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AbstreetThis paper proposes a set of efficient primitives 
for process synchronization in muitiprocessors. The only 
assumptions made in developing the set of primitives are 
that hardware combining is not implemented in the hter- 
connect, and (in one case) that the interconnect supports 
broadcast. 

The primitives make use of synchronization bits 
(syncbits) to provide a simple mechanism for mutual exclu- 
sion. The proposed implementation of the primitives 
includes efEcient (Le. kxal) busy-waiting for syncbit& In 
addition, a hardware-supported mechanism for maintain- 
ing a first-come ih-st-serve queue of requests for a syncbit is 
proposed. This queueing mechanism aiiows for a very 
efEcient implementation of, as well as fair access to, binary 
semaphores. We also Propose t0 implement 
Fetch-and-Add with combining in software rather than 
hardware. This allows an architecture to scale to a huge 
number of processors while avoiding the cost of hardware 
combining. 

Scenarios for common synchronization events such 
as work queues and barriers are presented to demonstrate 
the generality and ease of use of the proposed primitives. 
The efficient implementation of the primitives is simpler if 
the multiprocessor has a hardware cache-consistency pro- 
tocol. To illustrate this point, we outline how the primitives 
would be implemented in the Multicube multiprocessor 
[GoWofB]. 

1. Introduction 
Architectursl support for efficient process synchroniza- 

tion is an important aspect of the design of any MIMD mul- 
tiprocessor, Synchronization events that occur repeatedly in 
parallel programs include addition and deletion of elements 
from a shared (work) queue, access to critical sections, 
enforcement of low-level data dependencies within loop itera- 
tions, and barriers. As the speed and number of component 
processors increase, it becomes increasingly critical to design 
hardware primitives that imply minimum overhead for these 
and other frequently occurring synchronization events. The 
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goals are: (1) to minimize the number of operations required 
over the global interconnect for a given synchronixation event, 
and (2) to maximize the parallelism in the execution of simul- 
taneous synchrouiixtion requests. 

In this paper we propose a set of architectural primi- 
tives, which we believe is complete for process synchroniza- 
tion in large-scale multiprocessors. The primitives have an 
efficient implementation that satisfies the above goals in mul- 
tiprocessors that implement snooping or directory-based 
cache-coherency in hardware. We discuss how the primitives 
would be implemented in Multicube, a proposed shared- 
memory cache-coherent multiprocessor whose interconnect is 
a &-dimensional grid of broadcast buses [GoWo88, LeVe88, 
GoHW89]. 

There are three distinctive features of our proposed 
primitives. First, the primitives include a mechanism for first- 
come first-serve queueing on a semaphore. This mechanism 
reduces the complexity of sequentially satisfying N simultane- 
ous requests for a semaphore, measured in number of opera- 
tions over the intercomuzct, to O(N). The best previous 
mechanisms for this case, based on busy-waiting using the 
Test&Test&Set primitive [RuSe84]. require 0 (N2) operations 
over the global interconnect (see Section 2). Second, hardware 
Fetch-and-0 primitives are not included in the set. The scala- 
bility of the hardware Fetch-and-Q operations depend on 
hardware combining in the global intemonnect, which has so 
far proven to be expensive. We instead propose the use of 
@ware combining for Fetch-and-a operations, and we give 
an example algorithm for performing the combining in 
software. We find that the hardware Fetch-and-@ primitive is 
of little use if combining is implemented in software. Third, 
we propose a hardware-supported Notify primitive for global 
event notification. This primitive is useful for events such as 
barrier completion, and can be implemented efficiently if the 
multiprocessor’s global interconnect supports broadcast, such 
as in Multicube. 

The rest of this paper is organized as follows. Various 
hardware-supported primitives that have been proposed and/or 
implemented in particular shared-memory multiprocessors are 
reviewed in Section 2 to provide some background for this 
work. Section 3 dcEues the semantics of the proposed syn- 
chronization primitives. A discussion of the utility of the 
Fetch-and-@ operations, and a discussion of implementing 
combining for these operations in software, are contained in 
Section 4. Section 5 presents several scenarios for using the 
proposed synchronization primitives in common synchroniza- 
tion events, demonstrating their generality and ease of use. 
Section 6 describes the Wisconsin Multicube, defines its at&i- 
tectural support for each synchronization primitive, and 
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discusses the expected implementation costs. Many of the 
ideas are portable to other multiprocessor systems, with 
appropriate extensions to the architecture. This is discussed in 
Section 7. Finally, Section 8 contains a summary of this work. 

2. Background 
To provide some background for the synchronization 

primitives proposed, we review primitives that have been 
designed and/or implemented in particular shared memory 
multiprocessors. 

The Sequent Symmetry multipmcessor provides three 
simple operations on the lowest order bit of any address in 
memory [Gste87]. The operations are equivalent to: Test, 
Test-and-Se: and Unset. The hardware required to support 
these primitives consists prirntily of the logic for momentarily 
locking a cache line during the Intel 80386 “exchange-byte” 
(XCHB) instruction. The Symmetry primitives, together with 
the cacheumsistency protocol, provide semi-efficient support 
for barrier completion testing and for mutual exclusion on crit- 
ical sections. However, if N processors are spin-waiting (i.e. 
executing ‘Test&Test&Set’) for a lock protecting a critical set- 
tion, bus traffic is 0 (N2) for all N processors to gain access to 
the lock. To see this, note that each time the lock is unset, 
each processor makes at least two bus accesses (one for Test 
and one for Test&Set). but only one pmcessor is successful in 
setting the lock. 

The synchronization primitives provided in the HEP 
multiprocessor operate on a Full/Empty bit associated with 
each word in memory [Jord83]. The bit is tested before a read 
or write operation if a special symbol is prepended to the vari- 
able name. The read or write operation blocks until the test 
succeeds. When the test succeeds, the bit is set to the opposite 
value, indivisibly with the read or write operation. These 
primitives are less general than read-modify-w&e primitives, 
but are more efficient for enforcing low-level single- 
assignment data dependencies acmss threads that have local 
access to a common memory. The hardware required for these 
primitives consists of the Full/Empty bits and the logic to ini- 
tialize a bit, to queue a process if the test fails, and to imple- 
ment the indivisible update operations. 

