Control Flow Graph
Announcements

- First problem set (HW1) is posted
 - Due Monday 9/17

- Lab 2 will be released on Thursday
Revisiting Some Important Graph Definitions

▸ What is a strongly connected component (SCC)?

▸ Is a DAG strongly connected?

▸ Does topological search apply to an SCC?

▸ What is the time complexity of a topological search (in terms of |V| and |E|)?
Graph Traversal

- **Purpose**: visit all the vertices in a particular order, check/update their properties along the way

- **Algorithms**
 - Depth-first search (DFS)
 - Breadth-first search (BFS)
 - Either can be used to realize topological sort

DFS order = a → ?

BFS order = a → ?
Outline

▸ More on BDDs and static timing analysis

▸ Basics of control data flow graph
 – Basic blocks
 – Control flow graph

▸ Dominance relation
 – Finding loops
Review: Two-Input Gates in BDD

Name the logic gates represented by the following BDDs

(a)

(b)
More Virtues of BDDs

- There are many, but to list a few more:
 - Can represent an exponential number of paths with a DAG
 - Can evaluate an n-ary Boolean function in at most n steps
 - By tracing paths to the 1 node, we can count or enumerate all solutions to equation $f = 1$
 - Every BDD node (not just root) represent some Boolean function in a canonical way
 - A BDD can be multi-rooted representing multiple Boolean functions sharing subgraphs
BDD Application on Functional Verification

Either prove equivalence
Or find counterexample(s)
 - Input values (x, y) for which these programs produce different results

```
bool P(bool x, bool y) { return ~(~x & ~y); }
```

```
bool Q(bool x, bool y) { return x ^ y; }
```

Does (P == Q) hold true?

Straight-line evaluation

<table>
<thead>
<tr>
<th>v1</th>
<th>~x</th>
</tr>
</thead>
<tbody>
<tr>
<td>v2</td>
<td>~y</td>
</tr>
<tr>
<td>v3</td>
<td>v1 & v2</td>
</tr>
<tr>
<td>P</td>
<td>~v3</td>
</tr>
<tr>
<td>Q</td>
<td>x ^ y</td>
</tr>
<tr>
<td>Is (P == Q) true?</td>
<td></td>
</tr>
</tbody>
</table>
BDD-based Equivalence Checking

\[P = \neg v3 = \neg(\neg x \& \neg y) = x \lor y \]

OR gate

\[Q = x \oplus y \]

XOR gate

\[T = (P == Q) \]

Counterexample
Setting \(x = 1 \) & \(y = 1 \) leads to false output

Hence \(P \) does not equal \(Q \)
FPGA LUT Mapping Revisited

- Cone C_v: a subgraph rooted on a node v
 - K-feasible cone: $\#\text{inputs}(C_v) \leq K$ (Can occupy a K-input LUT)
 - K-feasible cut: The set of input nodes of a K-feasible C_v

Another 3-feasible cone with an associated cut = \{a, b, c\}

A 3-feasible cone with a cut = \{c, e, f\}
Timing Analysis with LUT Mapping

- Assumptions
 - K=3
 - All inputs arrive at time 0
 - Unit delay model: 3-LUT delay = 1; Zero edge delay

- Question: **Minimum arrival time** (AT) of each gate output?

 - AT(a) = 1
 - AT(d) = 1
 - AT(f) = ?
 - Associated cut?
 - AT(g) = ?
 - AT(h) = ?
 - AT(b) = 1
 - AT(e) = 1
 - AT(c) = 1
FPGA Design Flow with HLS

High-level Programming Languages

Compilation

Scheduling/ Pipelining, Binding

RTL

Logic Synth., Tech. Mapping, P&R, STA

Bitstream

Untimed high-level description

Timed design

FPGA

if (condition) {
 ...
} else {
 t_1 = a + b;
 t_2 = c * d;
 t_3 = e + f;
 t_4 = t_1 * t_2;
 z = t_4 - t_3;
}
A Typical HLS Flow

High-level Programming Languages (C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

Intermediate Representation (IR)

Scheduling

Binding

RTL generation

if (condition) {
 ...
} else {
 t_1 = a + b;
 t_2 = c * d;
 t_3 = e + f;
 t_4 = t_1 * t_2;
 z = t_4 - t_3;
}

Control data flow graph (CDFG)

Finite state machines with datapath

3 cycles
Intermediate Representation (IR)

- Purposes of creating and operating on an IR
 - Encode the behavior of the program
 - Facilitate analysis
 - Facilitate optimization
 - Facilitate retargeting

- The IR we will focus on is control data flow graph (CDFG)
Program Flow Analysis

- Control flow analysis: determine control structure of a program and build control flow graphs (CFGs)

- Data flow analysis: determine the flow of data values and build data flow graphs (DFGs)
Basic Blocks

- **Basic block**: a sequence of consecutive intermediate language statements in which flow of control can only enter at the beginning and leave at the end

 - Only the last statement of a basic block can be a branch statement and only the first statement of a basic block can be a target of a branch
Partitioning a Program into Basic Blocks

- Each basic block begins with a leader statement

- Identify leader statements (i.e., the first statements of basic blocks) by using the following rules:

 - (i) The **first statement** in the program is a leader

 - (ii) Any statement that is the **target of a branch statement** is a leader (for most intermediate languages these are statements with an associated label)

 - (iii) Any statement that **immediately follows a branch or return** statement is a leader
Example: Forming the Basic Blocks

(1)	p = 0
(2)	i = 1
(3)	\(t1 = 4 \times i \)
(4)	\(t2 = a[t1] \)
(5)	\(t3 = 4 \times i \)
(6)	\(t4 = b[t3] \)
(7)	\(t5 = t2 \times t4 \)
(8)	\(t6 = p + t5 \)
(9)	\(p = t6 \)
(10)	\(t7 = i + 1 \)
(11)	\(i = t7 \)
(12)	if \(i \leq 20 \) goto (3)
(13)	\(j = \ldots \)

Basic Blocks:

B1

| (1) | \(p = 0 \) |
| (2) | \(i = 1 \) |

B2

(3)	\(t1 = 4 \times i \)
(4)	\(t2 = a[t1] \)
(5)	\(t3 = 4 \times i \)
(6)	\(t4 = b[t3] \)
(7)	\(t5 = t2 \times t4 \)
(8)	\(t6 = p + t5 \)
(9)	\(p = t6 \)
(10)	\(t7 = i + 1 \)
(11)	\(i = t7 \)
(12)	if \(i \leq 20 \) goto (3)

B3

| (13) | \(j = \ldots \) |

Leader statement is:
(1) the first in the program
(2) any that is the target of a branch
(3) any that immediately follows a branch
Control Flow Graph (CFG)

- A **control flow graph** (CFG), or simply a flow graph, is a directed graph in which:
 - (i) the nodes are basic blocks; and
 - (ii) the edges are induced from the possible flow of the program

- The basic block whose leader is the first intermediate language statement is called the **entry node**

- In a CFG we assume no information about data values
 - an edge in the CFG means that the program **may** take that path
Example: Control Flow Graph Formation

1. \(p = 0 \)
2. \(i = 1 \)
3. \(t_1 = 4 \times i \)
4. \(t_2 = a[t_1] \)
5. \(t_3 = 4 \times i \)
6. \(t_4 = b[t_3] \)
7. \(t_5 = t_2 \times t_4 \)
8. \(t_6 = p + t_5 \)
9. \(p = t_6 \)
10. \(t_7 = i + 1 \)
11. \(i = t_7 \)
12. if \(i \leq 20 \) goto (3)
13. \(j = \ldots \)
Dominators

- A node p in a CFG **dominates** a node q if every path from the entry node to q goes through p. We say that node p is a **dominator** of node q.

- The **dominator set** of node q, $\text{DOM}(q)$, is formed by all nodes that dominate q.
 - By definition, each node dominates itself therefore, $q \in \text{DOM}(q)$.

Dominance Relation

- **Definition:** Let $G = (N, E, s)$ denote a CFG, where
 - N: set of nodes
 - E: set of edges
 - s: entry node and
 let $p \in N$, $q \in N$
 - p dominates q, written $p \leq q$
 - $p \in \text{DOM}(q)$
 - p properly (strictly) dominates q, written $p < q$ if $p \leq q$ and $p \neq q$
 - p immediately (or directly) dominates q, written $p <_d q$ if $p < q$ and there is no $t \in N$ such that $p < t < q$
 - $p = \text{IDOM}(q)$
Example: Dominance Relation

- **Dominator sets:**
 - $\text{DOM}(1) = \{1\}$
 - $\text{DOM}(2) = \{1, 2\}$
 - $\text{DOM}(3) = \{1, 2, 3\}$
 - $\text{DOM}(10) = \{1, 2, 10\}$

- **Immediate domination:**
 - $1 \preceq_d 2, 2 \preceq_d 3, \ldots$
 - $\text{IDOM}(2) = 1, \text{IDOM}(3) = 2 \ldots$
Assume that node P is an immediate dominator of node Q

Question: Is P necessarily an immediate predecessor of Q in the CFG?

Answer: **NO**
Identifying Loops

- **Motivation**: Programs spend most of the execution time in loops, therefore there is a larger payoff for optimizations that exploit loop structure.

- **Goal**: Identify loops in a CFG, not sensitive to input syntax.
 - Create an uniform treatment for program loops written using different syntactical constructs (e.g. while, for, goto).

- **Approach**: Use a general approach based on analyzing graph-theoretical properties of the CFG.
Loop Definition

- Definition: A **strongly connected component** (SCC) of the CFG, with
 - a single entry point called the **header** which dominates all nodes in the SCC
Question: In the CFG below, nodes 2 and 3 form an SCC; but **do they form a loop?**
Finding Loops

- Loop identification algorithm
 - Find an edge $B \rightarrow H$ where H dominates B; This edge is called a **back-edge**

 - Find all nodes that (1) are dominated by H and (2) can reach B through nodes dominated by H; add them to the loop
 - H and B are naturally included
Finding Loops

Find all back edges in this graph and the natural loop associated with each back edge.
Summary

- **Basic Blocks**
 - Group of statements that execute atomically

- **Control Flow Graphs**
 - Model the control dependences between basic blocks

- **Dominance relations**
 - Shows control dependences between BBs
 - Used to determine natural loops
Next Class

- Next lecture: Static single assignment
Acknowledgements

- These slides contain/adapt materials developed by
 - Forrest Brewer (UCSB)
 - Ryan Kastner (UCSD)
 - Prof. José Amaral (Alberta)