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ABSTRACT-The importance of reducing processor- 
memory bandwidth is recognized in two distinct situa- 
tions: single board computer systems and microproces- 
sors of the future. Cache memory is investigated as a 
way to reduce the memory-processor traffic. We show 
that traditional caches which depend heavily on spatial 
locality (look-ahead) for their performance are inap- 
propriate in these environments because they generate 
large bursts of bus traffic. A cache exploiting primarily 
temporal locality (look-behind) is then propostd and 
demonstrated to be effective in an environment where 
process switches are Infrequent. We argue that such an 
environment is possible if the traffic to backing store is 
small enough that many processors can share a common 
memory and if the cache data consistency pmblem is 
solved. We demonstrate that such a cache can indeed 
reduce traffic to memory greatly, and introduce ?.I- 
elegant solution to the cache coherency problem. 

l. introduction 
Because there are straightforward ways to con- 

struct powerful. cost-effective systems using random 
acoess memories and single-chip microprocessors, sem- 
iconductor technology has, until now, had the greatest 
impact through these components. High-performance 
processors, however. are still beyond the capability of a 
single-chip implementation and are not easily parti- 
tioned in a way which can effectively exploit the technol- 
ogy and economics of VLSI. An interesting phenomenon 
has occurred in the previous decade as a result of this 
disparity. Memory costs have dropped radically and con- 
sistently for computer systems of all sizes. While the 
component cost of a CPU (single-chip implementations 
excluded) has declined significantly over the same 
period. the reduction has been less dramatic. A result is 
that the amount of memory thought to be appropriate 
for a given speed processor has grown dramatically in 
recent years. Today small minicomputers have memory 
as large ax that of the most expensive machines of a 
decade ago. 
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The impact of VLSI has been very different in 
microprocessor applications. Here memory is still 
regarded as an expensive component in the system, and 
those familiar primarily with a minicomputer or main- 
frame environment are often scornful of the trouble to 
which microprocessor users go to conserve memory. 
The reason. of course, ix that even the small memory in a 
microprocessor is a much larger portion of the total sys- 
tem cost than the much larger memory on a typical 
main frame system. This results from the fact that 
memory and processors are implemented in the same 
technology. 

1.1. ASuper CPU 
With the advances to VLSI occurring now and con- 

tinuing over the next few years, it will become possible 
to fabricate circuits that are one to two orders of magni- 
tude more complex than currently available micropro- 
cessors. It will soon be possible to fabricate en 
extremely high-performance CPU on a single chip, If the 
entire chip is devoted to the CPU. however, it is not a 
good idea. Extrapolating historical trends to predict 
future component densities. we might expect that within 
a few years we should be able to purchase a single-chip 
processor containing at least ten times ax many transis- 
tors ax occur in, say, the MCBBOOO. For the empirical 
rule known ax Crosch’s law [Crosch53]. P = k C 0, where 
P is some measure of performance, C ix the cost, and k 
and g are constants. Knight[Knight66] concluded that g 
is at least 2. and Solomon[Solomon66] has suggested 
that gal.47. For the IBM System/370 family, Siewiorek 
determined that gal.6 [Siewiorek62]. While Crosch’s law 
breaks down in the comparison of processors using 
different technology or architectures, it is realistic for 
predicting improvements within a single technology. 
Sieniorek in fact suggests that it holds “by detlnition.” 

Assuming g = 1.5 and using processor-memory 
bandwidth as our measure of performance. Grosch’s law 
predicts that a processor containing 10 times as many 
transistors ax a current microprocessor would require 
30 times the memory bandwidth.’ The Motorola MC66000. 
running at 10 MHz. accesses data from memory at a 
maximum rate of 5 million bytes per second, using more 
than half its pins to achieve this rate. Although packag- 
ing technology is rapidly increasing the pins available to 
a chip, it is unlikely that the increase will be 30-fold (the 
66000 has 64 pins). We would suggest a factor of two is 
realistic. Although some techniques are clearly possible 
to increase the transfer rate into and out of the 66000. 
supplying such a processor with data as fast as needed is 
a severe constraint. One of the designers of the 66000. 
has stated that all modern microprocessors - the 66000 

‘Thin is a comervative estimate, 1x1 fact. became it ugmres 
predictable decreases m gate delays. 
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included - are already bus-limited [TredennicktZ]. 

1.2. On-chip Memory 
One alternative for increased performance without 

proportionately increasing processor-memory bandwidth 
is to introduce memory on the same chip with the CPU. 
With the ability to fabricate chips containing one to two 
million transistors. it should be possible - using only a 
portion of the chip - to build a processor significantly 
more powerful than any currently available single-chip 
CPU. While devoting the entire chip to the CPU could 
result in a still more powerful processor, introducing 
on-chip memory offers a reduction in memory access 
time due to the inherently smaller delays as compared 
to inter-chip data transfers. If most accesses were on- 
chip, it might actually perform as fast as the more 
powerful processor. 

Ideally, the chip should contain as much memory as 
the processor “needs” for main storage. Conventional 
wisdom today says that a processor of the speed of 
current microprocessors needs at least l/4 megabytes 
of memory [Llndsay81]. This is certainlv more than is 
feasible on-chip. though a high perform&ice processor 
could probably use substantially more than that. Clearly 
all the primary memory for the processor cannot be 
placed on the same chip with a powerful CPU. What is 
needed is the top element of a memory hierarchy. 

1.3. Cache Memory 
The use of cache memory, however, has often aggra- 

vated the bandwidth problem rather than reduce it. 
Smith [SmithfZ] says that optimizing the design has four 
general aspects: 
(1) maximizing the hit ratio. 
(2) minimizing the access time to data in the cache, 
(3) minimizing the delay due to a miss, and 
(4) minimizing the overheads of updating main 

memory. maintaining multicache consistency, etc. 
The result is often a larger burst bandwidth requirement 
from main storage to the cache than would be necessary 
without a cache. For example. the cache on the IBM Sys- 
tem/370 model 166. is capable of receiving data from, 
main memory at a rate of 100 megabytes per second 
[IBM76]. It supplies data to the CPU at less than l/3’ 
that rate. The reason is that to exploit the spatial local- 
ity in memory references. the data transferred from 
backing store into the cache is fetched in large blocks, 
resulting in requirements of very high bandwidth bursts 
of data. We have measured the average bandwidth on an 
IBM System/370 model 155. and concluded that the over- 
age backing-store-to-cache traffic is less than the 
cache-to-CPU traffic. 

The design of cache memory for mini-computers 
demanded greater concern for bus bandwidth. The 
designers of the PDP-11 models 60 and 70 clearly recog- 
nized that small block sizes were necessary to keep main 
memory traffic to a minimum [Bell7B]. 

Lowering the bandwidth from backing store to the 
cache can be accomplished in one of two ways: 

(1) small blocks of data are brought from backing 
store to the cache, or 

(2) long delays occur while a block is being brought 
in, independent of (and in addition to) the ac- 
cess time of the backing store. 

While it is possible to bring in the word requested ini- 
tially (read through). thus reducing the wait on a given 
reference, the low bandwidth memory interface will 
remain busy iong after the initial transfer is completed, 
resulting in long delays if a second backing storage 

operation is required. 
We therefore have explored the effectiveness of a 

cache which exploits primarily or exclusively temporal 
locality, i.e., the blocks fetched from backing store are 
only the size needed by the CPU (or possibly slightly 
larger). In considering ways to evaluate this strategy, we 
identified a commercial environment that contained 
many of the same constraints and seemed amenable to 
the same kinds of solutions. This environment is the 
marketplace of the single-board computer running on a 
standard bus such as Multibus or Ver3abus.s We have 
chosen to study this environment in an attempt to gain 
insight into the original, general scheme. 

2. The Single Board Computer Application 
A single board computer typically contains a 

microprocessor and a substantial amount of memory, 
though small enough that it must be used carefully. If 
needed, access to additional random access memory is 
through the bus, which is designed for generality and 
simplicity, not for high performance. Multibus. in partic- 
ular. was defined in the early 70’3 to offer an inexpensive 
means of communication among a variety of sub- 
svstems. Although originally introduced by Intel Cor- 
poration. it has found wide acceptance, having been pro- 
posed - in a slightly motied form - as the IEEE P798 
bus standard [IEEEBO]. Currently, several hundred ven- 
dors offer Multibus-compatible cards. 

While the market has rapidly developed for products 
using this bus, its applications are limited by the severe 
constraint imposed by the bandwidth of Multibus. 
Clearly the bus bandwidth could be increased by increas- 
ing the number of pins. and by modifying the protocol. 
Its broad popularity and the availability of components 
to implement its protocol mean. however, that it is likely 
to survive many years in its present form. Thus a large 
market exists for a computer-on-n-card which. much as 
ii it were all on a single chip, has severe limitations on 
its communications with the rest of the system. 

We decided to determine if a cache memory system 
could be implemented effectively in the Multibus 
environment. To that end we have designed a cache to 
be used with a current-generation microprocessor. In 
addition, we have done extensive simulation of cache 
performance. driven by memory trace data. We have 
identitid a new component which is particularly suited 
for VLSI implementation and have demonstrated its 
feasibilitv bv desinninn it rRavishankar831. This com- 
ponent. -which implements the tag memory for a 
dynamic RAM cache intended for a microprocessor. is 
similar in many respects to the recently announced TMS 
2150 [TI82]. 

Multibus systems have generally dealt with the prob- 
lem of limited bus bandwidth by removing most of the 
processor-memory accesses from the bus. Each proces- 
sor card has its own local memory, which may be 
addressable to others through the Multibus. While this 
approach has much in common with ours, we believe that 
the allocation of memory - local or remote - should be 
handled by the system, freeing the programmer of this 
task. In typical Multibus applications. considerable 
effort is expended guaranteeing that the program run- 
ning is primarily resident on-board. This approach is 
viable for a static partitioning of tasks. Results to date 
have been much less satisfactory, however, for the more 
general situation where a number of processors are 
dynamically allocated. (For efficiency reasons it also 
precludes the use of shared code segments). 
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In many environments, a simrle dynamic hardware 
allocation scheme can efficienlls, determme what 
memory locations are bemg accessed frequently and 
should therefore be kept in local memory - better than 
the programmer who often has little insight into the 
dynamic characteristtcs of his program. There are 
environments where the programmer is intimately fami- 
liar with the behavior of his program and can generate 
code to take advantage of it. In this environment the 
time spent running a program is often much more sub- 
stantial than the time developmg the program. This 
explains, for example, why an invisible cache is not 
appropriate on the CRAY-1. We believe that freeing the 
programmer from concern about memory allocation is 
essential where programmer productivity is critical. 

2.1. A Sngle-Board Computer with Cache 
To evaluate our approach. we proposed a single- 

board computer containing, (possibly along with other 
things) a CPU and no local memory except a cache, with 
backing store provided through Multibus. Thus we 
picked an important problem in its own right: Can we 
build a cache that works with a Multibus system support- 
ing multiple processors? In particular, how many pro- 
cessors can we support running in parallel on Multibus? 
We believe that a system which could reasonably support 
five to 10 processors would be a significant advance. This 
can’t be compared directly against current systems 
because a single processor overloads the Multibus. Thus 
local memories must be heavily exploited if performance 
is important. 

Earlier analyses [Kaplan73. Be1174. Rao76. Pate1621 
have used the cache hit ratio or something closely 
related to measure performance. The important cri- 
terion here is to maximize use of the bus, not the hit 
ratio, or even necessarily to optimize processor perfor- 
mance. We optimize system performance by optimizing 
bus utilization, achieving higher performance by minim- 
izing individual processors’ bus requirements, and 
thereby supporting more processors reasonably well. We 
allow individual processors to sit idle periodically rather 
than tie up the bus fetching data which they might not 
use. This implies that the cache stale data problem 
must be solved effectively. We present a new solution in 
section 3. 

2.2. 3witchi.ng contexts 
Where bus bandwidth is limited, a task switch is a 

major disturbance. since the cache must effectively be 
reloaded at this time. The processor is momentarily 
reduced to accesses at the rate at which the bus can 
supply them. While this problem seems unavoidable. it 
need not be serious if task switching is minimized. We 
are providing an environment which allows many proces- 
sors to work out of a single monolithic memory in paral- 
lel. If more parallel tasks are required. more processors 
can be used. We point out that the current Multibus 
alternative is to move the program into local memory, 
an operation which also swamps the bus. The task switch 
merely makes this operation implicit, and avoids bring- 
ing across the bus data which are never actually used. 
Writing the old data out is also no worse than the alterna- 
tive, since we only write that which has been changed 
end which has not been already purged. 

There may be certain cases - an interrupt handling 
program. for example - where a particular program 
does not flush the cache. but uses only a small portion of 
it. Provisions could be made to allow such a program to 
be locked in the cache. Alternatively, a separate cache 
might be provided for such a program Our studies indi- 
cate that a relatively small cache can be effective for a 
single program, so it may be possible to keep separate 
caches around for individual processes if the number is 

small. We would sugg,..,. L ~mg tnis one step further and 
providing an additional processor for each cache. An 
interesting question then arises as to the cost of dynaml- 
tally assignmg processes to processors. Our proposal 
allows this assignment. though ciearly at some perfor- 
mance penalty. 