The NYU Ultracomputer provides an atomic 
Fetch-and-Add primitive. Goulieb, et. al. have shown that 
this csn be used for synchronizing multiple readers and miters, 
and for managing highly parallel (work) queues [GoLR83]. 
This primitive is particularly interesting because the potential 
exists for combining simultaneous Fetch-and-Add operations 
on the same address into a single operation as the operations 
traverse the interconnect. Thus, multiple requests might be 
serviced in parallel. If the combining can be implemented in 
practice, primitives that have this property scale efficiently to 
large numbers of processors. The hardware required to imple- 
ment Fetch-and-Add includes an adder in each memory 
module. In addition, hardware combining requires special, 
complex queueing logic at each node in the interconnection 
network [GGKM83]. 

The IBM RP3 multiprocessor and the University of Illi- 
nois Cedar multiprocessor have proposed synchronization 
instructions that are generalizations of the Test-and-Set and 
Fetch and-Add primitives. RP3 provides seven Fetch-and-@ 
operations, where Q is one of the following functions: Add, 
And, Or, Min. Max, Store, or Storejf&ro [BrMW851. Note 
that it is straightforward to implement Test-and-Set using the 
Fetch-an&Store operation. As in the case of the NYU 

Fetch-and-Add primitive, the RP3 prixnitives require logic in 
the shared memory to implement the seven atomic read- 
mod@-write operations. 

Cedar provides a general atomic inslruction that 
opemtes on synchronization variables [ZhYe87]. A synchroni- 
zation variable in Cedar consists of two words: a key, and a 
value. The synchronization instruction has the following form: 
(address; (condition); operation on key; operation on value). 
An asterisk may be placed on the condition to indicate that it 
should be tested repeatedly until it is true. This single atomic 
instruction is actually a set of synchronization primitives, 
which can be derived by specifying the operation to be per- 
formed on the key and the value [ZhYe87]. From these opera- 
tions, it is straightforward to derive equivalent primitives for 
Test-and-Set, an indivisible Full/Empty bit test and read/write 
operation, and Fetch-and-Increment. For example, (X; 
(X.key=l)*; decrement; fetch) implements the Full/Empty bit 
test for a read operation. Because of the generality of the syn- 
chronization mechanism, a special processor is needed at each 
memory module to implement the operations. 

3. Semantics of the Synchmnization Primitives 
This section defines a set of proposed synchronization 

primitives that we believe should be implemented in hardware. 
The primitives are defined from the programmer’s point of 
view. The claims made in this section about the utility and 
generality of the primitives will be clarified in Section 5. and 
the claims made about the efficiency will be clarified in Sec- 
tion 6. 

The assumptions we have made in developing the set of 
primitives are that the multilxocessor has shared memory, and 
that hardware combining is not implemented in the intercon- 
nect (see Section 4). Furthermore, the primitive in Section 3.2 
assumes broadcast is supported in the interconnect. 

Section 3.1 discusses syncbits, the data structure on 
which our Test-and-Set, Unset, and Queue-on-SyncBit 
(QGSB) primitives operate. Section 3.2 defines these three 
primitives, and Section 3.3 defines a fourth primitive for 
efficient global event notification. 

3.1. Synchronizotfon Bits (Syncbits) 
The three primitives proposed in Section 3.2 operate on 

special synchmnization bits, called syncbits. The syncbit 
enforces mutual exclusion when a particular protocol is fol- 
lowed by the parallel tasks. This is useful, for example, for 
critical sections and pairwise data sharing. 

In the Multicube implementation in Section 6. we pro- 
pose to associate a syncbit with each line of shared memory. 
(A similar idea has been suggested by Bitar and Despain 
[BiDe86].) That is, syncbits are addressed by addressing a line 
of shared memory. The term Zinc in this paper implies the 
aligned tit of memory over which consistency is maintained. 

There are at least three important advantages of associ- 
ating the syncbits with lines of memory. Fit, synchronization 
memory is allocated in proportion to data memory. Second, 
efficient operations on the bits can be implemented as exten- 
sions to the existing cache coherence protocol. Finally. the 
machine can be easily programmed so that with acquisition of 
a semaphore (i.e. a syncbit), a relevant line of data immedi- 
ately becomes local to the pmcessor. 

A disadvantage of associating syncbits with lines of 
shared memory is that care must be taken so that two data 
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structures that require distinct syncbits are not packed into the 
same line. With some restrictions on the declaration of syn- 
chronization variables and their associated locks, this might be 
easily guaranteed by the compiler. Thus, we believe that the 
advantages of associating the syncbits with lines of memory 
outweigh the disadvantages, Also note, however, that the 
primitives proposed below can be implemented efficiently (but 
possibly with greater hardware complexity) if syncbits are allo- 
cated and addressed in some other fashion. 

3.2. Test-and-Set, Unset, and Queue-on_SyncBlt (QOSB) 

The Test-and Set operation on a syncbit 4dress atomi- 
cally sets the syn& and returns the previous value. If the 
return value is “unset”. the Test-and-Set operation was suc- 
cessful, and the issuing processor is now defined to be at the 
head of a FIFO queue associated with the syncbit. An Unset 
operation unsets the designated syncbit and removes the pm- 
cessor at the head of the syncbit queue, if the queue exists. 

The QOSB (pronounced “Cosby”) operation is a non- 
blocking operation on a syncbit address that adds the issuing 
processor to the syncbit queue, if the processor is not already 
in the queue. Once a queue has been formed, the Test-and-Set 
operation fails (i.e. returns “set”) without testing and setting 
the syncbit, when issued by processors not at the head of the 
queue. 

The definitions of the Test-and-Set, Unset, and QOSB 
synchronization primitives axe summarized in Figure 1. The 
purpose of the QOSB primitive is that the Test-and-Set opera- 
tion is highly efficient (i.e. nearly always completes with no 
operations over the global interconnect) a&r a processor has 
joined the queue. The QOSB operation generates at most one 
asynchronous operation over the global interconnect to put the 
processor in the queue. At most one additional asynchronous 
operation over the interconnect is required to notify the pmces- 
sor that it is now at the head of the queue and the syncbit is 
unset. 

