Fixed-Point Types
Analysis of Algorithms
Announcements

- Lab 1 on CORDIC is released
 - Due Monday 9/10 @ 11:59am

- Part-time PhD TA: Hanchen Jin (hj424)
 - Office hour: Mondays 11:00am-12:00pm @ Rhodes 312
Outline

- More on FPGA-based computing
 - Customized memory architecture
 - Case study on convolution
 - Customized data types
 - Arbitrary precision integer and fixed-point types

- Basics of algorithm analysis
 - Complexity analysis and asymptotic notations
 - Taxonomy of algorithms
Example: Implementing Logic with LUTs

(1) How many 3-input LUTs are needed to implement the following full adder?
(2) How about using 4-input LUTs?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{in}</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Recap: FPGA as a Programmable Accelerator

- Massive amount of fine-grained parallelism
 - Highly parallel/deeply pipelined architecture
 - Distributed data/control dispatch
- Silicon configurable to fit the application
 - Compute the exact algorithm at desired numerical accuracy
 - Customized memory hierarchy
- Performance/watt advantage over CPUs & GPUs

AWS F1 FPGA instance: Xilinx UltraScale+ VU9P
[Figure source: David Pellerin, AWS]
Case Study: Convolution

- The main computation of image/video processing is performed over overlapping stencils, termed as convolution

\[
(Img \otimes f)_{[n+k-1, m+k-1]} = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} Img_{[n+i,m+j]} \cdot f_{[i,j]}
\]

Input image frame

3x3 convolution

Output image frame
Example Application: Edge Detection

- Identifies discontinuities in an image where brightness (or image intensity) changes sharply
 - Very useful for feature extractions in computer vision

Figures: Pilho Kim, GaTech

Sobel operator $G=(G_X, G_Y)$

$$G_X = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$G_Y = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
CPU Implementation of a 3x3 Convolution

```c
for (r = 1; r < R; r++)
    for (c = 1; c < C; c++)
        for (i = 0; i < 3; i++)
            for (j = 0; j < 3; j++)
                out[r][c] += img[r+i-1][c+j-1] * f[i][j];
```

CPU Implementation of a 3x3 Convolution

- **CPU**
- **Cache**
- **Main Memory**
General-Purpose Cache for Convolution

- Minimizes main memory accesses to improve performance

- A general-purpose cache is expensive in delay, area, and incurs nontrivial energy overhead
 - Nontrivial logic required for data access, placement, and replacement

Input picture (C pixels wide)
Specializing Cache for Convolution

- Remove rows that are not in the neighborhood of the convolution window
Specializing Cache for Convolution

- Rearrange the rows as a 1D array of pixels
- Each time we move the window to right and push in the new pixel to the “cache”

Much simpler logic for data placement and replacement!
A Specialized “Cache”: Line Buffer

- Line buffer: a fixed-width “cache” with \((K-1) \times C + K\) pixels in flight
 - Fixed addressing: Low area/power and high performance

In customized FPGA implementation, line buffers can be efficiently implemented with on-chip BRAMs.
DATA TYPE CUSTOMIZATION
Binary Number Representation

Unsigned number

- MSB has weight 2^{n-1}
- Range of an n-bit unsigned number: ?

Two’s complement

- MSB has weight -2^{n-1}
- Range of an n-bit two’s complement number: ?

Binary point

Examples: assuming integers here

\[
\begin{array}{cccc|c}
2^3 & 2^2 & 2^1 & 2^0 & \text{unsigned} \\
1 & 0 & 1 & 1 & = 11 \\
\end{array}
\]

\[
\begin{array}{cccc|c}
-2^3 & 2^2 & 2^1 & 2^0 & 2'c \\
1 & 0 & 1 & 1 & = -5 \\
\end{array}
\]
Arbitrary Precision Integer

- C/C++ only provides a limited set of native integer types
 - char (8b), short (16b), int (32b), long (?), long long (64b)
 - Byte aligned: efficient in processors

- Arbitrary precision integer in Vivado HLS
 - Signed: ap_int; Unsigned ap_uint
 - Templatized class ap_int<W> or ap_uint<W>
 - W is the user-specified bitwidth
 - Two’s complement representation for signed integer

```c
#include “ap_int.h”
...
ap_int<9> x; // 9-bit
ap_uint<24> y; // 24-bit unsigned
ap_uint<512> z; // 512-bit unsigned
```
Representing Fractional Numbers

- Binary representation can also represent fractional numbers, usually called fixed-point numbers, by simply extending the pattern to include negative exponents.
 - Less convenient to use compared to floating-point types.
 - Efficient and cheap in application-specific hardware.

\[
\begin{array}{ccccccc}
2^3 & 2^2 & 2^1 & 2^0 & 2^{-1} & 2^{-2} & \text{unsigned} \\
1 & 0 & 1 & 1 & 0 & 1 & = 11.25 \\
\end{array}
\]

Binary point

\[
\begin{array}{ccccccc}
\text{2’c} & \\
1 & 0 & 1 & 1 & 0 & 1 & = ? \\
\end{array}
\]
Overflow and Underflow

- **Overflow** occurs when a number is larger than the largest number that can be represented in a given number of bits.

