Control Flow Graph
Announcements

- First problem set (HW1) is posted
 - Due Monday 9/17

- Lab 2 will be released on Thursday
Revisiting Some Important Graph Definitions

- What is a strongly connected component (SCC)?

- Is a DAG strongly connected? No

- Does topological search apply to an SCC? No

- What is the time complexity of a topological search (in terms of |V| and |E|)? $O(|V|+|E|)$
Graph Traversal

- **Purpose:** visit all the vertices in a particular order, check/update their properties along the way

- **Algorithms**
 - Depth-first search (DFS)
 - Breadth-first search (BFS)
 - Either can be used to realize topological sort

DFS order $= a \rightarrow b \rightarrow c \rightarrow d$

BFS order $= a \rightarrow b \rightarrow d \rightarrow c$
Outline

- More on BDDs and static timing analysis

- Basics of control data flow graph
 - Basic blocks
 - Control flow graph

- Dominance relation
 - Finding loops
Review: Two-Input Gates in BDD

Name the logic gates represented by the following BDDs

(a) AND

(b) XNOR
More Virtues of BDDs

There are many, but to list a few more:

- Can represent an exponential number of paths with a DAG
- Can evaluate an \(n \)-ary Boolean function in at most \(n \) steps
 - By tracing paths to the 1 node, we can count or enumerate all solutions to equation \(f = 1 \)
- Every BDD node (not just root) represent some Boolean function in a canonical way
 - A BDD can be multi-rooted representing multiple Boolean functions sharing subgraphs
Either prove equivalence

Or find counterexample(s)
 - Input values (x, y) for which these programs produce different results

bool P(bool x, bool y) { return ~(~x & ~y); }

bool Q(bool x, bool y) { return x ^ y; }

v1 = ~x
v2 = ~y
v3 = v1 & v2
P = ~v3
Q = x ^ y

Is (P == Q) true?
BDD-based Equivalence Checking

\[P = \neg v_3 = \neg (\neg x \& \neg y) = x \lor y \]

\[Q = x \oplus y \]

\[T = (P == Q) \]

Counterexample
Setting \(x = 1 \) & \(y = 1 \) leads to false output
Hence \(P \) does not equal \(Q \)
FPGA LUT Mapping Revisited

- Cone C_v: a subgraph rooted on a node v
 - K-feasible cone: $\#\text{inputs}(C_v) \leq K$ (Can occupy a K-input LUT)
 - K-feasible cut: The set of input nodes of a K-feasible C_v

Another 3-feasible cone with an associated cut = \{a, b, c\}

A 3-feasible cone with a cut = \{c, e, f\}
Timing Analysis with LUT Mapping

- Assumptions
 - K=3
 - All inputs arrive at time 0
 - Unit delay model: 3-LUT delay = 1; Zero edge delay

- Question: **Minimum arrival time** (AT) of each gate output?

AT(a) = 1 AT(d) = 1 AT(f) = ?
Associated cut? \{i_0, i_1, i_2\}

AT(g) = ?

AT(h) = ?
FPGA Design Flow with HLS

if (condition) {
 ...
} else {
 t_1 = a + b;
 t_2 = c * d;
 t_3 = e + f;
 t_4 = t_1 * t_2;
 z = t_4 - t_3;
}
A Typical HLS Flow

High-level Programming Languages
(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

Intermediate Representation (IR)

Allocation

Scheduling

Binding

RTL generation

if (condition) {
 ...
} else {
 t_1 = a + b;
 t_2 = c * d;
 t_3 = e + f;
 t_4 = t_1 * t_2;
 z = t_4 - t_3;
}

Control data flow graph (CDFG)

Finite state machines with datapath

Intermediate Representation (IR)
Intermediate Representation (IR)

- Purposes of creating and operating on an IR
 - Encode the behavior of the program
 - Facilitate analysis
 - Facilitate optimization
 - Facilitate retargeting

- The IR we will focus on is control data flow graph (CDFG)
Control flow analysis: determine control structure of a program and build control flow graphs (CFGs)

Data flow analysis: determine the flow of data values and build data flow graphs (DFGs)
Basic Blocks

- **Basic block**: a sequence of consecutive intermediate language statements in which flow of control can only enter at the beginning and leave at the end

 - Only the last statement of a basic block can be a branch statement and only the first statement of a basic block can be a target of a branch
Partitioning a Program into Basic Blocks

- Each basic block begins with a leader statement

- Identify leader statements (i.e., the first statements of basic blocks) by using the following rules:

 - (i) The **first statement** in the program is a leader

 - (ii) Any statement that is the **target of a branch statement** is a leader (for most intermediate languages these are statements with an associated label)

 - (iii) Any statement that **immediately follows a branch or return** statement is a leader
Example: Forming the Basic Blocks

Basic Blocks:

B1
(1) p = 0
(2) i = 1

B2
(3) t1 = 4 * i
(4) t2 = a[t1]
(5) t3 = 4 * i
(6) t4 = b[t3]
(7) t5 = t2 * t4
(8) t6 = p + t5
(9) p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)
(13) j = ...