If QOSB is implemented perfectly and reliably, the 
scenario for using this primitive is to issue the QOSB operation 
to join the queue and then to spin. performing the 
Test-and-Set operation, until the Test-and-Set is successful. 

The Test and-Set operation on a syncbit address 
succeeds 8 the syncbiit is %nset” and either there is no 
queue or the processor is currently at the head of the 
queue. After a successful Test-and-Set operation the is- 
suing processor is now defined to be at the head of a 
queue associated with the syncbit. 

The Unset operation unsets the designated syncbit and 
removes the processor at the head of the syncbit queue, if 
a queue exists. 

The QOSB operation is a non-blocking operation on a 
syncbit address that adds the issuing processor to the 
syncbit queue, if the processor is not already in the 
queue. 

Figure 1. Synchronization Primitive Semantics. 

Unfortunately, the implementation of QOSB in Section 6 has 
some probability (estimated to be extremely small) that the 
queue of processors waiting for a syncbit will be destroyed. In 
this case, the Test-and-Set and Unset operations still work 
correctly as defined above. However, in order to guarantee 
efficient (i.e. local) spinning, the processor must re-issue a 
QOSB operation on the syncbit before each Test-and-Set 
operation within the spin loop. This scenario is described in 
Section 5. The extra QOSB operation has no effect if the pro- 
cessor is already in the queue and the queue is still intact. If 
the queue has broken down, the extra QOSB operation adds 
the processor to a new queue for the syncbit, with no guarantee 
that the processor is in the same position as in the original 
queue. 

The important property of the QOSB. Test-and-Set, 
and Unset operations defined above is their efficiency for lock 
access. When these primitives are used as described above, the 
number of operations over the global interconnect for N spin- 
ning processors to access a syncbit lock sequentially is 0 (N). 
assuming queue breakdown does not occur. This is contrasted 
with the 0 (N’) algorithm using the Sequent shadow lock algo- 
rithm, and the higher complexity of other previously proposed 
primitives. 

There are two other useful properties of the QOSB 
primitive. First, it can be used for FCFS access to bmary 
semaphores. The first-come first-serve scheduling is slightly 
imperfect due to the very small probability of queue break- 
down. Second, it is non-blocking, which allows a processor to 
execute useful instructions that are not dependent on the sync- 
bit while it is waiting to be added to the queue (and/or to 
receive the notification that it is at the head of the queue). 

It should be noted that a QOSB operation obligates the 
processor to Unset the syncbit, some time after its 
Test-and-Set operation succeeds. so that processors behind it 
in the queue will eventually obtain the syncbit. Also, QOSB 
and Test-and-Set operations that are issued for a syncbit by 
two or more processes running on the same processor may 
interfere with each other. However, the same algorithm which 
handles rebuilding of the queue also guarantees the correct 
handling of this case. 

3.3. Bruadcast Notify 

Applications exist in which a number of processes wish 
to determine the status of an event (e.g. barrier completion). In 
a cache-coherent, shared-memory system, global event 
notification can be realized with conventional reads and writes 
to memory. Unfortunately, for many implementations, such 
operations generate hot spot confention [PfTVoS5]. resulting in 
serious intermnnect bottlen~ks. The Notify primitive imple- 
ments a restricted write broadcast capability to eliminate this 
bottleneclc. 

4. Fetch-and-Q, 

The Fetch-and-0 memory operation is conspicuously 
absent dram the set of hardware-implemented synchronization 
primitives proposed in Section 3. This primitive is useful in 
many situations (e.g. for obtaining the next loop iteration 
value). However, the real power of the Fetch-and-a SF- 
chronization primitive is derived from the possibility of com- 
bining simultaneous Fetch-and-a requests intO one operation 
that proceeds over the global interconnect to memory. With 
combining, the latency of a single Fetch-and-a operation is 
proportional to the path length of the combining network, and 
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not to the number of simultaneous Fetch-andAdd requests. 
The best combining networks are tree-structured, having a path 
length of 0 (lo&N). where k is the (avg) degree of branching, 
and N is the number of processors. Thus Fetch-and-m opera- 
tions possess the proper scaling behavior for very large mul- 
tiprocessors, as contrasted with the strictly serial behavior 
inherent in most other synchronization primitives. 

For the hardware Fetch-and-@ primitives, combining is 
naturally implemented at nodes in the interconnect that for- 
ward the request to memory. Unfortunately, these combining 
networks are expensive, due both to the actual implementation 
costs and to the performance penalty for requests that don’t use 
the combining feature. If we assume that hardware combining 
is too expensive, we face the following key questions. Fit, 
can the inexpensive software combining techniques proposed 
by Yew, Tzeng, and Lawxie rYeTI.271 he applied to the com- 
big of Fetch-and-Q operations? Second, a simple, serial 
Fetch-and-0 operation can be implemented in hardware, even 
if combii is not implemented for this operation, However, 
this primitive can also be easily implemented in software using 
the syncbit primitives in Section 3. If hardware combining is 
not implemented, is the simple hardware Fetch-and-0 opera- 
tion beneficial enough to justify its implementation complex- 
ity? We address these questions in this section. Our answer to 
the first question is yes, but we haven’t yet &vised an algo- 
rithm that we’re satisfied with. Our answer to the second ques- 
tion is, tentatively, no. 

4.1. Software Combining for Fetch-and-Add 

We have investigated algorithms for implementing 
Fetch-and-@ combining in software. These algorithms use the 
primitives proposed in Section 3. and a simple hardware 
Fetch-and-@ primitive when useful. 

The problem is considerably more complex than the 
software combining example given by Yew et. al. In their 
example, each processor issues exactly one request to decre- 
ment a counter. whose value will be zero when all the requests 
have completed. They replace the original counter with a tree 
of counters. and a process is assigned to exactly one of the 
tree’s leaf nodes. Each counter in the tree is initialized to the 
degree of branching at that level in the tree. A process ready to 
perform the counter decrement operation decrements its leaf 
counter. If the counter is now zero. the process progresses up 
the tree, recursively decrementing the node counter and con- 
tinuing if the counter is zero. The process that decrements the 
root value to zero has completed the entire operation. 

Software combining for the Fetch-and-@ operation is 
significantly more complex than for the above example for 
several reasons. First, processes repeatedly issue requests. 
Second, the numbez of processes that will issue requests within 
any given time frame is unknown, and each process requires a 
response to each request. Where the relevant workload param- 
eters are unpredictable, there is a made-off between how long 
to wait to combine requests and how quickly to respond to a 
single request. 

An example of an algorithm that implements 
Fetch and-@ software combining, using a binary combining 
tree, s given in the Appendix. We are not claiming that this 
algorithm is optimal, but rather that it is one of the simpler 
algorithms we have investigated so far, and that it illustrates 

the use of the software combining concept for Fetch-and-Add. 
Other algorithms are under investigation that provide possibly 
higher performance and greater generality, although at an 

increased level of complexity. Analysis of the performance of 
these algorithms is also the subject of continuing study. 

4.2. Simple Hardware Fetch-and-@ 

Providing simple Fetch-and-Q operations (i.e. 
Fetch-and-@ without combining) in hardware may reduce 
both the number of operations over the interconmct, and the 
amount of data transferred per operation, as compared with 
performing this operation in software. Nevertheless, the 
implementation of this new class of operations is probably 
only justified if the operations are expected to occur reasonably 
frequently. 

We have not completely ruled out the possibility of 
including the hardware Fetch-and-@ primitive in the set of 
primitives we recommend. However, it is currently not clear 
that the benefits of the primitive outweigh its implementation 
cost when hardware combining is too costly. 

5. Scenarios 

The choice of an appropriate set of synchronization 
primitives has been driven, so far, by the need to provide cer- 
tain basic capabilities to the programmer. An alternative 
approach is to first choose a set of important synchronization 
problems, and then to find primitives that solve them. Such an 
approach can be used to evaluate the efficiency and ease of use 
of the proposed primitives, while emphasizing those solutions 
that will be used most extensively. 

Historically, scenarios representative of a large class of 
synchronization problems, such as the readers-writers or the 
dining philosophers problem, have been used to judge syn- 
chronization primitives. However, with the provision of an 
efficient implementation of binary semaphores solutions to 
most of these problems are straightforward. Thus the efficient 
synchronization of large numbers of processes becomes the 
relevant issue. An appropriate set of additional scenarios 
might include simple painvise data sharing (e.g. nearest neigh- 
bor communication), barrier synchronization, waiting for a 
global event, and work queues. 

In this section we present solutions to the above prob- 
lems that are applicable to shared-memory, cache-coherent 
multiprocessors like Multicube. These examples sre written as 
system library routines which employ the synchronization 
primitives presented in Section 3. Each algorithm is evaluated 
in terms of the bus traffic generated and latency. 

5.1. Semaphores 

Syncbits and Test-and-Set are sufficient for providing a 
mechanism to guarantee mutually exclusive access to shared 
data. Executing a QOSB operation first will queue the proces- 
sor for the syncbit. eliminating spinning over the global inter- 
connect by a Test-and-Set spin loop. In addition the queue 
prevents starvation of processes. Since the queue mechanism 
provided by QOSB can be broken, it is useful to place a QOSB 
operation in the spin loop itself. The redundant QOSB opeia- 

tions are ignored. except when the queue breaks down. in 
which case the queue will automatically be re-built. The 
resulting algorithm is shown below. A simple Unset operation 
is used to release the lock. 
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procedure lock (addr) 
begin 

QOSB (addr) 
while (TEST-AND-SET (addr)) do 

QOSB (addr) 
end 

procedure unlock (addr) 
begin 

UNSET (addr) 
end 

The above mechanisms provide for a powerful, efficient 
implementation of binary semaphores. Bus traffic consists of a 
single QOSB operation and line transfer for each request to 
access a critical section. If needed data associated with the 
lock is placed in the same line, then the overhead of locking a 
line is essentially eliminated. Since the solution employs busy 
waiting the operating system need never be invoked. A block- 
ing version is straightforward to implement by invoking the 
operating system to block the process if Test-and-Set fails 
after some number of iterations. The operating system could 
then periodically check the lock and wake up the process when 
it becomes available. 

As with most implementations of semaphores, locks 
provided by Test-am-Set and QOSB are only advisory. That 
is. processes may read or write data protected by a lock with 
impunity. Only if every process follows the locking protocol 
can mutually exclusive access be guaranteed. 

While the queueing mechanism attempts to provide 
first-come first-serve service, two situations make it impossible 
to guarantee such an ordering. First, the queue may break 
down, resulting in a (possibly) different order when it is 
rebuilt. Second, each processor is allowed only a single queue 
entry. When a lock anives the first process attempting to set 
the lock succeeds. Any other processes on that processor will 
have to wait until the lock is released before another queue 
entry can be created. 

5.2. P&wise Data Sharing 
For many applications it is important to handle 

efficiently a special case of mutual exclusion, namely, pair- 
wise sharing. Since an arbitrary computation can be placed 
between the initial QOSB and the Test-and-Set spin loop, and 
since QOSB does not cause the processor to block, these prim- 
itives can be used to perform efficient prefetching. 

For example. a process may QOSB for lines for each of 
its ‘heaxest neighbors”, and later check if the lines have 
arrived, or wait on them if they have not. Thus QOSB can be 
used to overlap the acquisition time for multiple semaphores, 
implying that latency can be reduced or eliminated. This tech- 
nique is useful even for lines that are not shared. 

QOSB ;d;t;[i+kl [jl) 
QOSB (data[i-kl (jl) 
QOSB (data[il [j+kl) 
QOSB (data[i][j-kl) 

lock ;dita[i+kl (jl) 
lock (data[i-kl [jl) 
lock (data[i][j+kl) 
lock (data[il [j-k]) 

. . . 

Caution must be taken whenever using QOSB to per- 
form prefetching. Issuing a QOSB request implies that the 

process will eventually acquire the locked line by successfully 
issuing a Test-and-Set, and later release it; otherwise other 
processes using QOSB to acquire the line will fail. 

This somario may be complicated by the possibility of a 
writer process that releases, re-acquires. and updates a shared 
line before a reader process has a chance to access the new 
data. This situation may occur where processes exchange data 
without intervening barriers. A similar situation occurs when a 
reader accesses the same data more than once. These cases can 
be solved by placing a tag in the line of the corresponding lock 
that each process sets before releasing the line. Now a process 
can spin locally until the tag has changed by repeatedly waiting 
for the lock, checking the tag. and releasing the lock (so 
another process can acquire it). This guarantees alternating 
aeeess to the line. In many cases this will be unnecessary, 
since the queueing mechanism guarantees that a waiting pro- 
cessor will acquire exclusive access to a line if another proces- 
sor releases it even momentarily. 

procedure wait-turn (lock-tag) 
begin 

lock (lockJag) 
while (lock-tag == MY-PROCESS-ID) do 

unlock (lock-tag) 
lock (lock-tag) 

end 
lock-tag = MY-PROCESS-ID 

end 

53. Barrier Synchronization 
Barrier synchronization is a mechanism which guaran- 

tees that all processes have reached a specitied point in their 
execution before any are allowed to proceed. It is used by a 
large number of algorithms to synchronize loop iterations or 
other phases of program execution. A number of techniques 
for implementing batriers have been proposed including the 
use of special hardware [Lund87]. a series of locks mroo861, 
and a software combining tree with Fetch-and-Add [YeTL87]. 

A barrier consists of two separate functions: (1) count- 
ing the number of processes that have arrived at the barrier and 
(2) notifying all processes once that point has been reached. 
An appropriate solution to the tist part is to use a software 
combining tree scheme, such as that described by Yew, et. al. 
[YeTL87]. The choice for the degree of the tree largely 
represents a trade-off between the latency due to serial 
fetch-and-add operations at a single node and the latency due 
to the logarithmic number of fetch-and-add operations which 
must be performed by the last process to reach the barrier. 

The second step in a barrier, notifying all processes that 
the barrier has been reached, is an example of what we shall 
call global event rwtijbtion. In multiprocessors which do not 
provide hardware cache coherence. notification is performed 
by processes spinning on some variable that is written when 
the barrier is reached Of course, these accesses may be distri- 
buted by using the software combining tree to pass back the 
notification. However. the spinning will adversely affect the 
aeeesses over the global interconnect of those processes that 
have not finished. 

Several solutions which require no spinning are possi- 
ble. Fit, a simple flag can be written by the last process to 
reach the barrier. Since hardware cache coherency allows mul- 
tiple shared copies, all spinning is performed locally. This 
solution is shown below. 
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A local temporary variable is used to hold the value of (1) Waiting for an event that may be caused by any single 
the barrier’s event notification flag. Each process executes process, for example, in a parallel search. The solution is par- 
code to indicate that it has reached the barrier using a software ticularly simple, since the processor determining that the event 
combining tree to update the barrier count (which is a actually has occutmd simply updates the event flag. A solution using 
a tree of counters). The last process increments the event flag, Notify is Aown below. It is straightforward to add a third rou- 
while all other processes spin waiting for the event flag to tine which would allow processes that wish to perform compu- 
change. tations to occasionally check for such an event 

/* Variable temp is private to each process. 
Function combining-tree performs the software 
combining function and returns true to the 
process which decrements the barrier count to 
zero, and false to all others. */ 

procedure wait-event (flag, local-flag) 
begin 

while (flag == local-flag) do 
/* spin */ 

local-flag = local-flag + 1 
end 

procedure barrier (count, flag) 
begin 

temp = flag 
if (combining-tree (count)) then 

flag = temp + 1 
else 

end 

while (flag == temp) do 
/* spin */ 

Unfortunately, the write to the event flag causes all 
shared copies to be invalidated, immediately after which every 
press will reread the flag. If au efficient hardware mechan- 
ism exists to combine these requests [GoHW89] then this solu- 
tion may be practical. However, it is also straightforward to 
propagate the barrier notification back through the tree by set- 
ting each no& to zero and using QGSB to avoid spinning over 
the global interconnect. 

Considering this last solution, let us assume that there 
are N processors involved in the barrier and that the degree of 
the software comb’ ’ treeisD. ThenthetotalbustrafRcis 

dominatedbytbe0 (D-1) 
r I 

D (N-l) - combiig operations, and the 

latency by logoN, the height of the tree, which has 
0 (D lo&N) serial operations in the worst case, that is, where 
all processes reach the barrier simultaneously. 

However, in the case that all processes are waiting on a 
single process to finish. only logoN serial operations are 
required to determine that the barrier has been reached. Thus, 
event notification will dominate the latency of the barrier fmm 
the point where all processes have finished performing their 
computations. Reducing this latency can be accomplished by 
providing a primitive which directly implements global event 
notification. This scheme substitutes the normal write to the 
event flag with a Notify operation which updates all shared 
copies, instead of invalidating them. Thus the Notify primitive 
avoids the read sharing problem caused by processes spinning 
on the event flag when it is invalidated 

procedure barrier (count, flag) 
begin 

temp = flag 
if (combining-tree (count)) then 

NOTIFY (flag, temp+l) 
else 

end 

while (flag == temp) do 
/* spin */ 

Barrier synchronixation is a special case of waiting for a 
global event There are two other global events of particular 
intereat 

procedure signal-event (flag, local-flag) 
begin 

if (flag == local-flag) then 
NOTIFY (flag, local-flag+I) 

local-flag = local-flag + 1 
end 

(2) Waiting for K out of N proczsses to finish. The determi- 
nation that the event has occurmd is somewhat more cornpli- 
cated than in the case of bat&r synchronization because all 
processes are not participating in the combining. Thus a sim- 
ple tree algorithm is not sufficient to combine requests. Com- 
bining can be handled, however. by more general techniques, 
such as the software combining Fetch-and-Add algorithm in 
the appendix. 

5.4. Work Queues 
Work queues serve as a means for a collection of 

protxsses or threads to schedule work for themselves, without 
the overhead usually incurred when the operating system pro- 
vides this function If the unit of work is relatively small, the 
work queue may become a bottleneck unless multiple inser- 
tions and deletions are allowed to proceed conc~ently. This 
is true even if the queue is the operating system ready queue. 

An itnplementation of a work queue that eliminates 
serial bottlenecks has been published previously using 
Fetch-and-Add [GoLR83]. Unfortunately, the solution 
assumes hardware combining for Fetch-and-Add and results 
in spinning over the interconnection network by processes 
waiting on a full queue. an empty queue, or a queue entry that 
is not yet available. However, a solution requiring only local 
spinning is possible using the QGSB primitive and 
Fetch-and-Add, as demonstrated by the following scheme. 

A work queue can be implemented as a circular array 
where each entry in the queue consists of three fields: (1) a 
lock for controlling insertions to that entry, (2) a lock for con- 
trolling deletions, and (3) the queue entry itself. Each of these 
fields must be allocated in a separate line so that actions per- 
formed on locks and queue entries do not conflict. In addition, 
two counters are maintained with the queue for specifying the 
indexes for the next insertion and next deletion 

An insert operation is performed by obtaining a unique 
index for insertion (modulo the queue size), using a 
Fetch-and-Add operation (such as that in the appendix) to 
&xc3mnt the appropriate counter. The process then Waits on 
the insert lock for that entry. If the last delete operation has 
already completed then the lock will be available and the pro- 
cess performing the insert will be able to proceed immediately. 
If not, the insert lock will be unset when the next delete opera- 
tion for that entry is performed. In either case, when the lock 
is acquired the process is free to insert the new item into the 
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queue, after which it will mset the delete lock for that entry. 
The delete operation functions similarly. 

procedure insert (q, item) 
begin 

index = fetch-and-add(q.insert,l) mod q-size 
lock (q.insert-lock[index]) 
q.entry[index] = item 
unlock (q.delete-lock[index]) 

end 

procedure delete (q, item) 
begin 

index = fetch-and-add(q.delete,l) mod q.size 
lock (q.delete-lock[index]) 
item = q.entry[index] 
unlock (q.insert-lock[index]) 

end 

The solution requires no bounds checks, since multiple 
processes can be queued to perform the same operation on the 
same queue entry if the number of outstanding requests hap- 
pens to exceed the queue length. Note that it is easy to extend 
the solution to allow a process to perform multiple insertions 
or deletions. 

Each insert or delete operation requires a 
Fetch-and-Add, the QGSB operation requesting the appmpri- 
ate lock, two line transfers (one for the lock and one for the 
queue entry), and an Unset operation. If software combining is 
employed, both bus traffic and latency will most likely be 
dominated by that for the fetch-and-add operation, excluding 
any time required waiting for a queue entry to become avail- 
able. 

6. Implementation of the Synchronization Primitives 

The proposed synchronization primitives have been 
designed for implementation on a large-scale cachecoherent 
multiprocessor. The recently proposed Multicube architecture 
[GoWo88. Le.Ve88, GoHW89] is used as au example of such a 
system in order to demonstrate theii implementation efficiency, 
This archite.cture is briefly described below. It should be noted 
that the lack of hardware cache coherency mechanisms in other 
multiprocessors does not preclude the use of some of the pm- 
posed primitives. This topic is left for discussion in Section 7. 

The synchronization primitives take advantage of 
several mechanisms provided by the cache coherency 
hardware: (1) the abiiity to acquire an exclusive copy of a line, 
(2) the ability to locate a particular copy of a line (e.g. the 
exclusive copy), and (3) the ability to broadcast a request to all 
shared copies of a line. While additional hardware is required 
in addition to that for maintaining coherency, the provision of 
these three mechanisms removes the major costs associated 
with the implementation of the primitives. 

A further characteristic of cache management is that, on 
a miss operation, memory space is allocated for bringing in the 
new line. While waiting for the line to be received the 
memory is unused. In addition, the copy of a line in main 
memory is often stale, and must not be referenced. Serendipi- 
tously, both cache and main memory contain inconsistent lines 
which can be so exploited almost exactly during the time that 
the syncbit request is enqueued. This suggests the possibility 
that the memory contained in inconsistent copies of a line 
could be used for building a queue of requesters waiting for the 
line. 

6.1. The Multicube Architecture 

The Multicube architecture employs a multi- 
dimensional grid of buses to provide efficient hardware cache 
coherency and high interprocessor bandwidth. The architec- 
ture provides for a multi-level cache structure: a first-level, or 
processor, cache for reducing memory latency and a second- 
level, or snooping, cache for minimizmg bus traffic. The 
second level caches are envisioned as being very large (a 
minimum of 64 DRAMS). suggesting that for typical applica- 
tions, most cache misses will result from accesses to shared 
data recently mod&d by another processor. Coherency is 
maintained between the two levels of cache by using a write- 
through strategy and imposing the MultiLevel Inclusion pro- 
perty [BaWa87]. Both memory and I./O devices are distributed 
among the processors. Because of the symmetry of the organi- 
zation, bus traf8c can be distributed uniformly across the 
buses, avoiding bottlenecks in the global interconnect. The 
Multicube project includes the design and implementation of a 
two-dimensional first generation prototype, the Wisconsin Mul- 
ticube. shown in Figure 2. 

Multicube is an attractive architecture for developing 
parallel a~lications. While providing a view of a single 
shared memory to the programmer, it imposes no notion of 
geographical locality. This ensures that applications developed 
for m&is [Bell851 can be easily converted to this architecture. 
Thus, the Multicube is intended to be a general purpose mul- 
tiprocessor architecture which supports a large range of appli- 
cations, such as high-transaction database systems, large-scale 
simulation models, and artificial intelligence applications, as 
well as numerical applications. 

High speed prowssors generally require caches to 
achieve high performance. In a multiprocessor, this introduces 
the problem of cache coherency. Hardware cache coherency 
schemes relieve the programmer and/or compiler from having 
to detect potential conflicts in accessing shared variables, while 
irwrring the overhead of maintaining coherency (i.e. flushing 
cache entries to main memory) only when actually called for. 

3 
x 

Figure 2. The Wiswnsin Multicube. 
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The Multicuba cache coherency scheme insures strict 
sequentiality of writes to a line by providing an exclusive copy 
of the line to a requesting processor. A write request that 
misses in the local caches results in a bus request that is either 
routed to the cache containing an exclusive copy of the desired 
line, or to main memory if the line is shared. This routing is 
performed by special hardware which is maintained in some 
type of distributed directory. If the line is currently shared 
when a request having the intent to modify the line reaches 
main memory, all outstanding copies must be invalidated. 
This is accomplished using a broadcast mechanism which pro- 
pagates the invalidation to every processor. 

6.2. Syncbits and Basic Te.s-and-Set 
A cache line is assigned one of several states. For the 

basic Multicube protocol. there are only three such states: 
Shared. Modijied, and Invalid. Globally, a memory line is 
always in one of two states: Modified or Unmudihd. A 
memory line in global state Modified resides in exactly one 
cache. in state Modified, and is invalid in all others and main 
memory. A memory line in global state Umnodified is valid in 
main memory, and may exist in one or more caches in state 
Shared. 

Main memory includes a tag indicating the global state 
of the line. A proposed technique for implementing the sync- 
bit is to introduce additional cache states and global states, and 
defme the syncbit in terms of a partitioning of the states. Since 
main memory in Multicube already maintains validity bits and 
possibly directory information for lines, adding states to 
encode the syncbit does not significantly increase the hardware 
complexity. Test-and-Set has the effect, then, of testing and 
possibly modifying the state of the cache line, including 
remote cache and main memoty states as necessary. 

The first cache state to be added is Locked. This state is 
similar to Modified in that it is held exclusively, i.e. it is the 
only copy in the system and may be written at will without 
generating bus traflic. It differs from Modified primarily in 
that the syncbit is set. Like Mod&d, the Locked state is both 
a cache state and a global state. Main memory, however, does 
not distinguish between the states Locked and Modiied, since 
in neither case does it contain a valid copy of the lme, and may 
not be informed when a change of state occurs. 

In the absence of a queue, Test-and-Set atomically 
reads the value of the syncbit for a specified line and sets it. If 
the line is present locally, its state is set to Locked. A local 
line in Shared state must lirst be changed to Mod&d state, fol- 
lowing the Multicube protocol. If the line is not present 
locally, the request is forwarded to the appropriate place: to the 
cache containing the Modified or Locked line, if any, and to 
main memory otherwise. The test is performed remotely, and 
if the syncbit is set, a negative response is returned. If the 
syncbit is unset, the protocol for changing a line to Modiied is 
followed, and the line is returned and placed in the local cache 
in state Locked. 

Unset. like Test-and-Set, is treated similarly to a write 
operation. However, in the csse that the line is not present 
locally, the syncbit is cleared remotely. In either case, the state 
is changed to reflect the fact that the syncbit is unset. 

6.3. Queue-On-SyncBit (QOSB) 
QOSB performs two important operations: (1) it allo- 

cates space for a shadow copy of the line in the local cache 
with the &J&W syncbit set and (2) it performs a remote access 

to acquire an exclusive copy of the line. Neither operation is 
performed if the line or a shadow is already present in the local 
cache. This guarantees that if a second QGSB operation is per- 
formed on the same line while the shadow line is still presenS 
it will have no effect. It should be clear that this restriction 
also limits each processor to one queued QOSB request per 
line. 

QGSB necessitates the addition of at least two addi- 
tional cache states. Fit, a new line, in state Shadow is needed 
for indicating locally that a QOSB has occurred and a remote 
request for the line has been generated. In this state the data in 
the line is invalid, but the syncbit is set, so that a succeeding 
Test-and-Set operation will fail. Second, the successful com- 
pletion of a QOSB requires a Sticky state, containing valid 
data, with the syncbit unset. The distinction between Sticky 
and Modified will be described below. 

When a processor holding a line with the syncbit set 
receives a remote QOSB request, the request must be queued. 
Link information for defining the queue can be stored in sha- 
dow copies of the cache line, since the data in such lines is 
invalid As the queue is built up, each shadow line is used to 
store a pointer to the next element of the queue. Of course the 
processor at the head of the queue has no such space since its 
copy contains valid data. Thus the queue head and tail pointers 
are stored in main memory where, because the line is in state 
Modified, the data is invalid After the queue is created, main 
memory acts as the destination for succeeding QOSB requests 
rather than the processor containing the Locked cache line and 
is responsible for generating the bus operations to build the 
queue. 

6.4. Interaction of the Primitives 
Because a QOSB operation creates a shadow line in the 

local cache, a succeeding Test-and-Set can identify most of 
the circumstances under which it will fail without initiating a 
bus operation by simply testing the state of the local line: If the 
syncbit is set the Test-and-Set operation fails. This includes 
the cache state Shadow. If the line is present and the syncbit is 
unset, the Test-snd-Set operation succeeds and the cache line 
is changed to state Locked. This includes the cache state 
sticky. 

Unset has an additional effect if the line is queued: It 
removes the head of the queue. Thus in addition to finding the 
Locked line, the Unset operation must initiate the transfer of 
the line to the next element in the queue-if one exists- 
where the line is placed in state Sticky. In the typical case, 
where the Unset acts upon a local cache line in state Locked. 
Note that if a queue exists, the line must be sent to main 
memory to be routed to the top of the queue. This inefficiency 
can be mitigated with a small cache that saves recent remote 
QGSB requests, allowing the line to be transferred directly to 
the appropriate cache. Of coutse main memory must still be 
not&d so that it can update the head pointer. 

It now becomes clear why the distinction between 
Modiied and Sticky is necessary. If a remote QOSB request 
arrives for a line in Sticky state it is queued rather than 
transferred as in the case of a Modified line. This is necessary 
to assure that no other processor is able to jump to the head of 
the queue and capture the syncbit between the time that the 
line arrives as a result of a QCXB instruction and the ensuing 
Test-and-Set instruction. 
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65. Implkations of the Multkube Implementation 
The proposed implementation contains implications for 

both the Test-and-Set and Unset operations. First, efficient 
local spinning is provided by allowing Test-and-Set to test the 
local shadow syncbit. Second, the hardware and software must 
handle the case where a shadow line is replaced in one of the 
caches. For hardware, this requires a broadcast mechanism to 
break down the queue if a queue pointer is lost. For software 
this requires an algorithm to rebuild the queue in the event that 
it breaks down. Finally, the hardware must correctly handle 
the case where a Locked line is replaced. Handling of this 
unusual case is complicated by the fact that main memory uses 
the buffer space for the memory line to store queue informa- 
tion. When a Locked line must be purged Corn the cache, it 
cannot be written to main memory without breaking down the 
queue. An alternative is that it could be forwarded to the cache 
next in the queue, where it is inserted in LOCI& rather than 
sticky state. 

