
USINGCACHE MEMORYTOREDUCEPROCESSOR-MEMORYTRAFFIC

James R. Goodman

Department of Computer Sciences
University of Wixconsm-Madison

Madlson, WI 53706

ABSTRACT-The importance of reducing processor-
memory bandwidth is recognized in two distinct situa-
tions: single board computer systems and microproces-
sors of the future. Cache memory is investigated as a
way to reduce the memory-processor traffic. We show
that traditional caches which depend heavily on spatial
locality (look-ahead) for their performance are inap-
propriate in these environments because they generate
large bursts of bus traffic. A cache exploiting primarily
temporal locality (look-behind) is then propostd and
demonstrated to be effective in an environment where
process switches are Infrequent. We argue that such an
environment is possible if the traffic to backing store is
small enough that many processors can share a common
memory and if the cache data consistency pmblem is
solved. We demonstrate that such a cache can indeed
reduce traffic to memory greatly, and introduce ?.I-
elegant solution to the cache coherency problem.

l. introduction
Because there are straightforward ways to con-

struct powerful. cost-effective systems using random
acoess memories and single-chip microprocessors, sem-
iconductor technology has, until now, had the greatest
impact through these components. High-performance
processors, however. are still beyond the capability of a
single-chip implementation and are not easily parti-
tioned in a way which can effectively exploit the technol-
ogy and economics of VLSI. An interesting phenomenon
has occurred in the previous decade as a result of this
disparity. Memory costs have dropped radically and con-
sistently for computer systems of all sizes. While the
component cost of a CPU (single-chip implementations
excluded) has declined significantly over the same
period. the reduction has been less dramatic. A result is
that the amount of memory thought to be appropriate
for a given speed processor has grown dramatically in
recent years. Today small minicomputers have memory
as large ax that of the most expensive machines of a
decade ago.

Permission to copy without fee all or pan of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright nooce and the title of the
publication and its dare appear, and notice is given that copying is by
pcrmlssion of the Association for Computmg Machinery. To copy
othennse, or to republish, rcqmrcs a fee and/or specific permission.

The impact of VLSI has been very different in
microprocessor applications. Here memory is still
regarded as an expensive component in the system, and
those familiar primarily with a minicomputer or main-
frame environment are often scornful of the trouble to
which microprocessor users go to conserve memory.
The reason. of course, ix that even the small memory in a
microprocessor is a much larger portion of the total sys-
tem cost than the much larger memory on a typical
main frame system. This results from the fact that
memory and processors are implemented in the same
technology.

1.1. ASuper CPU
With the advances to VLSI occurring now and con-

tinuing over the next few years, it will become possible
to fabricate circuits that are one to two orders of magni-
tude more complex than currently available micropro-
cessors. It will soon be possible to fabricate en
extremely high-performance CPU on a single chip, If the
entire chip is devoted to the CPU. however, it is not a
good idea. Extrapolating historical trends to predict
future component densities. we might expect that within
a few years we should be able to purchase a single-chip
processor containing at least ten times ax many transis-
tors ax occur in, say, the MCBBOOO. For the empirical
rule known ax Crosch’s law [Crosch53]. P = k C 0, where
P is some measure of performance, C ix the cost, and k
and g are constants. Knight[Knight66] concluded that g
is at least 2. and Solomon[Solomon66] has suggested
that gal.47. For the IBM System/370 family, Siewiorek
determined that gal.6 [Siewiorek62]. While Crosch’s law
breaks down in the comparison of processors using
different technology or architectures, it is realistic for
predicting improvements within a single technology.
Sieniorek in fact suggests that it holds “by detlnition.”

Assuming g = 1.5 and using processor-memory
bandwidth as our measure of performance. Grosch’s law
predicts that a processor containing 10 times as many
transistors ax a current microprocessor would require
30 times the memory bandwidth.’ The Motorola MC66000.
running at 10 MHz. accesses data from memory at a
maximum rate of 5 million bytes per second, using more
than half its pins to achieve this rate. Although packag-
ing technology is rapidly increasing the pins available to
a chip, it is unlikely that the increase will be 30-fold (the
66000 has 64 pins). We would suggest a factor of two is
realistic. Although some techniques are clearly possible
to increase the transfer rate into and out of the 66000.
supplying such a processor with data as fast as needed is
a severe constraint. One of the designers of the 66000.
has stated that all modern microprocessors - the 66000

‘Thin is a comervative estimate, 1x1 fact. became it ugmres
predictable decreases m gate delays.

0 1983 ACM 0149-7111/83/0600/0124$01.00

255

included - are already bus-limited [TredennicktZ].

1.2. On-chip Memory
One alternative for increased performance without

proportionately increasing processor-memory bandwidth
is to introduce memory on the same chip with the CPU.
With the ability to fabricate chips containing one to two
million transistors. it should be possible - using only a
portion of the chip - to build a processor significantly
more powerful than any currently available single-chip
CPU. While devoting the entire chip to the CPU could
result in a still more powerful processor, introducing
on-chip memory offers a reduction in memory access
time due to the inherently smaller delays as compared
to inter-chip data transfers. If most accesses were on-
chip, it might actually perform as fast as the more
powerful processor.

Ideally, the chip should contain as much memory as
the processor “needs” for main storage. Conventional
wisdom today says that a processor of the speed of
current microprocessors needs at least l/4 megabytes
of memory [Llndsay81]. This is certainlv more than is
feasible on-chip. though a high perform&ice processor
could probably use substantially more than that. Clearly
all the primary memory for the processor cannot be
placed on the same chip with a powerful CPU. What is
needed is the top element of a memory hierarchy.

1.3. Cache Memory
The use of cache memory, however, has often aggra-

vated the bandwidth problem rather than reduce it.
Smith [SmithfZ] says that optimizing the design has four
general aspects:
(1) maximizing the hit ratio.
(2) minimizing the access time to data in the cache,
(3) minimizing the delay due to a miss, and
(4) minimizing the overheads of updating main

memory. maintaining multicache consistency, etc.
The result is often a larger burst bandwidth requirement
from main storage to the cache than would be necessary
without a cache. For example. the cache on the IBM Sys-
tem/370 model 166. is capable of receiving data from,
main memory at a rate of 100 megabytes per second
[IBM76]. It supplies data to the CPU at less than l/3’
that rate. The reason is that to exploit the spatial local-
ity in memory references. the data transferred from
backing store into the cache is fetched in large blocks,
resulting in requirements of very high bandwidth bursts
of data. We have measured the average bandwidth on an
IBM System/370 model 155. and concluded that the over-
age backing-store-to-cache traffic is less than the
cache-to-CPU traffic.

The design of cache memory for mini-computers
demanded greater concern for bus bandwidth. The
designers of the PDP-11 models 60 and 70 clearly recog-
nized that small block sizes were necessary to keep main
memory traffic to a minimum [Bell7B].

Lowering the bandwidth from backing store to the
cache can be accomplished in one of two ways:

(1) small blocks of data are brought from backing
store to the cache, or

(2) long delays occur while a block is being brought
in, independent of (and in addition to) the ac-
cess time of the backing store.

While it is possible to bring in the word requested ini-
tially (read through). thus reducing the wait on a given
reference, the low bandwidth memory interface will
remain busy iong after the initial transfer is completed,
resulting in long delays if a second backing storage

operation is required.
We therefore have explored the effectiveness of a

cache which exploits primarily or exclusively temporal
locality, i.e., the blocks fetched from backing store are
only the size needed by the CPU (or possibly slightly
larger). In considering ways to evaluate this strategy, we
identified a commercial environment that contained
many of the same constraints and seemed amenable to
the same kinds of solutions. This environment is the
marketplace of the single-board computer running on a
standard bus such as Multibus or Ver3abus.s We have
chosen to study this environment in an attempt to gain
insight into the original, general scheme.

2. The Single Board Computer Application
A single board computer typically contains a

microprocessor and a substantial amount of memory,
though small enough that it must be used carefully. If
needed, access to additional random access memory is
through the bus, which is designed for generality and
simplicity, not for high performance. Multibus. in partic-
ular. was defined in the early 70’3 to offer an inexpensive
means of communication among a variety of sub-
svstems. Although originally introduced by Intel Cor-
poration. it has found wide acceptance, having been pro-
posed - in a slightly motied form - as the IEEE P798
bus standard [IEEEBO]. Currently, several hundred ven-
dors offer Multibus-compatible cards.

While the market has rapidly developed for products
using this bus, its applications are limited by the severe
constraint imposed by the bandwidth of Multibus.
Clearly the bus bandwidth could be increased by increas-
ing the number of pins. and by modifying the protocol.
Its broad popularity and the availability of components
to implement its protocol mean. however, that it is likely
to survive many years in its present form. Thus a large
market exists for a computer-on-n-card which. much as
ii it were all on a single chip, has severe limitations on
its communications with the rest of the system.

We decided to determine if a cache memory system
could be implemented effectively in the Multibus
environment. To that end we have designed a cache to
be used with a current-generation microprocessor. In
addition, we have done extensive simulation of cache
performance. driven by memory trace data. We have
identitid a new component which is particularly suited
for VLSI implementation and have demonstrated its
feasibilitv bv desinninn it rRavishankar831. This com-
ponent. -which implements the tag memory for a
dynamic RAM cache intended for a microprocessor. is
similar in many respects to the recently announced TMS
2150 [TI82].

Multibus systems have generally dealt with the prob-
lem of limited bus bandwidth by removing most of the
processor-memory accesses from the bus. Each proces-
sor card has its own local memory, which may be
addressable to others through the Multibus. While this
approach has much in common with ours, we believe that
the allocation of memory - local or remote - should be
handled by the system, freeing the programmer of this
task. In typical Multibus applications. considerable
effort is expended guaranteeing that the program run-
ning is primarily resident on-board. This approach is
viable for a static partitioning of tasks. Results to date
have been much less satisfactory, however, for the more
general situation where a number of processors are
dynamically allocated. (For efficiency reasons it also
precludes the use of shared code segments).

PUultibw II a trademark of line1 Corporation.

256

In many environments, a simrle dynamic hardware
allocation scheme can efficienlls, determme what
memory locations are bemg accessed frequently and
should therefore be kept in local memory - better than
the programmer who often has little insight into the
dynamic characteristtcs of his program. There are
environments where the programmer is intimately fami-
liar with the behavior of his program and can generate
code to take advantage of it. In this environment the
time spent running a program is often much more sub-
stantial than the time developmg the program. This
explains, for example, why an invisible cache is not
appropriate on the CRAY-1. We believe that freeing the
programmer from concern about memory allocation is
essential where programmer productivity is critical.

2.1. A Sngle-Board Computer with Cache
To evaluate our approach. we proposed a single-

board computer containing, (possibly along with other
things) a CPU and no local memory except a cache, with
backing store provided through Multibus. Thus we
picked an important problem in its own right: Can we
build a cache that works with a Multibus system support-
ing multiple processors? In particular, how many pro-
cessors can we support running in parallel on Multibus?
We believe that a system which could reasonably support
five to 10 processors would be a significant advance. This
can’t be compared directly against current systems
because a single processor overloads the Multibus. Thus
local memories must be heavily exploited if performance
is important.

Earlier analyses [Kaplan73. Be1174. Rao76. Pate1621
have used the cache hit ratio or something closely
related to measure performance. The important cri-
terion here is to maximize use of the bus, not the hit
ratio, or even necessarily to optimize processor perfor-
mance. We optimize system performance by optimizing
bus utilization, achieving higher performance by minim-
izing individual processors’ bus requirements, and
thereby supporting more processors reasonably well. We
allow individual processors to sit idle periodically rather
than tie up the bus fetching data which they might not
use. This implies that the cache stale data problem
must be solved effectively. We present a new solution in
section 3.

2.2. 3witchi.ng contexts
Where bus bandwidth is limited, a task switch is a

major disturbance. since the cache must effectively be
reloaded at this time. The processor is momentarily
reduced to accesses at the rate at which the bus can
supply them. While this problem seems unavoidable. it
need not be serious if task switching is minimized. We
are providing an environment which allows many proces-
sors to work out of a single monolithic memory in paral-
lel. If more parallel tasks are required. more processors
can be used. We point out that the current Multibus
alternative is to move the program into local memory,
an operation which also swamps the bus. The task switch
merely makes this operation implicit, and avoids bring-
ing across the bus data which are never actually used.
Writing the old data out is also no worse than the alterna-
tive, since we only write that which has been changed
end which has not been already purged.

There may be certain cases - an interrupt handling
program. for example - where a particular program
does not flush the cache. but uses only a small portion of
it. Provisions could be made to allow such a program to
be locked in the cache. Alternatively, a separate cache
might be provided for such a program Our studies indi-
cate that a relatively small cache can be effective for a
single program, so it may be possible to keep separate
caches around for individual processes if the number is

small. We would sugg,..,. L ~mg tnis one step further and
providing an additional processor for each cache. An
interesting question then arises as to the cost of dynaml-
tally assignmg processes to processors. Our proposal
allows this assignment. though ciearly at some perfor-
mance penalty.

3. Cache Coherency
It is well-known that multiple caches present serious

problems because of the redundancy of storage of a sin-
gle logical memory location [Tang76. Censier76. Rao76].
The most common method among commercial products
for dealing with this, the stale data problem, is to create
a special, high-speed bus on vrhi?h addresses are sent
whenever a write operation is performed by any proces-
sor. This solution has weaknesses [Censier76] which
have generally limited commercial implementations to
two processors. In the single-chip processor or single-
board computer environments, it has the added weak-
ness that it requires a number of extra I/O pins.

An alternative approach, implemented in Cmmp
[Hoogendoorn77] and proposed by Norton [Norton82]. is
to require the operating system to recognize when incon-
sistencies might occur and take steps to prevent them
under those circumstances. This solution is unappealing
because the cache is normally regarded as an
architecture-independent feature, invisible to the
software.

A third approach, variations of which have been pro-
posed by Censier and Feautrier [Censier76]. Tang
[Tang76]. Widdoes [Widdoes79]. and Yen and Fu [YenBZ].
is to use some form of tagged main memory, keeping
track of individual blocks in this way to prevent incon-
sistency. Individual blocks are temporarily designated
as private for a particular processor so that it may
modify it repeatedly without reference to main memory.
The tag must be set whenever such a critical section is
entered and reset whenever the critical section is left,
i.e., the modified word is written back to main storage.
This approach requires substantial hardware. and
appears infeasible for a large number of caches. since an
operation in a central place is required at the entry or
exit of any critical section.

Our approach has much in common with the third
approach, but allows the critical section information to
be distributed among the caches, where it already
resides. In addition, we use the normal read and write
operations, with no tag bits in main memory. to accom-
plish the synchronization. A related scheme [Amdahll32]
which uses a special bus to convey the notice of entry or
exit from a critical section, has been implemented in a
commercial product, hut has not been published to our
knowledge. We call our scheme write-once.

3.1. Write-Through or Write-%ck?
While the choice between wri&-through (also known

as store-through) and write-back (also known as store-
back or copy-back) has no bearing on the read hit ratio.
it has a major impact on bus traffic. particularly as the
hit ratio approaches 100X. In the limit. when the hit
ratio is 1009.. write-back results in no bus traffic at all,
while write-through requires at least one bus cycle for
each write operation. Norton [Norton621 concluded that
using write-back instead of write-through for a hypothet-
ical processor typically would reduce the bus traffic by
more than 509. and if the processes ran to completion
bus traffic would be decreased by a factor of 8. For typi-
cal read-to-write and hit ratios and when task switching
is infrequent, our simulations have given strong evidence
that write-back generates substantially less bus traffic
than write-through.

257

But write-back has more severe coherency prob-
lems than write-through, since even main memory does
not always contain the current version of a particular
memory location.

3.2. ANew Write Strategy: Write4nce
We propose a new write strategy which solves the

stale data problem and produces minimal bus traffic.
The replacement technique requires the following struc-
ture. Associated with each block in the cache are two
bits deflning one of four states for the associated data:
lnudid There is no data in the block.
Valid There is data in the block which has been read

from backing store and has not been modifled.
RssaruedThe data in the block has been locally modified

exactly once since it was brought into the
cache and the change has been transmitted to
backing store.

MY The data in the block has been locally modified
more than once since it was brought into the
cache and the latest change has not been
transmitted to backing store.

Write-once requires rapid access to the address tags
and state bit pairs concurrently with accesses to the
address tags by the CPU. This can most easily be
achieved by creating two (identical) copies of the tag
memory. Censier [Censier78] claims that duplication is
“the usual way out” for resolving collisions between
cache invalidation requests and normal cache refer-
ences. This is not a large cost, since a single chip design
of this part of the cache - using present technology - is
quite feasible. Further, we have discovered a way to
reduce substantially the number of tags required. In
addition. the same chip type could be used for both
instances. This is a natural way to partition the cache in
VLSI because it results in a maximal logic-to-pin ratio.
We have designed and submitted for fabrication such a
chip [Ravishankar63].

The two copies always contain exactly the same
address data, because they are always written simul-
taneously. While one unit is used in the conventional way
to support accesses by the CPU, a second monitors all
accesses to memory via the Multibus. For each such
operation, it checks for the address in the local cache. If
a match is found on a write operation, it notifies the
cache controller. and the appropriate block in the cache
is marked invalid. If a match is found on a read opera-
tion, nothing is done unless the block has been modified.
i.e., its state is reserved or dirty. If it is just reserved,
the state is changed to valid. If it is dirty, the local sys-
tems inhibits the backing store from supplying the data.
It then supplies the data itself.’ On the same bus access
or immediately following it, the data must be written to
backing store. In addition, for either reserved or dirty
data, the state is changed to waiti.

This scheme achieves coherency in the following
way. Initially write-through is employed. However. an
additional goal is achieved upon writing. All other caches
are purged of the block being written, so the cache writ-
ing through the bus now is guaranteed the only copy
except for backing store. It is so identified by being
marked reserved. If it is purged at this point, no write is
necessary to backing store, so this is essentially write-
through. If another write occurs, the block is marked
dirty. Now write-back is employed and, on purging, the
data must be rewritten to backing store.

‘There 13 k mechanism in Multibus rhxh allows tia capability.
Unfortunately. >t 19 rarely used. not well-defined. and regmres that local
caches respond very rapidly. Versabus hlu a much cleaner mechamrm
by rhxh thn end CM oe accomplished.

Write-once has the desirable feature that units
accessing backing store need not have a cache. and need
not know whether others do or not. A cache is responsi-
ble for matntaining consistency exactly for those cases
where it might create a violation, i.e.. whenever it writes
to a location. Thus it is possible to mix in an arbitrary
way systems which employ a cache and those which do
not: the latter would probably be I/O devices. Consider-
able care must be exercised, however, when a write
operation over the bus modifies less than an entire
block.

4. Smuiation
We designed a cache memory system to work on

Multibus. To validate our design before building it we did
extensive simulation using memory trace data. To date
we have performed extensive simulations for six traces,
all running under UNIX?

EIJC

ROFFAS
TRACE

NROF’F

CACHE

COMPACT

The UNIX editor ed running a script.
The old UNIX text processor program rofl.
The program. written in assembly
language. which generated the above
traces for the PDP-11.
The program nrofl interpreting the
Berkeley macro package me.
The trace-driven cache simulator pro-
gram.
A program using an on-line algorithm
which compresses files usmg an adaptive
Huffman code.

The Arst three traces are for a PDP-11. while the latter
three are for a VAX. While the PDP-11 does not run on
Multibus. its instruction set is similar to many micropro-
cessors which do. and the programs used for tracing
were of the kind we envision for such a system. The
PDP-11 is similar in many ways to the MCBBOOO, and has
in common with the 6066 a limited addressing capability.

While the VAX also does not run on Multibus. it is an
example of a modern instruction set and, therefore is a
reasonable example of the kind of processor likely to
appear in a single-chip CPU in the future. It also has a
larger address space which, as shown in section 4.3, is
significant. We are actually using virtual addresses. but
all of the programs we ran are small enough to At into
main memory. Since we are tracing only a single pro-
cess, we conclude that there is no sign&cant difference
between virtual and real addresses.

In addition to cache parameters. miss ratios vary
greatly depending on the program running. For the each
of the above traces, a wide and unpredictable variation
occurred as we varied a single parameter. Thus plotting
parameters for the individual traces was often not
enlightening. Averaging over the three traces in each
category gave much more revealing results, providing
data that suggested a continuous function for many of
the variables studied. Thus all our results are actually
the average of three programs, each running alone.

4.1. Effect of Write Strategy on Bus Treffic fl&
Although write-through normally generates le& bus

traffic than write-back. the latter can be worse if the hit
ratio is low and the block size is large. Under write-
back, when a dirty block is purged, the entire block
must be written out. With write-through, only that por-
tion which was modified must be written. We found that
write-back is decisively superior to write-through except
(1) when cache blocks are very large, or (2) when the
cache size IS very small.

YJNM and NEIOFF are trademarks of Bell Lsboratones.

258

Write-once results in bus traffic roughly equal to the
better of the two. We have found cache parameters for
which it actually performs better on the average than
either write-through or write-back for a number of pro-
grams. This was a surprising result, since write-once was
developed to assure coherency, not to minimize bus
traffic. The replacement scheme outperforms both
write-through and write-back whenever the total number
of sets is about 16. For example, for a 4-way set associa-
tive, 2048-byte cache with a block size of 32 bytes. the
average bus traffic for three PDP-11 programs for which
we have traces was 30.766% for write-through, 17.55% for
write-back, and 17.38% for write-once.

4.2. Cold Start vs. Warm Start
An important consideration in determining cache

hit ratio and bus traffic is the cold start period known as
the lifatima function [Easton76]. during which time
many misses occur because the cache is empty. Thin is
defined as the period until as many cache misses have
occurred as the total number of blocks in the cache.
This initial burst of misses is amortized over all accesses,
so the longer the trace analyzed. the lower the miss ratio
obtained. In addition to the initiation of a program and
occasional switches of environments, a cold start gen-
erally occurs whenever there is a task switch. Thus en
important assumption in traditional cache evaluation is
the frequency of task switching. We have argued that
task switching must be very infrequent in our system.
Thus we can more nearly approach in practice the warm
start hit ratios, and thus it is appropriate to use very
long traces of a single program. and assume a warm
start. We did that initially, using the full length of the
PDP-11 traces available to us (1.256570 memory
accesses). We noted, however, that for even much
shorter traces than we were running, there was little
difference between warm start and cold start statistics.
Since cold start statistics are easier to generate. we nor-
mally used them. Unless stated otherwise, our results
are from cold start, but at least 10 times the lifetime
function in total length.

4.3. Cache Size
In general. we were surprised at the effectiveness of

a small cache. For the PIJP-11 traces with a cache of 2K
bytes or larger. we discovered that essentially no misses
occurred after the cold start period. These are not
trivial programs. but were run on a machine which has
only 64K bytes for both instructions and data. The pro-
grams are very frugal in their use of memory, and the
entire working set apparently can fit in the cache.

The VAX traces do not exhibit the same locality
observed with the PDP-11. and a 64K-byte cache was not
large enough to contain the entire working set of the
program. This may be a result of the larger address
space available, the more complex instruction set. or
more complex programs. In all cases the programs were
spread out over a much larger memory space than for
the PDP-11 traces. For this comparison we used a small
block size of 4 bytes. This may have had a greater
impact on the VAX than on PDP-11 traces.

We found that reducing the size of the cache (below
4K bytes for the PDP-11) increased the miss ratio and
the bus trafGc - in general the two correlate well with
respect to this parameter. Fig. 1 shows the average miss
ratio and bus traffic as a function of total cache size for
the PDP-11 traces. For this and all results given. the
miss ratio includes writes. Tbe bus traffic is given as a
percent of the number of accesses that would be
required if no cache were present. Fig. 2 shows the same
data for the VAX traces.

4.4. Block Size
Our cache design incorporates extremeiy small

blocks. depending heavily on temporal locality. Easton
and Fagin [Easton claim that page size and miss
ratios are independent for warm start, but highly depen-
dent for cold start. If true. this can be explained by the
observation that hits in the cache on cold start depend
heavily on spatial locality, while temporal locality pro-
vides many hits when it is warm. Spatial locality. bow-
ever, is strongly correlated to block size. being directly
proportional in the extreme case of strictly sequential
memory accesses. Our simulation9 partially conArm
Easton’s observation. In particular. we found that. as
block size 1s increased, miss ratios generally decline up
to a point. then increase for either warm or cold starts.
However, for small block sizes. the warm start miss ratio
is marginally lower than for the cold start case. while for
large block sizes, the two numbers are nearly identical.
See 6gs. 3-7. This is encouraging since we have argued
for restricted task switches: our environment is more
that of a warm start than is the traditional environment.
In many simulations we were able to get very high hit
ratios once the cold start period ended. For small
blocks transferred, however, this period (the lifetime
function) is longer. Our simulations show very clearly
that reducing the block size down to a single transfer
across the bus dramatically decreases the hit ratio, par-
ticularly for cold starts, but also decreases bus traffic
significantly. In general, we observed that increasing the
transfer block size from one bus cycle to two typically
decreases the miss ratio by 30 to 50X. while increasing
the bus trafXlc by 10 to 20X. This relation holds for the
first two doublings. These results, e.g., fig. 3. are rela-
tively more pessimistic for small block sizes than those
reported by Strecker in [Bell76].

We have made the assumption that access time is
related linearly to block size. In many cases this is not
true. It is essentially true for the Multibus. since only
two bytes can be fetched at a time. and arbitration is
overlapped with bus operations. For a single-chip imple-
mentation, it would almost certainly be worthwhile to
provide the capability for efficient multiple transfers
over a set of wires into the processor. This has not been
incorporated in our analysis. but will undoubtedly sug-
gest a somewhat larger transfer block size.
4.4.1. Lowering the Overhead of Small Woeka

Small blocks are costly in that they greatly increase
the overhead of the cache: an address tag and the two
state hits are normally stored in the cache for each
block transferred. We reduced this overhead by splitting
the notion of block into two parts:

(1)

(2)

The frunsfer block is the amount of data transferred
from backing store into the cache on a read miss.
The address block is the quantum of storage for
which a tag is maintained in the cache. It is ahrays
a power of two larger than a transfer block. An
effective cache can be implemented by keeping the
transfer block small but making the address block
larger.
For most commercial products containing a cache,

the address block size is the same as the transfer block
size. though we know of one example [IBM741 where the
address block contained two transfer blocks. The IBM
System/360 Model 65 [LiptaySfl] in fact is a special case
of this, viz.. a direct-mapped cache, where the Model 85
“sector,” consisting of 1K bytes, corresponds to our
address block. Each sector contains 16 transfer blocks.
which were called simply “blocks.”

4.4.2. The Effect of large Address Bboks
The use of address blocks larger than transfer

blocks means that only data from one address block in

259

backing store can occupy any of the tlocks making up
an address block Ln the cache. There are cases where
the appropriate transfer block is empty. but other
transfer blocks m the same address block must be
purged so that the new address block can be allocated.
We examined this for various sizes of address blocks and
found that the miss ratio increased very slowly up to a
point. For the situation shown in 5g. 7. the miss ratio
had only risen by about 30X when the address block con-
tamed 64 bytes for the PDP-11 traces. That pomt was
reached for the VAX traces when it contained 32byte
address blocks.

We predicted that the bus tratlic would correlate
well with miss ratio with respect to this parameter. To
our surprise. the bus traffic actually declined initially as
we increased the address block size. The decline was
small. but consistent for the PDP-11 trace tapes, eventu-
ally climbing over the base line when the address block
was 16 or 32 transfer blocks. The phenomenon was
smaller, but discermble for the VAX traces as well.
though in all cases the bus tra5ic started increasing
sooner. This situation is shown in 5g. 6.

We initially suspected that our simulation might be
faulty. That was not the case. and eventually we were
able to explain it and verify it. The nmte-once algorithm
requires a bus operation whenever a block is modided
initially (set to rereruod.) However, reservations could be
made on the basm of either transfer blocks or address
blocks. We had put the choice into the simulator, but
had not experimented with it. reserving at the address
block level. This in fact reduces the number of bus
writes necessary for reservation because of spatial local-
ity of writes: an address block already rsseruad need
only be marked ditty when any transfer block within it is
modi5ed. This would seem to increase greatly the traffic
w&never the block is purged from the cache, but in fact
the edect is small: only those transfer blocks which have
actually been modided need be written back.

WS demonstrated that this was indeed responsible
for the behavior noted by changing the reservations to
the transfer block leveL The simulation results then
exhibited the originally predicted behavior. correlating
clorely with the murs ratio.

We conclude that minimum bus traffic is generated
with minimum transfer block sizes. The miss ratio may
be substantially improved by using slightly larger
transfer blocks. in which case bus traffic does not
increase greatly. Using larger address blocks reduces
the cost of the tag memory considerably. It initially has
only a minor effect on miss ratio. which is more than
offset by the savings in writes due to the more efficient
reservation of modi5ed blocks

4.6. Other Dee&n Aspecte Studied

4.S. 1. Write Allocation
Write allocation. also known as retch on 40.

means that a block is allocated in the cache on a write
miss as well as on a read miss. While it seems natural for
write-back, it typically is not used with write-through. It
is essential for write-once to assure coherency. Our
early simulations showed that it was highly desirable for
write-back and write-once, and superior even for’write-
through with small blocks. This was true using both the
measures of miss ratio and bus tra5ic. In all results
presented. write allocation was employed.

4.52. Asaociativity
We ran a number of simulations varymg the associa-

tivity ail the way from direct mapped to fully associative.
While this is clearly an important parameter, we have lit-
tle new to report. i.e.. fully associative cache is the best,

but 2-way set associative is not much worse, and 4-way
set associative is somewhere in between.
[Smith63]). We had hoped to find that a high i!$iee’Bd;
assoclativity would improve performance. because such
an organization is much more feasible in the VLSI
domain. but results were negative. For results reported
here we have assumed a 4-way, set associative cache.

4.63. Replacement Algorithm
Replacement strategy has been the subject of

another study using the same simulator and- traces
fSmith631. In order to limit its significance. which seems
50 be orihogonal to the issues- raised here, we have
assumed true LRLJ replacement among the elements of
each set in all cases.

4.6.4. Due wdth

The width of the data paths between units is an
important parameter in that it is closely related to
bandwidth. We have the capability to specify the bus
width both from backing store to cache and from cache
to CPU. For the purposes of this study, we have assumed
in all cases that the VAX memory supplies 4 bytes to the
cache in one bus cycle, while the PDP-11 memory sup-
plies 2 bytes. An E-byte transfer therefore is counted as
two cycles for the VAX and 4 for the PDP-11.

We assumed that the cache supplied one word- 16
bits for the PDP-11 and 32 bits for the VAX - to the CPU
on each request. However, the intelligence of the pro-
cessor determines how often the same word must be
fetched. The trace tapes contain all memory references.
We Aitered these with the assumption that on instruction
fetches the same word would not be fetched without an
intervening instruction fetch. No Bltering was done on
data fetches.

5. summary
Our simulations indicate that a single board com-

puter with a 4K-byte cache can perform reasonably well
with less than 1OZ of the accesses required to its pri-
mary memory without a cache. The PDP-11 traces sug-
gest a number as low as 3X. While the VAX numbers are
higher, additional declines will be experienced by
increasing the size of the cache beyond 4K bytes.

An important result is the use of the write-once
algorithm to guarantee consistent data among multiple
processors. We have shown that this algorithm can be
implemented in a way that degrades performance only
trivially (ignoring actual collisions. which are rare). and
performs better than either pure write-back or write-
through in many instances.

The use of small transfer block sizes can be coupled
with large address blocks to build an inexpensive cache
which performs effectively in the absence of frequent
process switches. The low bus utilization and the solu-
tion to the stale data problem make possible an environ-
ment for which this condition is met. Even though the
miss ratio increases, bus tra5ic initially declines as the
address block is enlarged, holding the transfer block
constant. Therefore larger address blocks should be
used for reserving memory for modi5cation even if small
blocks are used for transfer of data.

The approach advocated here is appropriate Only for
a system containing a single logical memory. This is
significant because it depends on the serialization of
memory accesses to assure consistency. It has applica-
tions beyond those studied here, however. For example.
the access path to memory could be via a ring network.
or any other technique in which every request paases
every processor. This extension seems particularly
applicable at the for maintaining consistency for a Ale
system or a common virtual memory berg supplied to

260

multiple processors through a common bus such as Eth-
ernet.

Clearly there are many environments for which this
model is mappropriate - response to individual tasks
may be unpredictable. for example. However. we believe
that such a confIguration has many potential applica-
tions and can be exploited economically if the appropri-
ate VLSI components are designed. We have investigated
the design of such components and believe that they are
both feasible and well-suited for VLSI [RavishankarBZI].

Our analysis indicates that the cache approach is
reasonable for a system where bandwidth between the
CPU and most of its memory is severely limited. We have
demonstrated through simulation of real programs that
a cache memory can be used to significantly reduce the
amount of communication a processor requires. While
we were interested in this for a single-chip microcom-
puter of the future. we have also demonstrated that such
an approach is feasible for one or more currently popu-
lar commercial markets.

0. Acknowiedgements
This material is based upon work supported by the

National Science Foundation under Grant MCS-6202952.
We thank Dr. A. J. Smith for providing the PDP-11

trace tapes upon which much of our early work
depended. We also wish to thank T.-H. Yang for develop-
ing the VAX trace facility. P. Vitale and T. Doyle contri-
buted much through discussions and by commenting on
an early draft of the manuscript.

7. References
[Amdahl62] C. Amdahl, mate communtiution, March

82.

[Bell 741 J. Bell, D. Casasent, and C. G. Bell, “An innstiea-
tion of alternative cache organizations,” IE%,‘E
mms. on Computers, Vol. C-23, No. 4. April 1974,
pp. 348-351.

[Bell 781 C. Beil. J. Judge, J. McNamara. Computer
angtnefwtn~: a DEC viaw of hardware system
drsign, Digital Press, Bedford, Mass., 1976.

[Censier 761 L. M. Censier and P. Feautrier. “A new solu-
tion to coherence problems in multicache sys-
tems,” IEEE pans. on Computers, Vol. C-27, No.
12. December 1976, pp. 1112-1116.

[Easton 761 M. C. Easton and R. Fagin, “Cold-start vs.
warm-start miss ratios,” CACM, Vol. 21. No. 10,
October 1978. pp. 860-872.