<table>
<thead>
<tr>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>2^-1</th>
<th>2^-2</th>
<th>unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$=11.25$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>$=11.25$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>$=11.25$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>$=3.25$</td>
</tr>
</tbody>
</table>

 Drop MSB

- **Underflow** occurs when a number is smaller than the smallest number that can be represented.
Handling Overflow/Underflow

- One common (& efficient) way of handling overflow / underflow is to drop the most significant bits (MSBs) of the original number, often called *wrapping*

<table>
<thead>
<tr>
<th></th>
<th>-2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>2^-1</th>
<th>2^-2</th>
<th>2’c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>= -4.75</td>
</tr>
</tbody>
</table>

Reduce integer width by 1
Wrap if overflows

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>= ?</td>
<td></td>
</tr>
</tbody>
</table>

Wrapping can cause a negative number to become positive, or a positive to negative
Fixed-Point Type in Vivado HLS

- Arbitrary precision fixed-point type
 - Signed: `ap_fixed`; Unsigned `ap_ufixed`
 - Templatized class `ap_fixed<W, I, Q, O>`
 - W: total word length
 - I: integer word length
 - Q: quantization mode
 - O: overflow mode
Example: Fixed-Point Modeling

- `ap_ufixed<11, 8, AP_TRN, AP_WRAP> x;`

- **MSB**
 - `b_7` ...
 - `b_1`
 - `b_0` ...
 - `b_3`

- **LSB**
 - *binary point*

 - 11 is the total number of bits in the type
 - 8 bits to the left of the decimal point
 - AP_TRN defines *truncation* behavior for quantization
 - AP_WRAP defines *wrapping* behavior for overflow
Fixed-Point Type: Overflow Behavior

- **ap_fixed overflow mode**
 - Determines the behavior of the fixed point type when the result of an operation generates more precision in the **MSBs** than is available

```cpp
ap_fixed<W, IW_X> x;
ap_fixed<W, IW_Y> y = x; /* IW_Y < IW_X */
```

Default: AP_WRAP (wrapping mode)
AP_SAT (saturation mode)
Fixed-Point Type: Quantization Behavior

- **ap_fixed quantization mode**
 - Determines the behavior of the fixed point type when the result of an operation generates more precision in the **LSBs** than is available.
 - Default mode: **AP_TRN** (truncation)
 - Other rounding modes: **AP_RND**, **AP_RND_ZERO**, **AP_RND_INF**, ...

```
ap_fixed<4, 2, AP_TRN>  x = 1.25;   (b’01.01)
ap_fixed<3, 2, AP_TRN>  y = x;     → 1.0   (b’01.0)
```

```
ap_fixed<4, 2, AP_TRN>  x = -1.25;  (b’10.11)
ap_fixed<3, 2, AP_TRN>  y = x;     → -1.5  (b’10.1)
```
E-D-A Revisited

- **Exponential**
 - in complexity (or *Extreme scale*)

- **Diverse**
 - increasing system heterogeneity
 - multi-disciplinary

- **Algorithmic**
 - intrinsically computational
Analysis of Algorithms

- Need a systematic way to compare two algorithms
 - Runtime is often the most common criterion used
 - Space (memory) usage is also important in most cases
 - But difficult to compare in practice since algorithms may be implemented in different machines, use different languages, etc.
 - Additionally, runtime is usually input-dependent.

- big-O notation is widely used for asymptotic analysis
 - Complexity is represented with respect to some natural & abstract measure of the problem size n
Big-O Notation

- Express runtime as a function of input size n
 - Runtime $F(n)$ is of order $G(n)$, written as $F(n) = O(G(n))$ when
 - $\exists n_0, \forall n \geq n_0, F(n) \leq KG(n)$ for some constant K
 - F will not grow larger than G by more than a constant factor
 - G is often called an “**upper bound**” for F

- Interested in the worst-case input & the growth rate for large input size
How to determine the order of a function?
- Ignore lower order terms
- Ignore multiplicative constants

Examples:
3n^2 + 6n + 2.7 is O(n^2)
n^{1.1} + 10000000000n is O(n^{1.1}), n^{1.1} is also O(n^2)

n! > C^n > n^c > \log n > \log \log n > C
\Rightarrow n > \log n, \ n \log n > n, \ n! > n^{10}.

What do asymptotic notations mean in practice?
- If algorithm A is O(n^2) and algorithm B is O(n \log n),
 we usually say algorithm B is **more scalable**.
Asymptotic Notions

» **big-Omega** notation \(F(n) = \Omega(G(n)) \)

 - \(\exists n_0, \forall n \geq n_0, F(n) \geq Kg(n) \) for some constant \(K \)

 \(G \) is called a "lower bound" for \(F \)

» **big-Theta** notation \(F(n) = \Theta(G(n)) \)

 - if \(G \) is both an upper and lower bound for \(F \)

 - Describes the growth of a function more accurately than \(O(\ldots) \) or \(\Omega(\ldots) \)

 - Examples:

 4\(n^2 \) + 1024 = \(\Theta(n^2) \)

 \(n^3 \) + 4\(n \) ≠ \(\Theta(n^2) \)
Exponential Growth

- Consider 2^n, value doubled when n is increased by 1

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>1ns (/op) x 2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10^3</td>
<td>1 us</td>
</tr>
<tr>
<td>20</td>
<td>10^6</td>
<td>1 ms</td>
</tr>
<tr>
<td>30</td>
<td>10^9</td>
<td>1 s</td>
</tr>
<tr>
<td>40</td>
<td>10^{12}</td>
<td>16.7 mins</td>
</tr>
<tr>
<td>50</td>
<td>10^{15}</td>
<td>11.6 years</td>
</tr>
<tr>
<td>60</td>
<td>10^{18}</td>
<td>31.7 years</td>
</tr>
<tr>
<td>70</td>
<td>10^{21}</td>
<td>31710 years</td>
</tr>
</tbody>
</table>
NP-Complete

- The class **NP-complete** (NPC) is the set of decision problems which we “believe” there is no polynomial time algorithms (hardest problem in NP)

- **NP-hard** is another class of problems, which are at least as hard as the problems in NPC (also containing NPC)

- If we know a problem is in NPC or NP-hard, there is (very) little hope to solve it exactly in an efficient way
How to Identify an NP-Complete Problem

- I can’t find an efficient algorithm, I guess I’m just too dumb.

- I can’t find an efficient algorithm, because no such algorithm is possible.

- I can’t find an efficient algorithm, but neither can all these famous people.

[source: Computers and Intractibility by Garey and Johnson]
Showing a problem P is not easier than a problem Q

- Formal steps:
 - Given an instance q of problem Q,
 - there is a polynomial-time transformation to an instance p of P
 - q is a “yes” instance iff p is a “yes” instance

- Informally, if P can be solved efficiently, we can solve Q efficiently (Q is reduced to P)
 - P is polynomial time solvable \rightarrow Q is polynomial time solvable
 - Q is not polynomial time solvable \rightarrow P is not polynomial time solvable

Example:
- Problem A: Sort n numbers
- Problem B: Given n numbers, find the median
Most of the nontrivial EDA problems are intractable (NP-complete or NP-hard)
- Best-known algorithm complexities that grow exponentially with n, e.g., $O(n!)$, $O(n^n)$, and $O(2^n)$.
- No known algorithms can ensure, in a time-efficient manner, globally optimal solution

Heuristic algorithms are used to find near-optimal solutions
- Be content with a “reasonably good” solution
Many Algorithm Design Techniques

- There can be many different algorithms to solve the same problem
 - Exhaustive search
 - Divide and conquer
 - Greedy
 - Dynamic programming
 - Network flow
 - ILP
 - Simulated annealing
 - Evolutionary algorithms
 - ...
Types of Algorithms

- There are many ways to categorize different types of algorithms
 - Polynomial vs. Exponential, in terms of computational effort
 - Optimal (exact) vs. Heuristic, in terms of solution quality
 - Deterministic vs. Stochastic, in terms of decision making
 - Constructive vs. Iterative, in terms of structure
 ...

34
Broader List of Algorithms

- Combinatorial algorithms
 - Graph algorithms
 ...
- Computational mathematics
 - Optimization algorithms
 - Numerical algorithms
 ...
- Computational science
 - Bioinformatics
 - Linguistics
 - Statistics
 ...
- Information theory & signal processing
- Many more …

Next Class

- Graph algorithms
 - Timing analysis
 - BDDs
Acknowledgements

- These slides contain/adapt materials from / developed by
 - Prof. David Pan (UT Austin)
 - “VLSI Physical Design: From Graph Partitioning to Timing Closure” authored by Prof. Andrew B. Kahng, Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu