Announcements

- HW 1 will be released tomorrow

- Lab 1 handout updated last Thursday
 - Added Sec 4.3 “Performance Optimization”
 - Due Friday 9/9 @ 11:59pm
Agenda

- Basics of algorithm analysis
 - Complexity analysis and asymptotic notations
 - Taxonomy of algorithms

- Basics of graph algorithms
 - EDA application: Static timing analysis
Recap: Matrix-Vector Multiplication (MV) in HLS

// MV with outer loop pipeline
#define N 16

void MV (int A[N][N], int x[N], int y[N]) {
 for (int i = 0; i < N; i++) {
 #pragma HLS pipeline
 int acc = 0;
 // inner product
 for (int j = 0; j < N; j++) {
 #pragma HLS unroll
 acc += A[i][j] * x[j];
 }
 output[i] = acc;
 }
}
Recap: Overall MV Latency after Pipelining

Latency: \(~132 = 12 + (N - 1) \times 8 = 12 + 15 \times 8\)
Recap: Pipeline Schedule with Array Partitioning

<table>
<thead>
<tr>
<th>Cycle Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load A[0][:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load x[:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mult (16-elem)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction (Adder Tree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store y[0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iteration 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load A[1][:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load x[:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mult (16-elem)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction (Adder Tree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store y[1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iteration 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read A[2][:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read x[:]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mult (16-elem)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction (Adder Tree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store y[2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recap: Algorithms Drive Automation

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]
Analysis of Algorithms

- Need a systematic way to compare two algorithms
 - Execution time is typically the most common criterion used
 - Space (memory) usage is also important in most cases
 - But difficult to compare in practice since these algorithms may be implemented on different machines, use different languages, etc.
 - Plus, execution time is usually input-dependent

- **big-O notation** is widely used for asymptotic analysis
 - Complexity is represented with respect to some natural & abstract measure of the problem size N
Big-O Notation

- Express execution time as a function of input size n
 - Running time $F(n)$ is of order $G(n)$, written as $F(n) \in O(G(n))$ when
 $\exists n_0, \forall n \geq n_0, F(n) \leq K \cdot G(n)$ for some constant K
 - F will not grow larger than G by more than a constant factor
 - G is often called an “upper bound” for F

- Interested in the worst-case input & the growth rate for large input size
How to determine the order of a function?
- Ignore lower order terms
- Ignore multiplicative constants
- Examples:
 \[3n^2 + 6n + 2.7 \text{ is } O(n^2)\]
 \[n^{1.2} + 10000000000n \text{ is } O(n^{1.2}); \text{ } n^{1.2} \text{ is also } O(n^2)\]
 \[n! > C^n > n^C > \log n > \log \log n > C\]
 \[\Rightarrow n! > n^{10}; n \log n > n; n > \log n\]

What do asymptotic notations mean in practice?
- If algorithm A is \(O(n^2)\) and algorithm B is \(O(n \log n)\),
 \text{we usually say algorithm B is more scalable.}
More Asymptotic Notions

- **big-Omega** notation: $F(n)$ is $\Omega(G(n))$
 - $\exists n_0, \forall n \geq n_0, F(n) \geq K \cdot g(n)$ for some constant K
 - G is called a “lower bound” for F

- **big-Theta** notation: $F(n)$ is $\Theta(G(n))$
 - If G is both an upper and lower bound for F, it describes the growth of a function more accurately than big-O or big-Omega
 - Examples:
 - $4n^2 + 1024 = \Theta(n^2)$
 - $n^3 + 4n \neq \Theta(n^2)$
Exponential Growth

Consider a 1 GHz processor (1 ns per clock cycle) running 2^n operations (assuming each op requires one cycle)

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>$1 \text{ns (}/\text{op}) \times 2^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10^3</td>
<td>1 us</td>
</tr>
<tr>
<td>20</td>
<td>10^6</td>
<td>1 ms</td>
</tr>
<tr>
<td>30</td>
<td>10^9</td>
<td>1 s</td>
</tr>
<tr>
<td>40</td>
<td>10^{12}</td>
<td>16.7 mins</td>
</tr>
<tr>
<td>50</td>
<td>10^{15}</td>
<td>11.6 years</td>
</tr>
<tr>
<td>60</td>
<td>10^{18}</td>
<td>31.7 years</td>
</tr>
<tr>
<td>70</td>
<td>10^{21}</td>
<td>31710 years</td>
</tr>
</tbody>
</table>
NP-Complete

› The class **NP-complete** (NPC) is the set of decision problems which we “believe” there is no polynomial time algorithms (hardest problem in NP)

› **NP-hard** is another class of problems, which are at least as hard as the problems in NPC (also containing NPC)

› If we know a problem is in NPC or NP-hard, there is (very) little hope to solve it exactly in an efficient way
How to Identify an NP-Complete Problem

- I can’t find an efficient algorithm, I guess I’m just too dumb.

- I can’t find an efficient algorithm, because no such algorithm is possible.

- I can’t find an efficient algorithm, but neither can all these famous people.

