
EFFICIENT SYNCHRONIZATION PRIMITIVES FOR

LARGE-SCALE CACHE-COHERENT MULTIPROCESSORS

James R. Goodman, Mary K. Vernon, and Philip J. Wwst

Computer Sciences Department
University of Wisconsin - Madison

Madison, Wisconsin 53706

AbstreetThis paper proposes a set of efficient primitives
for process synchronization in muitiprocessors. The only
assumptions made in developing the set of primitives are
that hardware combining is not implemented in the hter-
connect, and (in one case) that the interconnect supports
broadcast.

The primitives make use of synchronization bits
(syncbits) to provide a simple mechanism for mutual exclu-
sion. The proposed implementation of the primitives
includes efEcient (Le. kxal) busy-waiting for syncbit& In
addition, a hardware-supported mechanism for maintain-
ing a first-come ih-st-serve queue of requests for a syncbit is
proposed. This queueing mechanism aiiows for a very
efEcient implementation of, as well as fair access to, binary
semaphores. We also Propose t0 implement
Fetch-and-Add with combining in software rather than
hardware. This allows an architecture to scale to a huge
number of processors while avoiding the cost of hardware
combining.

Scenarios for common synchronization events such
as work queues and barriers are presented to demonstrate
the generality and ease of use of the proposed primitives.
The efficient implementation of the primitives is simpler if
the multiprocessor has a hardware cache-consistency pro-
tocol. To illustrate this point, we outline how the primitives
would be implemented in the Multicube multiprocessor
[GoWofB].

1. Introduction
Architectursl support for efficient process synchroniza-

tion is an important aspect of the design of any MIMD mul-
tiprocessor, Synchronization events that occur repeatedly in
parallel programs include addition and deletion of elements
from a shared (work) queue, access to critical sections,
enforcement of low-level data dependencies within loop itera-
tions, and barriers. As the speed and number of component
processors increase, it becomes increasingly critical to design
hardware primitives that imply minimum overhead for these
and other frequently occurring synchronization events. The

Permission to copy without fee ail or part of this material is
granted provided that the copies are not made or distribukxl for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
andlcw specific permission.

@ 1989 ACM O-8979 l-300-O/89/0004/0064 $1.50

goals are: (1) to minimize the number of operations required
over the global interconnect for a given synchronixation event,
and (2) to maximize the parallelism in the execution of simul-
taneous synchrouiixtion requests.

In this paper we propose a set of architectural primi-
tives, which we believe is complete for process synchroniza-
tion in large-scale multiprocessors. The primitives have an
efficient implementation that satisfies the above goals in mul-
tiprocessors that implement snooping or directory-based
cache-coherency in hardware. We discuss how the primitives
would be implemented in Multicube, a proposed shared-
memory cache-coherent multiprocessor whose interconnect is
a &-dimensional grid of broadcast buses [GoWo88, LeVe88,
GoHW89].

There are three distinctive features of our proposed
primitives. First, the primitives include a mechanism for first-
come first-serve queueing on a semaphore. This mechanism
reduces the complexity of sequentially satisfying N simultane-
ous requests for a semaphore, measured in number of opera-
tions over the intercomuzct, to O(N). The best previous
mechanisms for this case, based on busy-waiting using the
Test&Test&Set primitive [RuSe84]. require 0 (N2) operations
over the global interconnect (see Section 2). Second, hardware
Fetch-and-0 primitives are not included in the set. The scala-
bility of the hardware Fetch-and-Q operations depend on
hardware combining in the global intemonnect, which has so
far proven to be expensive. We instead propose the use of
@ware combining for Fetch-and-a operations, and we give
an example algorithm for performing the combining in
software. We find that the hardware Fetch-and-@ primitive is
of little use if combining is implemented in software. Third,
we propose a hardware-supported Notify primitive for global
event notification. This primitive is useful for events such as
barrier completion, and can be implemented efficiently if the
multiprocessor’s global interconnect supports broadcast, such
as in Multicube.

The rest of this paper is organized as follows. Various
hardware-supported primitives that have been proposed and/or
implemented in particular shared-memory multiprocessors are
reviewed in Section 2 to provide some background for this
work. Section 3 dcEues the semantics of the proposed syn-
chronization primitives. A discussion of the utility of the
Fetch-and-@ operations, and a discussion of implementing
combining for these operations in software, are contained in
Section 4. Section 5 presents several scenarios for using the
proposed synchronization primitives in common synchroniza-
tion events, demonstrating their generality and ease of use.
Section 6 describes the Wisconsin Multicube, defines its at&i-
tectural support for each synchronization primitive, and

64

discusses the expected implementation costs. Many of the
ideas are portable to other multiprocessor systems, with
appropriate extensions to the architecture. This is discussed in
Section 7. Finally, Section 8 contains a summary of this work.

2. Background
To provide some background for the synchronization

primitives proposed, we review primitives that have been
designed and/or implemented in particular shared memory
multiprocessors.

The Sequent Symmetry multipmcessor provides three
simple operations on the lowest order bit of any address in
memory [Gste87]. The operations are equivalent to: Test,
Test-and-Se: and Unset. The hardware required to support
these primitives consists prirntily of the logic for momentarily
locking a cache line during the Intel 80386 “exchange-byte”
(XCHB) instruction. The Symmetry primitives, together with
the cacheumsistency protocol, provide semi-efficient support
for barrier completion testing and for mutual exclusion on crit-
ical sections. However, if N processors are spin-waiting (i.e.
executing ‘Test&Test&Set’) for a lock protecting a critical set-
tion, bus traffic is 0 (N2) for all N processors to gain access to
the lock. To see this, note that each time the lock is unset,
each processor makes at least two bus accesses (one for Test
and one for Test&Set). but only one pmcessor is successful in
setting the lock.

The synchronization primitives provided in the HEP
multiprocessor operate on a Full/Empty bit associated with
each word in memory [Jord83]. The bit is tested before a read
or write operation if a special symbol is prepended to the vari-
able name. The read or write operation blocks until the test
succeeds. When the test succeeds, the bit is set to the opposite
value, indivisibly with the read or write operation. These
primitives are less general than read-modify-w&e primitives,
but are more efficient for enforcing low-level single-
assignment data dependencies acmss threads that have local
access to a common memory. The hardware required for these
primitives consists of the Full/Empty bits and the logic to ini-
tialize a bit, to queue a process if the test fails, and to imple-
ment the indivisible update operations.

The NYU Ultracomputer provides an atomic
Fetch-and-Add primitive. Goulieb, et. al. have shown that
this csn be used for synchronizing multiple readers and miters,
and for managing highly parallel (work) queues [GoLR83].
This primitive is particularly interesting because the potential
exists for combining simultaneous Fetch-and-Add operations
on the same address into a single operation as the operations
traverse the interconnect. Thus, multiple requests might be
serviced in parallel. If the combining can be implemented in
practice, primitives that have this property scale efficiently to
large numbers of processors. The hardware required to imple-
ment Fetch-and-Add includes an adder in each memory
module. In addition, hardware combining requires special,
complex queueing logic at each node in the interconnection
network [GGKM83].

The IBM RP3 multiprocessor and the University of Illi-
nois Cedar multiprocessor have proposed synchronization
instructions that are generalizations of the Test-and-Set and
Fetch and-Add primitives. RP3 provides seven Fetch-and-@
operations, where Q is one of the following functions: Add,
And, Or, Min. Max, Store, or Storejf&ro [BrMW851. Note
that it is straightforward to implement Test-and-Set using the
Fetch-an&Store operation. As in the case of the NYU

Fetch-and-Add primitive, the RP3 prixnitives require logic in
the shared memory to implement the seven atomic read-
mod@-write operations.

Cedar provides a general atomic inslruction that
opemtes on synchronization variables [ZhYe87]. A synchroni-
zation variable in Cedar consists of two words: a key, and a
value. The synchronization instruction has the following form:
(address; (condition); operation on key; operation on value).
An asterisk may be placed on the condition to indicate that it
should be tested repeatedly until it is true. This single atomic
instruction is actually a set of synchronization primitives,
which can be derived by specifying the operation to be per-
formed on the key and the value [ZhYe87]. From these opera-
tions, it is straightforward to derive equivalent primitives for
Test-and-Set, an indivisible Full/Empty bit test and read/write
operation, and Fetch-and-Increment. For example, (X;
(X.key=l)*; decrement; fetch) implements the Full/Empty bit
test for a read operation. Because of the generality of the syn-
chronization mechanism, a special processor is needed at each
memory module to implement the operations.

3. Semantics of the Synchmnization Primitives
This section defines a set of proposed synchronization

primitives that we believe should be implemented in hardware.
The primitives are defined from the programmer’s point of
view. The claims made in this section about the utility and
generality of the primitives will be clarified in Section 5. and
the claims made about the efficiency will be clarified in Sec-
tion 6.

The assumptions we have made in developing the set of
primitives are that the multilxocessor has shared memory, and
that hardware combining is not implemented in the intercon-
nect (see Section 4). Furthermore, the primitive in Section 3.2
assumes broadcast is supported in the interconnect.

Section 3.1 discusses syncbits, the data structure on
which our Test-and-Set, Unset, and Queue-on-SyncBit
(QGSB) primitives operate. Section 3.2 defines these three
primitives, and Section 3.3 defines a fourth primitive for
efficient global event notification.

3.1. Synchronizotfon Bits (Syncbits)
The three primitives proposed in Section 3.2 operate on

special synchmnization bits, called syncbits. The syncbit
enforces mutual exclusion when a particular protocol is fol-
lowed by the parallel tasks. This is useful, for example, for
critical sections and pairwise data sharing.

In the Multicube implementation in Section 6. we pro-
pose to associate a syncbit with each line of shared memory.
(A similar idea has been suggested by Bitar and Despain
[BiDe86].) That is, syncbits are addressed by addressing a line
of shared memory. The term Zinc in this paper implies the
aligned tit of memory over which consistency is maintained.

There are at least three important advantages of associ-
ating the syncbits with lines of memory. Fit, synchronization
memory is allocated in proportion to data memory. Second,
efficient operations on the bits can be implemented as exten-
sions to the existing cache coherence protocol. Finally. the
machine can be easily programmed so that with acquisition of
a semaphore (i.e. a syncbit), a relevant line of data immedi-
ately becomes local to the pmcessor.

A disadvantage of associating syncbits with lines of
shared memory is that care must be taken so that two data

65

structures that require distinct syncbits are not packed into the
same line. With some restrictions on the declaration of syn-
chronization variables and their associated locks, this might be
easily guaranteed by the compiler. Thus, we believe that the
advantages of associating the syncbits with lines of memory
outweigh the disadvantages, Also note, however, that the
primitives proposed below can be implemented efficiently (but
possibly with greater hardware complexity) if syncbits are allo-
cated and addressed in some other fashion.

3.2. Test-and-Set, Unset, and Queue-on_SyncBlt (QOSB)

The Test-and Set operation on a syncbit 4dress atomi-
cally sets the syn& and returns the previous value. If the
return value is “unset”. the Test-and-Set operation was suc-
cessful, and the issuing processor is now defined to be at the
head of a FIFO queue associated with the syncbit. An Unset
operation unsets the designated syncbit and removes the pm-
cessor at the head of the syncbit queue, if the queue exists.

The QOSB (pronounced “Cosby”) operation is a non-
blocking operation on a syncbit address that adds the issuing
processor to the syncbit queue, if the processor is not already
in the queue. Once a queue has been formed, the Test-and-Set
operation fails (i.e. returns “set”) without testing and setting
the syncbit, when issued by processors not at the head of the
queue.

The definitions of the Test-and-Set, Unset, and QOSB
synchronization primitives axe summarized in Figure 1. The
purpose of the QOSB primitive is that the Test-and-Set opera-
tion is highly efficient (i.e. nearly always completes with no
operations over the global interconnect) a&r a processor has
joined the queue. The QOSB operation generates at most one
asynchronous operation over the global interconnect to put the
processor in the queue. At most one additional asynchronous
operation over the interconnect is required to notify the pmces-
sor that it is now at the head of the queue and the syncbit is
unset.

If QOSB is implemented perfectly and reliably, the
scenario for using this primitive is to issue the QOSB operation
to join the queue and then to spin. performing the
Test-and-Set operation, until the Test-and-Set is successful.

The Test and-Set operation on a syncbit address
succeeds 8 the syncbiit is %nset” and either there is no
queue or the processor is currently at the head of the
queue. After a successful Test-and-Set operation the is-
suing processor is now defined to be at the head of a
queue associated with the syncbit.

The Unset operation unsets the designated syncbit and
removes the processor at the head of the syncbit queue, if
a queue exists.

The QOSB operation is a non-blocking operation on a
syncbit address that adds the issuing processor to the
syncbit queue, if the processor is not already in the
queue.

Figure 1. Synchronization Primitive Semantics.

Unfortunately, the implementation of QOSB in Section 6 has
some probability (estimated to be extremely small) that the
queue of processors waiting for a syncbit will be destroyed. In
this case, the Test-and-Set and Unset operations still work
correctly as defined above. However, in order to guarantee
efficient (i.e. local) spinning, the processor must re-issue a
QOSB operation on the syncbit before each Test-and-Set
operation within the spin loop. This scenario is described in
Section 5. The extra QOSB operation has no effect if the pro-
cessor is already in the queue and the queue is still intact. If
the queue has broken down, the extra QOSB operation adds
the processor to a new queue for the syncbit, with no guarantee
that the processor is in the same position as in the original
queue.

The important property of the QOSB. Test-and-Set,
and Unset operations defined above is their efficiency for lock
access. When these primitives are used as described above, the
number of operations over the global interconnect for N spin-
ning processors to access a syncbit lock sequentially is 0 (N).
assuming queue breakdown does not occur. This is contrasted
with the 0 (N’) algorithm using the Sequent shadow lock algo-
rithm, and the higher complexity of other previously proposed
primitives.

There are two other useful properties of the QOSB
primitive. First, it can be used for FCFS access to bmary
semaphores. The first-come first-serve scheduling is slightly
imperfect due to the very small probability of queue break-
down. Second, it is non-blocking, which allows a processor to
execute useful instructions that are not dependent on the sync-
bit while it is waiting to be added to the queue (and/or to
receive the notification that it is at the head of the queue).

It should be noted that a QOSB operation obligates the
processor to Unset the syncbit, some time after its
Test-and-Set operation succeeds. so that processors behind it
in the queue will eventually obtain the syncbit. Also, QOSB
and Test-and-Set operations that are issued for a syncbit by
two or more processes running on the same processor may
interfere with each other. However, the same algorithm which
handles rebuilding of the queue also guarantees the correct
handling of this case.

3.3. Bruadcast Notify

Applications exist in which a number of processes wish
to determine the status of an event (e.g. barrier completion). In
a cache-coherent, shared-memory system, global event
notification can be realized with conventional reads and writes
to memory. Unfortunately, for many implementations, such
operations generate hot spot confention [PfTVoS5]. resulting in
serious intermnnect bottlen~ks. The Notify primitive imple-
ments a restricted write broadcast capability to eliminate this
bottleneclc.

4. Fetch-and-Q,

The Fetch-and-0 memory operation is conspicuously
absent dram the set of hardware-implemented synchronization
primitives proposed in Section 3. This primitive is useful in
many situations (e.g. for obtaining the next loop iteration
value). However, the real power of the Fetch-and-a SF-
chronization primitive is derived from the possibility of com-
bining simultaneous Fetch-and-a requests intO one operation
that proceeds over the global interconnect to memory. With
combining, the latency of a single Fetch-and-a operation is
proportional to the path length of the combining network, and

66

not to the number of simultaneous Fetch-andAdd requests.
The best combining networks are tree-structured, having a path
length of 0 (lo&N). where k is the (avg) degree of branching,
and N is the number of processors. Thus Fetch-and-m opera-
tions possess the proper scaling behavior for very large mul-
tiprocessors, as contrasted with the strictly serial behavior
inherent in most other synchronization primitives.

For the hardware Fetch-and-@ primitives, combining is
naturally implemented at nodes in the interconnect that for-
ward the request to memory. Unfortunately, these combining
networks are expensive, due both to the actual implementation
costs and to the performance penalty for requests that don’t use
the combining feature. If we assume that hardware combining
is too expensive, we face the following key questions. Fit,
can the inexpensive software combining techniques proposed
by Yew, Tzeng, and Lawxie rYeTI.271 he applied to the com-
big of Fetch-and-Q operations? Second, a simple, serial
Fetch-and-0 operation can be implemented in hardware, even
if combii is not implemented for this operation, However,
this primitive can also be easily implemented in software using
the syncbit primitives in Section 3. If hardware combining is
not implemented, is the simple hardware Fetch-and-0 opera-
tion beneficial enough to justify its implementation complex-
ity? We address these questions in this section. Our answer to
the first question is yes, but we haven’t yet &vised an algo-
rithm that we’re satisfied with. Our answer to the second ques-
tion is, tentatively, no.

4.1. Software Combining for Fetch-and-Add

We have investigated algorithms for implementing
Fetch-and-@ combining in software. These algorithms use the
primitives proposed in Section 3. and a simple hardware
Fetch-and-@ primitive when useful.

The problem is considerably more complex than the
software combining example given by Yew et. al. In their
example, each processor issues exactly one request to decre-
ment a counter. whose value will be zero when all the requests
have completed. They replace the original counter with a tree
of counters. and a process is assigned to exactly one of the
tree’s leaf nodes. Each counter in the tree is initialized to the
degree of branching at that level in the tree. A process ready to
perform the counter decrement operation decrements its leaf
counter. If the counter is now zero. the process progresses up
the tree, recursively decrementing the node counter and con-
tinuing if the counter is zero. The process that decrements the
root value to zero has completed the entire operation.

Software combining for the Fetch-and-@ operation is
significantly more complex than for the above example for
several reasons. First, processes repeatedly issue requests.
Second, the numbez of processes that will issue requests within
any given time frame is unknown, and each process requires a
response to each request. Where the relevant workload param-
eters are unpredictable, there is a made-off between how long
to wait to combine requests and how quickly to respond to a
single request.

An example of an algorithm that implements
Fetch and-@ software combining, using a binary combining
tree, s given in the Appendix. We are not claiming that this
algorithm is optimal, but rather that it is one of the simpler
algorithms we have investigated so far, and that it illustrates

the use of the software combining concept for Fetch-and-Add.
Other algorithms are under investigation that provide possibly
higher performance and greater generality, although at an

increased level of complexity. Analysis of the performance of
these algorithms is also the subject of continuing study.

4.2. Simple Hardware Fetch-and-@

Providing simple Fetch-and-Q operations (i.e.
Fetch-and-@ without combining) in hardware may reduce
both the number of operations over the interconmct, and the
amount of data transferred per operation, as compared with
performing this operation in software. Nevertheless, the
implementation of this new class of operations is probably
only justified if the operations are expected to occur reasonably
frequently.

We have not completely ruled out the possibility of
including the hardware Fetch-and-@ primitive in the set of
primitives we recommend. However, it is currently not clear
that the benefits of the primitive outweigh its implementation
cost when hardware combining is too costly.

5. Scenarios

The choice of an appropriate set of synchronization
primitives has been driven, so far, by the need to provide cer-
tain basic capabilities to the programmer. An alternative
approach is to first choose a set of important synchronization
problems, and then to find primitives that solve them. Such an
approach can be used to evaluate the efficiency and ease of use
of the proposed primitives, while emphasizing those solutions
that will be used most extensively.

Historically, scenarios representative of a large class of
synchronization problems, such as the readers-writers or the
dining philosophers problem, have been used to judge syn-
chronization primitives. However, with the provision of an
efficient implementation of binary semaphores solutions to
most of these problems are straightforward. Thus the efficient
synchronization of large numbers of processes becomes the
relevant issue. An appropriate set of additional scenarios
might include simple painvise data sharing (e.g. nearest neigh-
bor communication), barrier synchronization, waiting for a
global event, and work queues.

In this section we present solutions to the above prob-
lems that are applicable to shared-memory, cache-coherent
multiprocessors like Multicube. These examples sre written as
system library routines which employ the synchronization
primitives presented in Section 3. Each algorithm is evaluated
in terms of the bus traffic generated and latency.

5.1. Semaphores

Syncbits and Test-and-Set are sufficient for providing a
mechanism to guarantee mutually exclusive access to shared
data. Executing a QOSB operation first will queue the proces-
sor for the syncbit. eliminating spinning over the global inter-
connect by a Test-and-Set spin loop. In addition the queue
prevents starvation of processes. Since the queue mechanism
provided by QOSB can be broken, it is useful to place a QOSB
operation in the spin loop itself. The redundant QOSB opeia-

tions are ignored. except when the queue breaks down. in
which case the queue will automatically be re-built. The
resulting algorithm is shown below. A simple Unset operation
is used to release the lock.

67

procedure lock (addr)
begin

QOSB (addr)
while (TEST-AND-SET (addr)) do

QOSB (addr)
end

procedure unlock (addr)
begin

UNSET (addr)
end

The above mechanisms provide for a powerful, efficient
implementation of binary semaphores. Bus traffic consists of a
single QOSB operation and line transfer for each request to
access a critical section. If needed data associated with the
lock is placed in the same line, then the overhead of locking a
line is essentially eliminated. Since the solution employs busy
waiting the operating system need never be invoked. A block-
ing version is straightforward to implement by invoking the
operating system to block the process if Test-and-Set fails
after some number of iterations. The operating system could
then periodically check the lock and wake up the process when
it becomes available.

As with most implementations of semaphores, locks
provided by Test-am-Set and QOSB are only advisory. That
is. processes may read or write data protected by a lock with
impunity. Only if every process follows the locking protocol
can mutually exclusive access be guaranteed.

While the queueing mechanism attempts to provide
first-come first-serve service, two situations make it impossible
to guarantee such an ordering. First, the queue may break
down, resulting in a (possibly) different order when it is
rebuilt. Second, each processor is allowed only a single queue
entry. When a lock anives the first process attempting to set
the lock succeeds. Any other processes on that processor will
have to wait until the lock is released before another queue
entry can be created.

5.2. P&wise Data Sharing
For many applications it is important to handle

efficiently a special case of mutual exclusion, namely, pair-
wise sharing. Since an arbitrary computation can be placed
between the initial QOSB and the Test-and-Set spin loop, and
since QOSB does not cause the processor to block, these prim-
itives can be used to perform efficient prefetching.

For example. a process may QOSB for lines for each of
its ‘heaxest neighbors”, and later check if the lines have
arrived, or wait on them if they have not. Thus QOSB can be
used to overlap the acquisition time for multiple semaphores,
implying that latency can be reduced or eliminated. This tech-
nique is useful even for lines that are not shared.

QOSB ;d;t;[i+kl [jl)
QOSB (data[i-kl (jl)
QOSB (data[il [j+kl)
QOSB (data[i][j-kl)

lock ;dita[i+kl (jl)
lock (data[i-kl [jl)
lock (data[i][j+kl)
lock (data[il [j-k])

. . .

Caution must be taken whenever using QOSB to per-
form prefetching. Issuing a QOSB request implies that the

process will eventually acquire the locked line by successfully
issuing a Test-and-Set, and later release it; otherwise other
processes using QOSB to acquire the line will fail.

This somario may be complicated by the possibility of a
writer process that releases, re-acquires. and updates a shared
line before a reader process has a chance to access the new
data. This situation may occur where processes exchange data
without intervening barriers. A similar situation occurs when a
reader accesses the same data more than once. These cases can
be solved by placing a tag in the line of the corresponding lock
that each process sets before releasing the line. Now a process
can spin locally until the tag has changed by repeatedly waiting
for the lock, checking the tag. and releasing the lock (so
another process can acquire it). This guarantees alternating
aeeess to the line. In many cases this will be unnecessary,
since the queueing mechanism guarantees that a waiting pro-
cessor will acquire exclusive access to a line if another proces-
sor releases it even momentarily.

procedure wait-turn (lock-tag)
begin

lock (lockJag)
while (lock-tag == MY-PROCESS-ID) do

unlock (lock-tag)
lock (lock-tag)

end
lock-tag = MY-PROCESS-ID

end

53. Barrier Synchronization
Barrier synchronization is a mechanism which guaran-

tees that all processes have reached a specitied point in their
execution before any are allowed to proceed. It is used by a
large number of algorithms to synchronize loop iterations or
other phases of program execution. A number of techniques
for implementing batriers have been proposed including the
use of special hardware [Lund87]. a series of locks mroo861,
and a software combining tree with Fetch-and-Add [YeTL87].

A barrier consists of two separate functions: (1) count-
ing the number of processes that have arrived at the barrier and
(2) notifying all processes once that point has been reached.
An appropriate solution to the tist part is to use a software
combining tree scheme, such as that described by Yew, et. al.
[YeTL87]. The choice for the degree of the tree largely
represents a trade-off between the latency due to serial
fetch-and-add operations at a single node and the latency due
to the logarithmic number of fetch-and-add operations which
must be performed by the last process to reach the barrier.

The second step in a barrier, notifying all processes that
the barrier has been reached, is an example of what we shall
call global event rwtijbtion. In multiprocessors which do not
provide hardware cache coherence. notification is performed
by processes spinning on some variable that is written when
the barrier is reached Of course, these accesses may be distri-
buted by using the software combining tree to pass back the
notification. However. the spinning will adversely affect the
aeeesses over the global interconnect of those processes that
have not finished.

Several solutions which require no spinning are possi-
ble. Fit, a simple flag can be written by the last process to
reach the barrier. Since hardware cache coherency allows mul-
tiple shared copies, all spinning is performed locally. This
solution is shown below.

68

A local temporary variable is used to hold the value of (1) Waiting for an event that may be caused by any single
the barrier’s event notification flag. Each process executes process, for example, in a parallel search. The solution is par-
code to indicate that it has reached the barrier using a software ticularly simple, since the processor determining that the event
combining tree to update the barrier count (which is a actually has occutmd simply updates the event flag. A solution using
a tree of counters). The last process increments the event flag, Notify is Aown below. It is straightforward to add a third rou-
while all other processes spin waiting for the event flag to tine which would allow processes that wish to perform compu-
change. tations to occasionally check for such an event

/* Variable temp is private to each process.
Function combining-tree performs the software
combining function and returns true to the
process which decrements the barrier count to
zero, and false to all others. */

procedure wait-event (flag, local-flag)
begin

while (flag == local-flag) do
/* spin */

local-flag = local-flag + 1
end

procedure barrier (count, flag)
begin

temp = flag
if (combining-tree (count)) then

flag = temp + 1
else

end

while (flag == temp) do
/* spin */

Unfortunately, the write to the event flag causes all
shared copies to be invalidated, immediately after which every
press will reread the flag. If au efficient hardware mechan-
ism exists to combine these requests [GoHW89] then this solu-
tion may be practical. However, it is also straightforward to
propagate the barrier notification back through the tree by set-
ting each no& to zero and using QGSB to avoid spinning over
the global interconnect.

Considering this last solution, let us assume that there
are N processors involved in the barrier and that the degree of
the software comb’ ’ treeisD. ThenthetotalbustrafRcis

dominatedbytbe0 (D-1)
r I

D (N-l) - combiig operations, and the

latency by logoN, the height of the tree, which has
0 (D lo&N) serial operations in the worst case, that is, where
all processes reach the barrier simultaneously.

However, in the case that all processes are waiting on a
single process to finish. only logoN serial operations are
required to determine that the barrier has been reached. Thus,
event notification will dominate the latency of the barrier fmm
the point where all processes have finished performing their
computations. Reducing this latency can be accomplished by
providing a primitive which directly implements global event
notification. This scheme substitutes the normal write to the
event flag with a Notify operation which updates all shared
copies, instead of invalidating them. Thus the Notify primitive
avoids the read sharing problem caused by processes spinning
on the event flag when it is invalidated

procedure barrier (count, flag)
begin

temp = flag
if (combining-tree (count)) then

NOTIFY (flag, temp+l)
else

end

while (flag == temp) do
/* spin */

Barrier synchronixation is a special case of waiting for a
global event There are two other global events of particular
intereat

procedure signal-event (flag, local-flag)
begin

if (flag == local-flag) then
NOTIFY (flag, local-flag+I)

local-flag = local-flag + 1
end

(2) Waiting for K out of N proczsses to finish. The determi-
nation that the event has occurmd is somewhat more cornpli-
cated than in the case of bat&r synchronization because all
processes are not participating in the combining. Thus a sim-
ple tree algorithm is not sufficient to combine requests. Com-
bining can be handled, however. by more general techniques,
such as the software combining Fetch-and-Add algorithm in
the appendix.

5.4. Work Queues
Work queues serve as a means for a collection of

protxsses or threads to schedule work for themselves, without
the overhead usually incurred when the operating system pro-
vides this function If the unit of work is relatively small, the
work queue may become a bottleneck unless multiple inser-
tions and deletions are allowed to proceed conc~ently. This
is true even if the queue is the operating system ready queue.

An itnplementation of a work queue that eliminates
serial bottlenecks has been published previously using
Fetch-and-Add [GoLR83]. Unfortunately, the solution
assumes hardware combining for Fetch-and-Add and results
in spinning over the interconnection network by processes
waiting on a full queue. an empty queue, or a queue entry that
is not yet available. However, a solution requiring only local
spinning is possible using the QGSB primitive and
Fetch-and-Add, as demonstrated by the following scheme.

A work queue can be implemented as a circular array
where each entry in the queue consists of three fields: (1) a
lock for controlling insertions to that entry, (2) a lock for con-
trolling deletions, and (3) the queue entry itself. Each of these
fields must be allocated in a separate line so that actions per-
formed on locks and queue entries do not conflict. In addition,
two counters are maintained with the queue for specifying the
indexes for the next insertion and next deletion

An insert operation is performed by obtaining a unique
index for insertion (modulo the queue size), using a
Fetch-and-Add operation (such as that in the appendix) to
&xc3mnt the appropriate counter. The process then Waits on
the insert lock for that entry. If the last delete operation has
already completed then the lock will be available and the pro-
cess performing the insert will be able to proceed immediately.
If not, the insert lock will be unset when the next delete opera-
tion for that entry is performed. In either case, when the lock
is acquired the process is free to insert the new item into the

69

queue, after which it will mset the delete lock for that entry.
The delete operation functions similarly.

procedure insert (q, item)
begin

index = fetch-and-add(q.insert,l) mod q-size
lock (q.insert-lock[index])
q.entry[index] = item
unlock (q.delete-lock[index])

end

procedure delete (q, item)
begin

index = fetch-and-add(q.delete,l) mod q.size
lock (q.delete-lock[index])
item = q.entry[index]
unlock (q.insert-lock[index])

end

The solution requires no bounds checks, since multiple
processes can be queued to perform the same operation on the
same queue entry if the number of outstanding requests hap-
pens to exceed the queue length. Note that it is easy to extend
the solution to allow a process to perform multiple insertions
or deletions.

Each insert or delete operation requires a
Fetch-and-Add, the QGSB operation requesting the appmpri-
ate lock, two line transfers (one for the lock and one for the
queue entry), and an Unset operation. If software combining is
employed, both bus traffic and latency will most likely be
dominated by that for the fetch-and-add operation, excluding
any time required waiting for a queue entry to become avail-
able.

6. Implementation of the Synchronization Primitives

The proposed synchronization primitives have been
designed for implementation on a large-scale cachecoherent
multiprocessor. The recently proposed Multicube architecture
[GoWo88. Le.Ve88, GoHW89] is used as au example of such a
system in order to demonstrate theii implementation efficiency,
This archite.cture is briefly described below. It should be noted
that the lack of hardware cache coherency mechanisms in other
multiprocessors does not preclude the use of some of the pm-
posed primitives. This topic is left for discussion in Section 7.

The synchronization primitives take advantage of
several mechanisms provided by the cache coherency
hardware: (1) the abiiity to acquire an exclusive copy of a line,
(2) the ability to locate a particular copy of a line (e.g. the
exclusive copy), and (3) the ability to broadcast a request to all
shared copies of a line. While additional hardware is required
in addition to that for maintaining coherency, the provision of
these three mechanisms removes the major costs associated
with the implementation of the primitives.

A further characteristic of cache management is that, on
a miss operation, memory space is allocated for bringing in the
new line. While waiting for the line to be received the
memory is unused. In addition, the copy of a line in main
memory is often stale, and must not be referenced. Serendipi-
tously, both cache and main memory contain inconsistent lines
which can be so exploited almost exactly during the time that
the syncbit request is enqueued. This suggests the possibility
that the memory contained in inconsistent copies of a line
could be used for building a queue of requesters waiting for the
line.

6.1. The Multicube Architecture

The Multicube architecture employs a multi-
dimensional grid of buses to provide efficient hardware cache
coherency and high interprocessor bandwidth. The architec-
ture provides for a multi-level cache structure: a first-level, or
processor, cache for reducing memory latency and a second-
level, or snooping, cache for minimizmg bus traffic. The
second level caches are envisioned as being very large (a
minimum of 64 DRAMS). suggesting that for typical applica-
tions, most cache misses will result from accesses to shared
data recently mod&d by another processor. Coherency is
maintained between the two levels of cache by using a write-
through strategy and imposing the MultiLevel Inclusion pro-
perty [BaWa87]. Both memory and I./O devices are distributed
among the processors. Because of the symmetry of the organi-
zation, bus traf8c can be distributed uniformly across the
buses, avoiding bottlenecks in the global interconnect. The
Multicube project includes the design and implementation of a
two-dimensional first generation prototype, the Wisconsin Mul-
ticube. shown in Figure 2.

Multicube is an attractive architecture for developing
parallel a~lications. While providing a view of a single
shared memory to the programmer, it imposes no notion of
geographical locality. This ensures that applications developed
for m&is [Bell851 can be easily converted to this architecture.
Thus, the Multicube is intended to be a general purpose mul-
tiprocessor architecture which supports a large range of appli-
cations, such as high-transaction database systems, large-scale
simulation models, and artificial intelligence applications, as
well as numerical applications.

High speed prowssors generally require caches to
achieve high performance. In a multiprocessor, this introduces
the problem of cache coherency. Hardware cache coherency
schemes relieve the programmer and/or compiler from having
to detect potential conflicts in accessing shared variables, while
irwrring the overhead of maintaining coherency (i.e. flushing
cache entries to main memory) only when actually called for.

3
x

Figure 2. The Wiswnsin Multicube.

70

The Multicuba cache coherency scheme insures strict
sequentiality of writes to a line by providing an exclusive copy
of the line to a requesting processor. A write request that
misses in the local caches results in a bus request that is either
routed to the cache containing an exclusive copy of the desired
line, or to main memory if the line is shared. This routing is
performed by special hardware which is maintained in some
type of distributed directory. If the line is currently shared
when a request having the intent to modify the line reaches
main memory, all outstanding copies must be invalidated.
This is accomplished using a broadcast mechanism which pro-
pagates the invalidation to every processor.

6.2. Syncbits and Basic Te.s-and-Set
A cache line is assigned one of several states. For the

basic Multicube protocol. there are only three such states:
Shared. Modijied, and Invalid. Globally, a memory line is
always in one of two states: Modified or Unmudihd. A
memory line in global state Modified resides in exactly one
cache. in state Modified, and is invalid in all others and main
memory. A memory line in global state Umnodified is valid in
main memory, and may exist in one or more caches in state
Shared.

Main memory includes a tag indicating the global state
of the line. A proposed technique for implementing the sync-
bit is to introduce additional cache states and global states, and
defme the syncbit in terms of a partitioning of the states. Since
main memory in Multicube already maintains validity bits and
possibly directory information for lines, adding states to
encode the syncbit does not significantly increase the hardware
complexity. Test-and-Set has the effect, then, of testing and
possibly modifying the state of the cache line, including
remote cache and main memoty states as necessary.

The first cache state to be added is Locked. This state is
similar to Modified in that it is held exclusively, i.e. it is the
only copy in the system and may be written at will without
generating bus traflic. It differs from Modified primarily in
that the syncbit is set. Like Mod&d, the Locked state is both
a cache state and a global state. Main memory, however, does
not distinguish between the states Locked and Modiied, since
in neither case does it contain a valid copy of the lme, and may
not be informed when a change of state occurs.

In the absence of a queue, Test-and-Set atomically
reads the value of the syncbit for a specified line and sets it. If
the line is present locally, its state is set to Locked. A local
line in Shared state must lirst be changed to Mod&d state, fol-
lowing the Multicube protocol. If the line is not present
locally, the request is forwarded to the appropriate place: to the
cache containing the Modified or Locked line, if any, and to
main memory otherwise. The test is performed remotely, and
if the syncbit is set, a negative response is returned. If the
syncbit is unset, the protocol for changing a line to Modiied is
followed, and the line is returned and placed in the local cache
in state Locked.

Unset. like Test-and-Set, is treated similarly to a write
operation. However, in the csse that the line is not present
locally, the syncbit is cleared remotely. In either case, the state
is changed to reflect the fact that the syncbit is unset.

6.3. Queue-On-SyncBit (QOSB)
QOSB performs two important operations: (1) it allo-

cates space for a shadow copy of the line in the local cache
with the &J&W syncbit set and (2) it performs a remote access

to acquire an exclusive copy of the line. Neither operation is
performed if the line or a shadow is already present in the local
cache. This guarantees that if a second QGSB operation is per-
formed on the same line while the shadow line is still presenS
it will have no effect. It should be clear that this restriction
also limits each processor to one queued QOSB request per
line.

QGSB necessitates the addition of at least two addi-
tional cache states. Fit, a new line, in state Shadow is needed
for indicating locally that a QOSB has occurred and a remote
request for the line has been generated. In this state the data in
the line is invalid, but the syncbit is set, so that a succeeding
Test-and-Set operation will fail. Second, the successful com-
pletion of a QOSB requires a Sticky state, containing valid
data, with the syncbit unset. The distinction between Sticky
and Modified will be described below.

When a processor holding a line with the syncbit set
receives a remote QOSB request, the request must be queued.
Link information for defining the queue can be stored in sha-
dow copies of the cache line, since the data in such lines is
invalid As the queue is built up, each shadow line is used to
store a pointer to the next element of the queue. Of course the
processor at the head of the queue has no such space since its
copy contains valid data. Thus the queue head and tail pointers
are stored in main memory where, because the line is in state
Modified, the data is invalid After the queue is created, main
memory acts as the destination for succeeding QOSB requests
rather than the processor containing the Locked cache line and
is responsible for generating the bus operations to build the
queue.

6.4. Interaction of the Primitives
Because a QOSB operation creates a shadow line in the

local cache, a succeeding Test-and-Set can identify most of
the circumstances under which it will fail without initiating a
bus operation by simply testing the state of the local line: If the
syncbit is set the Test-and-Set operation fails. This includes
the cache state Shadow. If the line is present and the syncbit is
unset, the Test-snd-Set operation succeeds and the cache line
is changed to state Locked. This includes the cache state
sticky.

Unset has an additional effect if the line is queued: It
removes the head of the queue. Thus in addition to finding the
Locked line, the Unset operation must initiate the transfer of
the line to the next element in the queue-if one exists-
where the line is placed in state Sticky. In the typical case,
where the Unset acts upon a local cache line in state Locked.
Note that if a queue exists, the line must be sent to main
memory to be routed to the top of the queue. This inefficiency
can be mitigated with a small cache that saves recent remote
QGSB requests, allowing the line to be transferred directly to
the appropriate cache. Of coutse main memory must still be
not&d so that it can update the head pointer.

It now becomes clear why the distinction between
Modiied and Sticky is necessary. If a remote QOSB request
arrives for a line in Sticky state it is queued rather than
transferred as in the case of a Modified line. This is necessary
to assure that no other processor is able to jump to the head of
the queue and capture the syncbit between the time that the
line arrives as a result of a QCXB instruction and the ensuing
Test-and-Set instruction.

71

65. Implkations of the Multkube Implementation
The proposed implementation contains implications for

both the Test-and-Set and Unset operations. First, efficient
local spinning is provided by allowing Test-and-Set to test the
local shadow syncbit. Second, the hardware and software must
handle the case where a shadow line is replaced in one of the
caches. For hardware, this requires a broadcast mechanism to
break down the queue if a queue pointer is lost. For software
this requires an algorithm to rebuild the queue in the event that
it breaks down. Finally, the hardware must correctly handle
the case where a Locked line is replaced. Handling of this
unusual case is complicated by the fact that main memory uses
the buffer space for the memory line to store queue informa-
tion. When a Locked line must be purged Corn the cache, it
cannot be written to main memory without breaking down the
queue. An alternative is that it could be forwarded to the cache
next in the queue, where it is inserted in LOCI& rather than
sticky state.

The QOSB operation imposes no responsibiity on the
hardware. It is simply a hint that a processor is about to per-
form a Test-and-Set operation. As such, it can always be
ignored if necessary. Obviously serious performance degrada-
tion will result if the hint is ignored frequently, but it greatly
simplifies implementation to be able to ignore it at incon-
venient times.

6.6. Notify

Notify remotely writes a small mrmber of designated
bits in a cache line. In the expected case, where there are a
number of shared copies distributed among the processors, the
update must be propagated using a broadcast mechanism. In
Multicube this can be implemented as a minor extension to the
broadcast invalidate mechanism, and thus requires little addi-
tional overhead. The cache lines in state Shared to which the
Notify broadcast applies are updated rather than invalidated,
and remain in state Shared.

Some snooping cache protocols employ broadcast
writes instead of, or in addition to, broadcast invalidations.
Such protocols are known to perform efficiently for the case of
a single writer and multiple readers [ArBa86]. an example of
which is Global Event Notification. A system that broadcasts
invalidates instead of writes may benefit from this special case,
though a capability for efficient read-sharing greatly reduces
the benefit.

7. Porting the Primitives to Other Environments
The synchronization primitives defined in this paper

were motivated by the Multicube architecture, and are well-
suited for efficient implementation in that context. However,
the primitives themselves assume nothing specific to Multi-
cube, and could be implemented on any shared-memory mul-
tiprocessor, even one without hardware-guaranteed cache con-
sistency.

As pointed out in Section 3, there are several benefits
from associating a syncbit with a line of memory. In a system
without caches, or with caches for which there is no hardware
guarantee of consistency, the Test-and-Set, QOSB. and Unset
primitives might still be appropriate, reducing interconnect
traffic by eliminating non-local spin-waiting. These primitives
can be realized by implementing a hardware queue in some
fashion, providing each processor with a capability to deter-
mine locally if it is at the head of the queue, and providing a
mechanism to notify the appropriate processor when it

becomes the head of the queue.
For systems implementing hardware-guaranteed cache-

consistency, the syncbit can likely be implemented by extend-
ing the cache states. The Test-and-Set, QOSB. and Unset
primitives can then be implemented with the attendant benefits
of associating a syncbit with a cache line. In addition, for sys-
tems employing broadcast invalidation to guarantee exclusive
access for writing a line, the Notify primitive can be readily
implemented as an extension to the broadcast invalidation.

8. Summary
This paper has proposed a set of efficient primitives for

process synchronization in a large-scale, cache-coherent,
shared-memory multiprocessor. These primitives are based on
the use of synchronization bits (syncbits), logically associated
with each line in memory, to provide a simple mechanism for
mutual exclusion. This scheme is extended to include the use
of shadow syncbits to provide for efficient (i.e. local) busy
waiting.

A queueing mechanism that allows for an extremely
efficient implementation of binary semaphores is supported. In
addition an efficient global event notification mechanism is
provided.

Several important synchronization scenarios such as
single-reader/single-writer sharing, waiting on multiple events,
barrier synchronization, and work queues, were given. These
examples serve to demonstrate the efficiency, generality. and
ease of use of the proposed primitives.

The Fetch-and-Add primitive is a useful mechanism
for handling large numbers of processors. Unfortunately, pro-
viding scalability for this primitive through the use of
hardware combining is very costly. In this paper we have pro-
posed implementing a scalable Fetch-and-Add operation using
a software combining tree and given one algorithm to illustrate
the approach.

The implementation of the proposed synchronization
primitives is well suited for the Wisconsin Multicube. a
shared-memory cachecoherent multiprocessor. The primitives
demonstrate how the Multicube’s mechanisms for routing
requests to a valid copy of a line, acquiring an exclusive copy
of a line, and broadcasting a state change for a line can be
effectively utilized. Further study has indicated that the pro-
posed primitives may be well suited for other architectures as
well.

9. Acknowledgements
We would like to thank Dave James, Pen Yew, Bob

Beck, and members of the Multicube project for many helpful
discussions. Mark Hill participated in many useful discussions
and provided many helpful suggestions to improve both the
form and content of the paper. Ross Johnson provided impor-
tant insight into Fetch-and-Add algorithms implementing
software combii.

This work was supported in part by the National Sci-
ence Foundation, under grants DCR-8604224 and DCR-
85451405.

‘72

10. References

[ArBa86] Archibald, J., and J. L. Baer, “Cache Coherence
Protocols: Evaluation Using a Multilxocessor Simula-
tion Model,” ACM Transacrions on Computer Systemr.
November 1986, pp. 273-298.

lBaWa871 Bacr, J. L.. and W. H. Wang, “Architectural
Choices for Multilevel Cache Hierarchies,” Proceedings
of the 1987 Internafional Conference on Parallel Pro-
cessing, August 1987, pp. 258-261.

Bell851 Bell, C. G.. “Multis: A New Class of Multiprocessor
Computers,” Science, April 26, 1985, pp. 462467.

lBiDe861 Bitar, P., and A. M. Despain, “Multilxocessor
Cache Synchronization Issues, Innovations, Evolution,”
Proceedings of the 13th Annual haternational Sympo-
sium on Computer Architecture, June 1986, pp. 424433.

[BrMW85] Brantley. W. C., K. P. McAuliffe, and J. Weiss,
“RP3 Processor-Memory Element,” Proceedings of the
1985 International Conference on Parallel Processing,
August 1985, pp 782-789.

lBroo861 Brooks. E. D.. ‘The Butterfly Barrier.” Intemu-
tional Journat of Parallel Programming, August 1986,
pp 295-307.

[GoHW89] Goodman, J. R.. M. D. Hill, and P. J. Woest,
“Scalability and Its Application to Multicube,” submit-
ted to the 16th Annual International Symposium on
Computer Architecture, May 1989.

[GoWo88] Goodman J. R.. and P. J. Woe& “The Wisconsin
Multicube: A New Large-Scale Cache-Coherent Mul-
tiprocessor,” Proceedings of the 15th Annual Intema-
tional Symposium on Computer Architecture, June 1988,
pp. 422431.

[GoLR83] Gottlieb, A., B. D. Lubachevsky, and L. Rudolph,
“Basic Techniques for the Efficient Coordination of
Very Large Numbers of Cooperating Sequential Proces-
sors.” ACM Transactiom on Programming Lmguages
and System, April 1983, pp. 164-189.

[GGKM83] Gottlieb, A., R. Grishman, C. P. Kruskal, K. P.
McAuliffe. L. Rudolph, And M. Snir, “The NYU Ultra-
computer -- Designing an MIMD, Shared Memory
Parallel Machine,” IEEE Transactions on Computers,
February 1983. pp. 175189.

[Jord83] Jordan, H. F., “Performance Measurements on HEP
-* a Pipelined MIMD Computer.” Proceedings of f/w
10th Annual Internationai Symposium on Computer
Architecture, June 1983, pp. 207-212.

[LeVe88] Leutenegger. S. T.. and M. K. Vernon, “A Mean-
Value Performance Analysis of a New Multiprocessor
Architecture,’ * Proceedings of the I988 ACM SIG-
METRICS Conference, May 1988, pp. 167-176.

[Lund871 Lundstrom, S. F.. “Applications Considerations in
the System Design of Highly Concurrent Multiproces-
sors,” IEEE Tranwctions on Computers, November
1987. pp. 1292-1309.

[Oste87] Osterhaug, A., Guide to Parallel Program.ming on
Sequent Computer Systems, 2nd ed.. Sequent Computer
Systems, Inc., Beaverton, Oregon, 1987.

[PM0851 Pfister, G. A., and V. A. Norton, “Hot Spot Con-
tention and Combining in Multistage Interconnection
Networks,” Proceedings of the 1985 lntemhnal
ConJerence on Parallel Processing, August 1985. pp.

790-797.
[RuSe84] Rudolph, L., and Z. Segall, “Dynamic Decentral-

ized Cache Schemes for MIMD Parallel Processors,”
Proceedings of the 11th Annual International Sympo-
sium on Computer Architecture, June 1984, pp. 340-347.

[YeTL87] Yew, P. C., N. F. Tzcng, and D. H. Lawrie. “Dis-
tributing Hot-Spot Addressing in Large-Scale Multipro-
cessors,” IEEE Transactions on Computers. April 1987,
pp 388-395.

[ZhYe87] Zhu. C. Q.. and P. C. Yew, “A Scheme to Enforce
Data Dependence on Large Multiprocessor Systems,”
IEEE Transactions on Software Engineering, June 1987,
pp. 726-739.

73

Appendtx

A Software Combining Tree Implementation
of a Combining Fetch-and-Add Operation

An algorithm for providing combiig Fetch-and-Add
in software is described below. In this algorithm, requests to
increment a shared counter am made at arbitrary times by a set
of Processes. The comer variable is structured as a binary
software combining tree with separate increments stored at
each node used for combining. and the actual value stored at
the root.

The Fetch-and-Add operation consists of three distinct
phases which correspond to a Process (1) moving up the tree
‘%laiming responsibility for” individual nodes, (2) revisiting
the claimed nodes to perform combining, and (3) waiting for
and then distributing the results to those nodes where combin-
ing has been Performed.

Each node in the tree consists of five fields: status,
waifjag, firsf~incr, second_incr, and result. The field
waitflag indicates if a Process is waiting for a result at that
node. jkst_incr is the amount the subtree containing the pro-
cess that has claimed the no& intends to increment the counter
by: secod-incr is the amount the waiting Process intends to
increment the counter by. Finally resuZr is the counter value to
be distributed down the next (sub)tree.

The stufus field designates what state the node is in.
The root node is always in state ROOT. Other nodes can have
one of three Possible values, corresponding to the which phase
of the algorithm the no& is Participatins in:

(1) FREE: this node is unchdm~

(2) COMBINE: this node is for combining;

(3) RESULT: this node contains results,

The algorithm proceeds as follows. (See Figure A.2.)
In Part One, A Process Progresses up the combiig tree mark-
ing each FREE node as a COMBINE node. If the process
finds a RESULT node it must wait until the Previous
Fetch-and-Add operation finishes using this node (i.e. the
node will become either FREE or COMBINE). before continu-
ing up the tree. When a ROOT or COMBINE node is found,
this node is locked, and the algorithm continues to Part Two.

In Part Two the Process locks each node Previously
visited, bottom-up, and tallies the node second incr vahs,
which may have been updated since the node WC 6rst visited.
Along the way, the tally for the Previous subtree is stored in
first-incr. The total tally represents the aggregate increment
requested by the subtree the Process is responsible for. The
revisited nodes will remain locked until results are distributed.

In Part three, if a COMBINE node was reached then the
hal tally is added to secod-incr for that node, the waitjtag
field for the node is set to true, and the process spins on the
status field (using the pairwise-sharing algorithm of Section 5)
until the node becomes a RESULT node. For either a
RESULT or ROOT node the result of the node is saved for dis-
tributing results downward. In the case of the ROOT node the
result value must be incremented by the total tally, essentially
Performing the Fetch-and-Add value on the %ctual counter”.

The algorithm then enters Part Four, where the Process
reverses it’s Path down the tree, distributing results. At each

node, if there is a waiting process, the node’s result field is set
to the result from Part Three plus it’s own subtree’s increment
(i.e. fvsr_incr), and the node stutus is set to RESULT. Other-
wise, the node is re-initialized to FREE.

Figure A.1 shows an example of increment requests (on
the arcs) and initial result values (in the nodes) that Propagate
down the tree for one request that reaches the root of a binary
software combining tree. The Process that claims each node is
indicated by the bold-face path of arcs below the node. It’s
combined increment request is the value on the bold incoming
am. Note that the initial result value in each node has not been
incremented by either of the subtree requests for the sake of
clarity.

p-0 pmcoul pmce3s2 p-3 p-6 p-s7

Mpre A.1. Exanple Binary Software Combining Tree. Request
fmm procesmr 4 maches the mot node. Arcs arc labeled with corn-
biied increment request vdues. Mtii return values are given in the
nodes. The first suhtrec to be given a result is indicated hy a hold arc.

74

function fetch-and-add (counter, incr)
begin

P Patt One. Go up the tree changing FREE nodes to COM-
BINE nodes (and releasing them), until a ROOT node or
COMBINE node is found If a RESULT no& is encountered,
spin wait until its status changes before continuing up the tree.
Function node-addr returns the address of a node in the tree
(counter) for a given process and level. The level above the
processors is the lowest numbered level. */

level - FIRST-LEVEL
going-up - TRUE
while (going-up)

node = node-addr(counter,level,pid)
lock (node)
if (node-status =- RESULT) then

unlock (node)
else if (node.status == FREE) then

node.status - COMBINE
unlock (node)
level = level + 1

else /* COMBINE or ROOT node */
last-level - level
going-up - FALSE

end

P Part Two. Go back through the nodes, first prefetching
them. Then lock each node and perform the combining at
each level. The nodes remain locked until results am to be
distributed. Note that the value assigned to first-&r is the to-
tal from the previous level. */

for level - FIRST-LEVEL to last-level-l do
visited - node-addr(counter,level,pid)
QOSB (visited)

end
total - incr
for level - FIRST-LEVEL to last-level-l do

visited - node-addr (counter, level, pid)
lock (visited)
visited-first incr - total
if (visited-wait flag) then

total - totai + visited. second-incr
end

Figure A.2. The Software Combining Fetch-and-Add Algorithm.

P Part Three. If Patt One stopped at a COMBINE node then
place the total for this process into secondjncr for the node,
set the wait-flag, and wait for the node status to change to
RESULT. When results are available the result is saved and
the no& is set to FREE. If Part One stopped at the ROOT
node then saves the result and add the total in. This step per-
forms the fetch-and-add on the actual counter value. For both
cases the node should then be released. */

if (node-status -= COMBINE) then
node-second incr = total
node-wait-fiag = TRUE
while (node-status == COMBINE) do

unlock (node)
lock (node)

end
node.wait-flag = FALSE
node.status = FREE
saved result = node.result

else /* RZOT node */
saved-result - node. result
node-result = node-result + total

end
unlock (node)

r Part Four. Walk back down the tree, either freeing nodes
or distributing results if combining was performed at this node
(i.e. w&&g is set). The result left in each node is the save
result from Part Three incremented by Rrstjncr, which is the
total from the subtree for which this process is responsible.
Finally, the saved result from Patt Three is returned by the
fetch-and-add algorithm. */

for level - last-level-l to FIRST-LEVEL do
visited - node addr(counter,level,pid)
if (visited-wait_f lag) then

visited-status = RESULT
visited.result - saved-result +

visited.firstincr
else

visited-status - FREE
end
return (saved-result)

end /* fetch-and-add */

75