[Crosch 531 H. A. Crosch. “High Speed Arithmetic: the
Digital Computer as a Research Tool.” Joumol 01
tha Opticcrl Society 01 Arnsricu, Vol. 43. No. 4. (April
1953).

[Hoogendoorn 771 C. H. Hoogendoorn. “Reduction of
memory interference in multiprocessor systems,”
Roe. 4th Annual Sgmp. Comput. Arch., 1977, pp.
179163.

mar. 741 “System/370 model 155 theory of
operation/diagrams manual (volume 5): buffer con-
trol unit,” IBM System Products Division.
Poughkeepsie. N.Y.. 1974.

[IBM 761 “System/370 model 168 theory of
operation/diagrams manual (volume l).” Document
No. 8122-6931-3, IBM System Products Division.
Poughkeepsie. N.Y.. 1976.

[IEEE aoj “proposed microcomputer syste: I *bus stan-
dard (P796 bus),” IEEE Computer Society Subcom-
mtitcs Microcomputer System Bus ckoup, October
1960.

[Kaplan 731 K. R. Kaplan and R 0. Winder, “Cache-based
computer systems.” Computer, March 1973, pp..
30-36.

[Knight 861 J. R. Knight. “Changes in cznputer perfor-
mance,” Datamation. Vol. 12, No. 9. September
1966, pp. 40-54.

[Lindsay 611 “Cache Memory for Microprocessors,” Cbm-
puter Architecture News, ACM - SIGARCH. Vol. 9.
No. 5. (August 1961). pp. 6-13.

[Liptay 661 “J. S. Liptay, “Structural aspects of the Sys-
tem/360 Model 65. Part II: the cache.” IBM Syst. J.,
Vol. 7, No. 1. 1966, pp. 15-21.

[Norton 621 R. L..Horton and J. L. Abraham. “Using write
back cachi to improve performance of multiuser
multiprocessors,” 1982 Int. Conf. on Par. Proc.,
IEEE cat. no. 62CH1794-7, 1962, pp. 326-331.

[Pate1 621 “Analysis of multiprocessor with private cache
memories.” J. H. Patel. IEEE -pram. on Computers,
Vol. C-31, No. 4, April 1962. pp. 296-304.

[Rao 781 C. S. Rao. “Performance Analysis of Cache
Memories,” Journcrl of the ACM, Vol.-25 July 1976.
pp. 376-395.

[Ravishankar 631 C. V. Ravishankar and J. Goodman,
“Cache implementation for multiple microproces-
sors.” Digest of F’apers. Spr%ng COMPCON 83, IEEE
Computer Society Press, March 1963.

[Siewiorek 621 D. P. Siewiorek. C. G. Bell, and A. Newell.
Computer Stnrctures: Principles and Ezamplos,
McGraw-Hill, New York, N.Y.. 1962.

[Smith 621 A. J. Smith, “Cache memories,” Computig
*ways, Vol. 14. No. 3. September 1962. pp. 473-
530.

[Smith 631 J. E. Smith and J. R. Goodman. “A study of
instruction cache organizations and replacement
policies,” Tenth Annuaf Symposium on Computer
Architecture, June 1983.

[Solomon 681 M. B. Solomon, Jr., “Economies of Scale and
the IBM System/SBO.” CACM. Vol. 9, No. 6. June
1966. pp. 435-440.

[Tang 761 C. K. Tang, “Cache system design in the tightly
coupled multiprocessor system.” AFIPS Rot.,
NCC, Vol. 45. pp. 749-753, 1978.

[‘l”I 821 Texas instruments YOS Memory Datu Book.
Texas Instruments. Inc.. Memory Division, Houston,
Texas, pp. 106-111. 1962.

[Tredennick 621 N. Tredennick. “The IBM micro/370 pro-
ject,” public lecture for Distingukhed Lecturer
Stw%es, Computer Sciences Department. University
of Wisconsin-Madison, March 31. 1962.

middoes 791 L. C. Widdoes. “S-l Multiprocessor architec-
ture (MULT-21.” 1979 Annunl Renort - the S-I Pro-
ject, ‘k’olume~l: Architecture, Lawrence Livermore
Laboratories, Tech. Report UCID 16619, 1979.

[Yen 621 W. C. Yen and K. S. Fu, “Coherence problem in a
multicache system,” 1982 Int. ConI. on Par. Rot..
IEEE cat. no. 62CH1794-7, 1962. pp. 332-339.

261

B
d 10'

%. 2 Bur Trerder end Miu Fkia vs. Cacba Size; cbyte
blake; VAX-11 t.meaa

Q. 6. Him Ratio VI. Block Size for mum end cold starts
PDP-11 UaceL

‘O...--.rb
ml- als. (blu)

Q, 4. lhr Ratio n. Block Size hr warm and cold mtartd:
VAX-1 1 WIICCI.

fl,g. 6. Bus Trnzxisr Ratio *s. Elook Size for warm and cold
ataru PDP-11 traces

rFlg. 6. Ehe Tredcr Ratio vs. Block Size for werm and cold
erartei VAX-11 tmws.

262