[source: “Computers and Intractibility” by Garey and Johnson]
Reduction

- Showing a problem P is at least as hard as (or not easier than) another problem Q
 - Formal steps:
 - Given an instance q of problem Q,
 - there is a polynomial-time transformation to an instance p of P
 - q is a “yes” instance iff p is a “yes” instance
 - Informally, if P can be solved efficiently, we can solve Q efficiently (Q is reduced to P)
 - P is polynomial time solvable \Rightarrow Q is polynomial time solvable
 - Q is not polynomial time solvable \Rightarrow P is not polynomial time solvable

- Example
 - Problem A: Sort n numbers
 - Problem B: Given n numbers, find the median
Types of Algorithms

There are many ways to categorize different types of algorithms:

- Polynomial vs. Exponential, in terms of computational effort
- Optimal (or Exact) vs. Heuristic, in solution quality
- Deterministic vs. Stochastic, in decision making
- Constructive vs. Iterative, in structure

…
Problem Intractability

- Most of the nontrivial EDA problems are intractable (NP-complete or NP-hard)
 - Best-known algorithm complexities that grow exponentially with n, e.g., $O(n!)$, $O(n^n)$, and $O(2^n)$.
 - No known algorithms can ensure, in a time-efficient manner, globally optimal solution

- **Heuristic** algorithms are used to find near-optimal solutions
 - Be content with a “reasonably good” solution
Many Algorithm Design Techniques

- There can be many different algorithms to solve the same problem
 - Exhaustive search
 - Divide and conquer
 - Greedy
 - Dynamic programming
 - Network flow
 - ILP
 - Simulated annealing
 - Evolutionary algorithms
 - ...
Broader Classification of Algorithms

- Combinatorial algorithms
 - Graph algorithms
 ...
- Computational mathematics
 - Optimization algorithms
 - Numerical algorithms
 ...
- Computational science
 - Bioinformatics
 - Linguistics
 - Statistics
 ...
- Information theory & signal processing
- Many more

[source: en.wikipedia.org/wiki/List_of_algorithms]
Graph Definition

- Graph: a set of objects and their connections
 - Ubiquitous: any binary relation can be represented as a graph

- Formal definition:
 - $G = (V, E)$, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$
 - V: set of vertices (nodes), E: set of edges (arcs)
 - **Undirected graph**: an edge $\{u, v\}$ also implies $\{v, u\}$
 - **Directed graph**: each edge (u, v) has a direction
Loops, multi edges, and simple graphs

- An edge of the form \((v, v)\) is said to be a **self-loop**
- A graph permitted to have multiple edges (or parallel edges) between two vertices is called a **multigraph**
- A graph is said to be **simple** if it contains no self-loops or multiedges
Graph Connectivity

- **Paths**
 - A **path** is a sequence of edges connecting two vertices
 - A **simple path** never goes through any vertex more than once

- **Connectivity**
 - A graph is **connected** if there is a path between any two vertices
 - Any subgraph that is connected can be referred to as a **connected component**
 - A directed graph is **strongly connected** if there is always a directed path between vertices
Trees and DAGs

- A **cycle** is a path starting and ending at the same vertex. A cycle in which no vertex is repeated other than the starting vertex is said to be a **simple cycle**.

- An undirected graph with no cycles is a **tree** if it is connected, or a **forest** otherwise.
 - A **directed tree** is a directed graph which would be a tree if the directions on the edges were ignored.

- A directed graph with no directed cycles is said to be a **directed acyclic graph (DAG)**.
Examples

Directed graphs with cycles

Directed acyclic graph (DAG)
Graph Traversal

- Purpose: visit all the vertices in a particular order, check/update their properties along the way

- Commonly used algorithms
 - Depth-first search (DFS)
 - Breadth-first search (BFS)

DFS order (from node a): ??
BFS order: ??
A topological order of a directed graph is an ordering of nodes where all edges go from an earlier vertex (left) to a later vertex (right)
 – Feasible if and only if the subject graph is a DAG
Application in EDA: Static Timing Analysis

- In circuit graphs, **static timing analysis** (STA) refers to the problem of finding the delays from the input pins of the circuit (esp. nodes) to each gate
 - In sequential circuits, flip-flop (FF) input acts as output pin, FF output acts as input pin
 - Max delay of the output pins determines clock period
 - **Critical path** is a path with max delay among all paths

- Two important terms
 - **Required time**: The time that the data signal needs to arrive at certain endpoint on a path to ensure the timing is met
 - **Arrival time**: The time that the data signal actually arrives at certain endpoint on a path
STA: Arrival Times

- **Assumptions**
 - All inputs arrive at time 0
 - All gate delays = 1ns ($d_i = 1$); all wire delays = 0

- **Questions:** Arrival time (AT) of each gate output? Minimum clock period?

\[
AT_i = \max_{j \in \text{pred}(i)} \{AT_j\} + d_i
\]

Gates are visited in a topological order
STA: Required Times

Assumptions
- All inputs arrive at time 0
- All gate delays = 1ns (di = 1); all wire delays = 0
- Clock period = 5ns (200MHz frequency)

Question: **Required time** (RT) of each gate output in order to meet the clock period?

\[RT_i = \min_{j \in \text{succ}(i)} \{RT_j - d_j\} \]

Gates are visited in a reverse topological order
STA: Slacks

- In addition to the arrival time and required time of each node, we are interested in knowing the **slack** ($= RT - AT$) of each node / edge
 - Negative slacks indicate unsatisfied timing constraints
 - Positive slacks often present opportunities for additional (area/power) optimization
 - Node on the **critical path** have zero slacks
Next Lecture

- Binary decision diagrams (BDDs)
Acknowledgements

These slides contain/adapt materials from / developed by

- Prof. David Pan (UT Austin)
- “VLSI Physical Design: From Graph Partitioning to Timing Closure” authored by Prof. Andrew B. Kahng, Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu