraries: C/C++/ObjC compiler, modular optimizer, linker, debugger, LLVM JIT …
The Structure of a Program in LLVM

- **Module contains Functions/GlobalVariables**
 - Module is unit of compilation/analysis/optimization

- **Function contains BasicBlocks/Arguments**
 - Functions roughly correspond to functions in C

- **BasicBlock contains list of instructions**
 - Each block ends in a control flow instruction

- **Instruction is opcode + vector of operands**
 - All operands have types
 - Instruction result is typed
Example: An LLVM Loop

```llvm
for (i=0; i<N; ++i)
foo(A[i], &P);
```

```
loop:
  %i.1 = phi i5 [ 0, %bb0 ], [ %i.2, %loop ]
  %AiAddr = getelementptr float* %A, i32 %i.1
call void %foo(float %AiAddr, %pair* %P)
  %i.2 = add i5 %i.1, 1
  %tmp = icmp eq i5 %i.1, 16
  br i1 %tmp, label %loop, label %outloop
```

- High-level information exposed in the code
 - Explicit dataflow through SSA form
 - Explicit control-flow graph
 - Explicit language-independent type-information
 - Explicit typed pointer arithmetic
 - Preserve array subscript and structure indexing

source: http://llvm.org
Arbitrary Precision Integers in LLVM

- LLVM is adopted in several commercial and academic HLS tools

- It has built-in support for arbitrary width integers since version 2.0 (e.g., i2, i128, i1024)
 - Essential for hardware synthesis
 - An 11b multiplier is significantly cheaper/faster than a 16b implementation
 - Can leverage other LLVM analyses/optimizations to perform bitwidth minimization
LLVM Flow Analysis

- LLVM IR is in SSA form
 - use-def and def-use chains are always available
 - All objects have user/use info, even functions

- Control flow graph (CFG) is always available
 - Exposed as BasicBlock predecessor/successor lists
 - Many generic graph algorithms usable with the CFG

- Higher-level info implemented as passes
 - CallGraph, Dominators, LoopInfo, …
Next Lecture

- Scheduling
Acknowledgements

- These slides contain/adapt materials developed by
 - Prof. Scott Mahlke (UMich)
 - Dr. Chris Lattner (Modular AI)