B3
(13) j = ...

Leader statement is:
(1) the first in the program
(2) any that is the target of a branch
(3) any that immediately follows a branch
Control Flow Graph (CFG)

- A control flow graph (CFG), or simply a flow graph, is a directed graph in which:
 - (i) the nodes are basic blocks; and
 - (ii) the edges are induced from the possible flow of the program.

- The basic block whose leader is the first intermediate language statement is called the entry node.

- In a CFG we assume no information about data values
 - an edge in the CFG means that the program may take that path.
Example: Control Flow Graph Formation

```
(1) p = 0
(2) i = 1

(3) t1 = 4 * i
(4) t2 = a[t1]
(5) t3 = 4 * i
(6) t4 = b[t3]
(7) t5 = t2 * t4
(8) t6 = p + t5
(9) p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)

(13) j = ...
```
Dominators

- A node p in a CFG **dominates** a node q if every path from the entry node to q goes through p. We say that node p is a **dominator** of node q.

- The **dominator set** of node q, $\text{DOM}(q)$, is formed by all nodes that dominate q.
 - By definition, each node dominates itself therefore, $q \in \text{DOM}(q)$.
Dominance Relation

- **Definition:** Let $G = (N, E, s)$ denote a CFG, where
 - N: set of nodes
 - E: set of edges
 - s: entry node and
 - let $p \in N$, $q \in N$
 - p dominates q, written $p \leq q$
 - $p \in \text{DOM}(q)$
 - p properly (strictly) dominates q, written $p < q$ if $p \leq q$ and $p \neq q$
 - p immediately (or directly) dominates q, written $p <_d q$ if $p < q$
 - and there is no $t \in N$ such that $p < t < q$
 - $p = \text{IDOM}(q)$
Example: Dominance Relation

- **Dominator sets:**
 - \(\text{DOM}(1) = \{1\} \)
 - \(\text{DOM}(2) = \{1, 2\} \)
 - \(\text{DOM}(3) = \{1, 2, 3\} \)
 - \(\text{DOM}(10) = \{1, 2, 10\} \)

- **Immediate domination:**
 - \(1 \prec_d 2, 2 \prec_d 3, \ldots \)
 - \(\text{IDOM}(2) = 1, \text{IDOM}(3) = 2 \ldots \)
Dominance Question

Assume that node P is an immediate dominator of node Q

Question: Is P necessarily an immediate predecessor of Q in the CFG?

Answer: NO
Identifying Loops

- **Motivation**: Programs spend most of the execution time in loops, therefore there is a larger payoff for optimizations that exploit loop structure.

- **Goal**: Identify loops in a CFG, not sensitive to input syntax.
 - Create an uniform treatment for program loops written using different syntactical constructs (e.g. while, for, goto).

- **Approach**: Use a general approach based on analyzing graph-theoretical properties of the CFG.
Definition: A **strongly connected component (SCC)** of the CFG, with

- a single entry point called the **header** which dominates all nodes in the SCC.
Question: In the CFG below, nodes 2 and 3 form an SCC; but **do they form a loop?**
Finding Loops

- Loop identification algorithm
 - Find an edge $B \rightarrow H$ where H dominates B; This edge is called a back-edge
 - Find all nodes that (1) are dominated by H and (2) can reach B through nodes dominated by H; add them to the loop
 - H and B are naturally included
Finding Loops

Find all back edges in this graph and the natural loop associated with each back edge
Summary

- **Basic Blocks**
 - Group of statements that execute atomically

- **Control Flow Graphs**
 - Model the control dependences between basic blocks

- **Dominance relations**
 - Shows control dependences between BBs
 - Used to determine natural loops
Next Class

- Next lecture: Static single assignment
Acknowledgements

- These slides contain/adapt materials developed by
 - Forrest Brewer (UCSB)
 - Ryan Kastner (UCSD)
 - Prof. José Amaral (Alberta)