3. Cache Coherency 
It is well-known that multiple caches present serious 

problems because of the redundancy of storage of a sin- 
gle logical memory location [Tang76. Censier76. Rao76]. 
The most common method among commercial products 
for dealing with this, the stale data problem, is to create 
a special, high-speed bus on vrhi?h addresses are sent 
whenever a write operation is performed by any proces- 
sor. This solution has weaknesses [Censier76] which 
have generally limited commercial implementations to 
two processors. In the single-chip processor or single- 
board computer environments, it has the added weak- 
ness that it requires a number of extra I/O pins. 

An alternative approach, implemented in Cmmp 
[Hoogendoorn77] and proposed by Norton [Norton82]. is 
to require the operating system to recognize when incon- 
sistencies might occur and take steps to prevent them 
under those circumstances. This solution is unappealing 
because the cache is normally regarded as an 
architecture-independent feature, invisible to the 
software. 

A third approach, variations of which have been pro- 
posed by Censier and Feautrier [Censier76]. Tang 
[Tang76]. Widdoes [Widdoes79]. and Yen and Fu [YenBZ]. 
is to use some form of tagged main memory, keeping 
track of individual blocks in this way to prevent incon- 
sistency. Individual blocks are temporarily designated 
as private for a particular processor so that it may 
modify it repeatedly without reference to main memory. 
The tag must be set whenever such a critical section is 
entered and reset whenever the critical section is left, 
i.e., the modified word is written back to main storage. 
This approach requires substantial hardware. and 
appears infeasible for a large number of caches. since an 
operation in a central place is required at the entry or 
exit of any critical section. 

Our approach has much in common with the third 
approach, but allows the critical section information to 
be distributed among the caches, where it already 
resides. In addition, we use the normal read and write 
operations, with no tag bits in main memory. to accom- 
plish the synchronization. A related scheme [Amdahll32] 
which uses a special bus to convey the notice of entry or 
exit from a critical section, has been implemented in a 
commercial product, hut has not been published to our 
knowledge. We call our scheme write-once. 

3.1. Write-Through or Write-%ck? 
While the choice between wri&-through (also known 

as store-through) and write-back (also known as store- 
back or copy-back) has no bearing on the read hit ratio. 
it has a major impact on bus traffic. particularly as the 
hit ratio approaches 100X. In the limit. when the hit 
ratio is 1009.. write-back results in no bus traffic at all, 
while write-through requires at least one bus cycle for 
each write operation. Norton [Norton621 concluded that 
using write-back instead of write-through for a hypothet- 
ical processor typically would reduce the bus traffic by 
more than 509. and if the processes ran to completion 
bus traffic would be decreased by a factor of 8. For typi- 
cal read-to-write and hit ratios and when task switching 
is infrequent, our simulations have given strong evidence 
that write-back generates substantially less bus traffic 
than write-through. 
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But write-back has more severe coherency prob- 
lems than write-through, since even main memory does 
not always contain the current version of a particular 
memory location. 

3.2. ANew Write Strategy: Write4nce 
We propose a new write strategy which solves the 

stale data problem and produces minimal bus traffic. 
The replacement technique requires the following struc- 
ture. Associated with each block in the cache are two 
bits deflning one of four states for the associated data: 
lnudid There is no data in the block. 
Valid There is data in the block which has been read 

from backing store and has not been modifled. 
RssaruedThe data in the block has been locally modified 

exactly once since it was brought into the 
cache and the change has been transmitted to 
backing store. 

MY The data in the block has been locally modified 
more than once since it was brought into the 
cache and the latest change has not been 
transmitted to backing store. 

Write-once requires rapid access to the address tags 
and state bit pairs concurrently with accesses to the 
address tags by the CPU. This can most easily be 
achieved by creating two (identical) copies of the tag 
memory. Censier [Censier78] claims that duplication is 
“the usual way out” for resolving collisions between 
cache invalidation requests and normal cache refer- 
ences. This is not a large cost, since a single chip design 
of this part of the cache - using present technology - is 
quite feasible. Further, we have discovered a way to 
reduce substantially the number of tags required. In 
addition. the same chip type could be used for both 
instances. This is a natural way to partition the cache in 
VLSI because it results in a maximal logic-to-pin ratio. 
We have designed and submitted for fabrication such a 
chip [Ravishankar63]. 

The two copies always contain exactly the same 
address data, because they are always written simul- 
taneously. While one unit is used in the conventional way 
to support accesses by the CPU, a second monitors all 
accesses to memory via the Multibus. For each such 
operation, it checks for the address in the local cache. If 
a match is found on a write operation, it notifies the 
cache controller. and the appropriate block in the cache 
is marked invalid. If a match is found on a read opera- 
tion, nothing is done unless the block has been modified. 
i.e., its state is reserved or dirty. If it is just reserved, 
the state is changed to valid. If it is dirty, the local sys- 
tems inhibits the backing store from supplying the data. 
It then supplies the data itself.’ On the same bus access 
or immediately following it, the data must be written to 
backing store. In addition, for either reserved or dirty 
data, the state is changed to waiti. 

This scheme achieves coherency in the following 
way. Initially write-through is employed. However. an 
additional goal is achieved upon writing. All other caches 
are purged of the block being written, so the cache writ- 
ing through the bus now is guaranteed the only copy 
except for backing store. It is so identified by being 
marked reserved. If it is purged at this point, no write is 
necessary to backing store, so this is essentially write- 
through. If another write occurs, the block is marked 
dirty. Now write-back is employed and, on purging, the 
data must be rewritten to backing store. 

‘There 13 k mechanism in Multibus rhxh allows tia capability. 
Unfortunately. >t 19 rarely used. not well-defined. and regmres that local 
caches respond very rapidly. Versabus hlu a much cleaner mechamrm 
by rhxh thn end CM oe accomplished. 

Write-once has the desirable feature that units 
accessing backing store need not have a cache. and need 
not know whether others do or not. A cache is responsi- 
ble for matntaining consistency exactly for those cases 
where it might create a violation, i.e.. whenever it writes 
to a location. Thus it is possible to mix in an arbitrary 
way systems which employ a cache and those which do 
not: the latter would probably be I/O devices. Consider- 
able care must be exercised, however, when a write 
operation over the bus modifies less than an entire 
block. 

4. Smuiation 
We designed a cache memory system to work on 

Multibus. To validate our design before building it we did 
extensive simulation using memory trace data. To date 
we have performed extensive simulations for six traces, 
all running under UNIX? 

EIJC 

ROFFAS 
TRACE 

NROF’F 

CACHE 

COMPACT 

The UNIX editor ed running a script. 
The old UNIX text processor program rofl. 
The program. written in assembly 
language. which generated the above 
traces for the PDP-11. 
The program nrofl interpreting the 
Berkeley macro package me. 
The trace-driven cache simulator pro- 
gram. 
A program using an on-line algorithm 
which compresses files usmg an adaptive 
Huffman code. 

The Arst three traces are for a PDP-11. while the latter 
three are for a VAX. While the PDP-11 does not run on 
Multibus. its instruction set is similar to many micropro- 
cessors which do. and the programs used for tracing 
were of the kind we envision for such a system. The 
PDP-11 is similar in many ways to the MCBBOOO, and has 
in common with the 6066 a limited addressing capability. 

While the VAX also does not run on Multibus. it is an 
example of a modern instruction set and, therefore is a 
reasonable example of the kind of processor likely to 
appear in a single-chip CPU in the future. It also has a 
larger address space which, as shown in section 4.3, is 
significant. We are actually using virtual addresses. but 
all of the programs we ran are small enough to At into 
main memory. Since we are tracing only a single pro- 
cess, we conclude that there is no sign&cant difference 
between virtual and real addresses. 

In addition to cache parameters. miss ratios vary 
greatly depending on the program running. For the each 
of the above traces, a wide and unpredictable variation 
occurred as we varied a single parameter. Thus plotting 
parameters for the individual traces was often not 
enlightening. Averaging over the three traces in each 
category gave much more revealing results, providing 
data that suggested a continuous function for many of 
the variables studied. Thus all our results are actually 
the average of three programs, each running alone. 

4.1. Effect of Write Strategy on Bus Treffic fl& 
Although write-through normally generates le& bus 

traffic than write-back. the latter can be worse if the hit 
ratio is low and the block size is large. Under write- 
back, when a dirty block is purged, the entire block 
must be written out. With write-through, only that por- 
tion which was modified must be written. We found that 
write-back is decisively superior to write-through except 
(1) when cache blocks are very large, or (2) when the 
cache size IS very small. 

YJNM and NEIOFF are trademarks of Bell Lsboratones. 
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Write-once results in bus traffic roughly equal to the 
better of the two. We have found cache parameters for 
which it actually performs better on the average than 
either write-through or write-back for a number of pro- 
grams. This was a surprising result, since write-once was 
developed to assure coherency, not to minimize bus 
traffic. The replacement scheme outperforms both 
write-through and write-back whenever the total number 
of sets is about 16. For example, for a 4-way set associa- 
tive, 2048-byte cache with a block size of 32 bytes. the 
average bus traffic for three PDP-11 programs for which 
we have traces was 30.766% for write-through, 17.55% for 
write-back, and 17.38% for write-once. 

4.2. Cold Start vs. Warm Start 
An important consideration in determining cache 

hit ratio and bus traffic is the cold start period known as 
the lifatima function [Easton76]. during which time 
many misses occur because the cache is empty. Thin is 
defined as the period until as many cache misses have 
occurred as the total number of blocks in the cache. 
This initial burst of misses is amortized over all accesses, 
so the longer the trace analyzed. the lower the miss ratio 
obtained. In addition to the initiation of a program and 
occasional switches of environments, a cold start gen- 
erally occurs whenever there is a task switch. Thus en 
important assumption in traditional cache evaluation is 
the frequency of task switching. We have argued that 
task switching must be very infrequent in our system. 
Thus we can more nearly approach in practice the warm 
start hit ratios, and thus it is appropriate to use very 
long traces of a single program. and assume a warm 
start. We did that initially, using the full length of the 
PDP-11 traces available to us (1.256570 memory 
accesses). We noted, however, that for even much 
shorter traces than we were running, there was little 
difference between warm start and cold start statistics. 
Since cold start statistics are easier to generate. we nor- 
mally used them. Unless stated otherwise, our results 
are from cold start, but at least 10 times the lifetime 
function in total length. 

4.3. Cache Size 
In general. we were surprised at the effectiveness of 

a small cache. For the PIJP-11 traces with a cache of 2K 
bytes or larger. we discovered that essentially no misses 
occurred after the cold start period. These are not 
trivial programs. but were run on a machine which has 
only 64K bytes for both instructions and data. The pro- 
grams are very frugal in their use of memory, and the 
entire working set apparently can fit in the cache. 

The VAX traces do not exhibit the same locality 
observed with the PDP-11. and a 64K-byte cache was not 
large enough to contain the entire working set of the 
program. This may be a result of the larger address 
space available, the more complex instruction set. or 
more complex programs. In all cases the programs were 
spread out over a much larger memory space than for 
the PDP-11 traces. For this comparison we used a small 
block size of 4 bytes. This may have had a greater 
impact on the VAX than on PDP-11 traces. 

We found that reducing the size of the cache (below 
4K bytes for the PDP-11) increased the miss ratio and 
the bus trafGc - in general the two correlate well with 
respect to this parameter. Fig. 1 shows the average miss 
ratio and bus traffic as a function of total cache size for 
the PDP-11 traces. For this and all results given. the 
miss ratio includes writes. Tbe bus traffic is given as a 
percent of the number of accesses that would be 
required if no cache were present. Fig. 2 shows the same 
data for the VAX traces. 

4.4. Block Size 
Our cache design incorporates extremeiy small 

blocks. depending heavily on temporal locality. Easton 
and Fagin [Easton claim that page size and miss 
ratios are independent for warm start, but highly depen- 
dent for cold start. If true. this can be explained by the 
observation that hits in the cache on cold start depend 
heavily on spatial locality, while temporal locality pro- 
vides many hits when it is warm. Spatial locality. bow- 
ever, is strongly correlated to block size. being directly 
proportional in the extreme case of strictly sequential 
memory accesses. Our simulation9 partially conArm 
Easton’s observation. In particular. we found that. as 
block size 1s increased, miss ratios generally decline up 
to a point. then increase for either warm or cold starts. 
However, for small block sizes. the warm start miss ratio 
is marginally lower than for the cold start case. while for 
large block sizes, the two numbers are nearly identical. 
See 6gs. 3-7. This is encouraging since we have argued 
for restricted task switches: our environment is more 
that of a warm start than is the traditional environment. 
In many simulations we were able to get very high hit 
ratios once the cold start period ended. For small 
blocks transferred, however, this period (the lifetime 
function) is longer. Our simulations show very clearly 
that reducing the block size down to a single transfer 
across the bus dramatically decreases the hit ratio, par- 
ticularly for cold starts, but also decreases bus traffic 
significantly. In general, we observed that increasing the 
transfer block size from one bus cycle to two typically 
decreases the miss ratio by 30 to 50X. while increasing 
the bus trafXlc by 10 to 20X. This relation holds for the 
first two doublings. These results, e.g., fig. 3. are rela- 
tively more pessimistic for small block sizes than those 
reported by Strecker in [Bell76]. 

We have made the assumption that access time is 
related linearly to block size. In many cases this is not 
true. It is essentially true for the Multibus. since only 
two bytes can be fetched at a time. and arbitration is 
overlapped with bus operations. For a single-chip imple- 
mentation, it would almost certainly be worthwhile to 
provide the capability for efficient multiple transfers 
over a set of wires into the processor. This has not been 
incorporated in our analysis. but will undoubtedly sug- 
gest a somewhat larger transfer block size. 
4.4.1. Lowering the Overhead of Small Woeka 

Small blocks are costly in that they greatly increase 
the overhead of the cache: an address tag and the two 
state hits are normally stored in the cache for each 
block transferred. We reduced this overhead by splitting 
the notion of block into two parts: 

(1) 

(2) 

The frunsfer block is the amount of data transferred 
from backing store into the cache on a read miss. 
The address block is the quantum of storage for 
which a tag is maintained in the cache. It is ahrays 
a power of two larger than a transfer block. An 
effective cache can be implemented by keeping the 
transfer block small but making the address block 
larger. 
For most commercial products containing a cache, 

the address block size is the same as the transfer block 
size. though we know of one example [IBM741 where the 
address block contained two transfer blocks. The IBM 
System/360 Model 65 [LiptaySfl] in fact is a special case 
of this, viz.. a direct-mapped cache, where the Model 85 
“sector,” consisting of 1K bytes, corresponds to our 
address block. Each sector contains 16 transfer blocks. 
which were called simply “blocks.” 

4.4.2. The Effect of large Address Bboks 
The use of address blocks larger than transfer 

blocks means that only data from one address block in 
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backing store can occupy any of the tlocks making up 
an address block Ln the cache. There are cases where 
the appropriate transfer block is empty. but other 
transfer blocks m the same address block must be 
purged so that the new address block can be allocated. 
We examined this for various sizes of address blocks and 
found that the miss ratio increased very slowly up to a 
point. For the situation shown in 5g. 7. the miss ratio 
had only risen by about 30X when the address block con- 
tamed 64 bytes for the PDP-11 traces. That pomt was 
reached for the VAX traces when it contained 32byte 
address blocks. 

We predicted that the bus tratlic would correlate 
well with miss ratio with respect to this parameter. To 
our surprise. the bus traffic actually declined initially as 
we increased the address block size. The decline was 
small. but consistent for the PDP-11 trace tapes, eventu- 
ally climbing over the base line when the address block 
was 16 or 32 transfer blocks. The phenomenon was 
smaller, but discermble for the VAX traces as well. 
though in all cases the bus tra5ic started increasing 
sooner. This situation is shown in 5g. 6. 

We initially suspected that our simulation might be 
faulty. That was not the case. and eventually we were 
able to explain it and verify it. The nmte-once algorithm 
requires a bus operation whenever a block is modided 
initially (set to rereruod.) However, reservations could be 
made on the basm of either transfer blocks or address 
blocks. We had put the choice into the simulator, but 
had not experimented with it. reserving at the address 
block level. This in fact reduces the number of bus 
writes necessary for reservation because of spatial local- 
ity of writes: an address block already rsseruad need 
only be marked ditty when any transfer block within it is 
modi5ed. This would seem to increase greatly the traffic 
w&never the block is purged from the cache, but in fact 
the edect is small: only those transfer blocks which have 
actually been modided need be written back. 

WS demonstrated that this was indeed responsible 
for the behavior noted by changing the reservations to 
the transfer block leveL The simulation results then 
exhibited the originally predicted behavior. correlating 
clorely with the murs ratio. 

We conclude that minimum bus traffic is generated 
with minimum transfer block sizes. The miss ratio may 
be substantially improved by using slightly larger 
transfer blocks. in which case bus traffic does not 
increase greatly. Using larger address blocks reduces 
the cost of the tag memory considerably. It initially has 
only a minor effect on miss ratio. which is more than 
offset by the savings in writes due to the more efficient 
reservation of modi5ed blocks 

4.6. Other Dee&n Aspecte Studied 

4.S. 1. Write Allocation 
Write allocation. also known as retch on 40. 

means that a block is allocated in the cache on a write 
miss as well as on a read miss. While it seems natural for 
write-back, it typically is not used with write-through. It 
is essential for write-once to assure coherency. Our 
early simulations showed that it was highly desirable for 
write-back and write-once, and superior even for’write- 
through with small blocks. This was true using both the 
measures of miss ratio and bus tra5ic. In all results 
presented. write allocation was employed. 

4.52. Asaociativity 
We ran a number of simulations varymg the associa- 

tivity ail the way from direct mapped to fully associative. 
While this is clearly an important parameter, we have lit- 
tle new to report. i.e.. fully associative cache is the best, 

but 2-way set associative is not much worse, and 4-way 
set associative is somewhere in between. 
[Smith63]). We had hoped to find that a high i!$iee’Bd; 
assoclativity would improve performance. because such 
an organization is much more feasible in the VLSI 
domain. but results were negative. For results reported 
here we have assumed a 4-way, set associative cache. 

4.63. Replacement Algorithm 
Replacement strategy has been the subject of 

another study using the same simulator and- traces 
fSmith631. In order to limit its significance. which seems 
50 be orihogonal to the issues- raised here, we have 
assumed true LRLJ replacement among the elements of 
each set in all cases. 

4.6.4. Due wdth 

The width of the data paths between units is an 
important parameter in that it is closely related to 
bandwidth. We have the capability to specify the bus 
width both from backing store to cache and from cache 
to CPU. For the purposes of this study, we have assumed 
in all cases that the VAX memory supplies 4 bytes to the 
cache in one bus cycle, while the PDP-11 memory sup- 
plies 2 bytes. An E-byte transfer therefore is counted as 
two cycles for the VAX and 4 for the PDP-11. 

We assumed that the cache supplied one word- 16 
bits for the PDP-11 and 32 bits for the VAX - to the CPU 
on each request. However, the intelligence of the pro- 
cessor determines how often the same word must be 
fetched. The trace tapes contain all memory references. 
We Aitered these with the assumption that on instruction 
fetches the same word would not be fetched without an 
intervening instruction fetch. No Bltering was done on 
data fetches. 

5. summary 
Our simulations indicate that a single board com- 

puter with a 4K-byte cache can perform reasonably well 
with less than 1OZ of the accesses required to its pri- 
mary memory without a cache. The PDP-11 traces sug- 
gest a number as low as 3X. While the VAX numbers are 
higher, additional declines will be experienced by 
increasing the size of the cache beyond 4K bytes. 

An important result is the use of the write-once 
algorithm to guarantee consistent data among multiple 
processors. We have shown that this algorithm can be 
implemented in a way that degrades performance only 
trivially (ignoring actual collisions. which are rare). and 
performs better than either pure write-back or write- 
through in many instances. 

The use of small transfer block sizes can be coupled 
with large address blocks to build an inexpensive cache 
which performs effectively in the absence of frequent 
process switches. The low bus utilization and the solu- 
tion to the stale data problem make possible an environ- 
ment for which this condition is met. Even though the 
miss ratio increases, bus tra5ic initially declines as the 
address block is enlarged, holding the transfer block 
constant. Therefore larger address blocks should be 
used for reserving memory for modi5cation even if small 
blocks are used for transfer of data. 

The approach advocated here is appropriate Only for 
a system containing a single logical memory. This is 
significant because it depends on the serialization of 
memory accesses to assure consistency. It has applica- 
tions beyond those studied here, however. For example. 
the access path to memory could be via a ring network. 
or any other technique in which every request paases 
every processor. This extension seems particularly 
applicable at the for maintaining consistency for a Ale 
system or a common virtual memory berg supplied to 
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multiple processors through a common bus such as Eth- 
ernet. 

Clearly there are many environments for which this 
model is mappropriate - response to individual tasks 
may be unpredictable. for example. However. we believe 
that such a confIguration has many potential applica- 
tions and can be exploited economically if the appropri- 
ate VLSI components are designed. We have investigated 
the design of such components and believe that they are 
both feasible and well-suited for VLSI [RavishankarBZI]. 

Our analysis indicates that the cache approach is 
reasonable for a system where bandwidth between the 
CPU and most of its memory is severely limited. We have 
demonstrated through simulation of real programs that 
a cache memory can be used to significantly reduce the 
amount of communication a processor requires. While 
we were interested in this for a single-chip microcom- 
puter of the future. we have also demonstrated that such 
an approach is feasible for one or more currently popu- 
lar commercial markets. 
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