The QOSB operation imposes no responsibiity on the 
hardware. It is simply a hint that a processor is about to per- 
form a Test-and-Set operation. As such, it can always be 
ignored if necessary. Obviously serious performance degrada- 
tion will result if the hint is ignored frequently, but it greatly 
simplifies implementation to be able to ignore it at incon- 
venient times. 

6.6. Notify 

Notify remotely writes a small mrmber of designated 
bits in a cache line. In the expected case, where there are a 
number of shared copies distributed among the processors, the 
update must be propagated using a broadcast mechanism. In 
Multicube this can be implemented as a minor extension to the 
broadcast invalidate mechanism, and thus requires little addi- 
tional overhead. The cache lines in state Shared to which the 
Notify broadcast applies are updated rather than invalidated, 
and remain in state Shared. 

Some snooping cache protocols employ broadcast 
writes instead of, or in addition to, broadcast invalidations. 
Such protocols are known to perform efficiently for the case of 
a single writer and multiple readers [ArBa86]. an example of 
which is Global Event Notification. A system that broadcasts 
invalidates instead of writes may benefit from this special case, 
though a capability for efficient read-sharing greatly reduces 
the benefit. 

7. Porting the Primitives to Other Environments 
The synchronization primitives defined in this paper 

were motivated by the Multicube architecture, and are well- 
suited for efficient implementation in that context. However, 
the primitives themselves assume nothing specific to Multi- 
cube, and could be implemented on any shared-memory mul- 
tiprocessor, even one without hardware-guaranteed cache con- 
sistency. 

As pointed out in Section 3, there are several benefits 
from associating a syncbit with a line of memory. In a system 
without caches, or with caches for which there is no hardware 
guarantee of consistency, the Test-and-Set, QOSB. and Unset 
primitives might still be appropriate, reducing interconnect 
traffic by eliminating non-local spin-waiting. These primitives 
can be realized by implementing a hardware queue in some 
fashion, providing each processor with a capability to deter- 
mine locally if it is at the head of the queue, and providing a 
mechanism to notify the appropriate processor when it 

becomes the head of the queue. 
For systems implementing hardware-guaranteed cache- 

consistency, the syncbit can likely be implemented by extend- 
ing the cache states. The Test-and-Set, QOSB. and Unset 
primitives can then be implemented with the attendant benefits 
of associating a syncbit with a cache line. In addition, for sys- 
tems employing broadcast invalidation to guarantee exclusive 
access for writing a line, the Notify primitive can be readily 
implemented as an extension to the broadcast invalidation. 

8. Summary 
This paper has proposed a set of efficient primitives for 

process synchronization in a large-scale, cache-coherent, 
shared-memory multiprocessor. These primitives are based on 
the use of synchronization bits (syncbits), logically associated 
with each line in memory, to provide a simple mechanism for 
mutual exclusion. This scheme is extended to include the use 
of shadow syncbits to provide for efficient (i.e. local) busy 
waiting. 

A queueing mechanism that allows for an extremely 
efficient implementation of binary semaphores is supported. In 
addition an efficient global event notification mechanism is 
provided. 

Several important synchronization scenarios such as 
single-reader/single-writer sharing, waiting on multiple events, 
barrier synchronization, and work queues, were given. These 
examples serve to demonstrate the efficiency, generality. and 
ease of use of the proposed primitives. 

The Fetch-and-Add primitive is a useful mechanism 
for handling large numbers of processors. Unfortunately, pro- 
viding scalability for this primitive through the use of 
hardware combining is very costly. In this paper we have pro- 
posed implementing a scalable Fetch-and-Add operation using 
a software combining tree and given one algorithm to illustrate 
the approach. 

The implementation of the proposed synchronization 
primitives is well suited for the Wisconsin Multicube. a 
shared-memory cachecoherent multiprocessor. The primitives 
demonstrate how the Multicube’s mechanisms for routing 
requests to a valid copy of a line, acquiring an exclusive copy 
of a line, and broadcasting a state change for a line can be 
effectively utilized. Further study has indicated that the pro- 
posed primitives may be well suited for other architectures as 
well. 
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Appendtx 

A Software Combining Tree Implementation 
of a Combining Fetch-and-Add Operation 

An algorithm for providing combiig Fetch-and-Add 
in software is described below. In this algorithm, requests to 
increment a shared counter am made at arbitrary times by a set 
of Processes. The comer variable is structured as a binary 
software combining tree with separate increments stored at 
each node used for combining. and the actual value stored at 
the root. 

The Fetch-and-Add operation consists of three distinct 
phases which correspond to a Process (1) moving up the tree 
‘%laiming responsibility for” individual nodes, (2) revisiting 
the claimed nodes to perform combining, and (3) waiting for 
and then distributing the results to those nodes where combin- 
ing has been Performed. 

Each node in the tree consists of five fields: status, 
waifjag, firsf~incr, second_incr, and result. The field 
waitflag indicates if a Process is waiting for a result at that 
node. jkst_incr is the amount the subtree containing the pro- 
cess that has claimed the no& intends to increment the counter 
by: secod-incr is the amount the waiting Process intends to 
increment the counter by. Finally resuZr is the counter value to 
be distributed down the next (sub)tree. 

The stufus field designates what state the node is in. 
The root node is always in state ROOT. Other nodes can have 
one of three Possible values, corresponding to the which phase 
of the algorithm the no& is Participatins in: 

(1) FREE: this node is unchdm~ 

(2) COMBINE: this node is for combining; 

(3) RESULT: this node contains results, 

The algorithm proceeds as follows. (See Figure A.2.) 
In Part One, A Process Progresses up the combiig tree mark- 
ing each FREE node as a COMBINE node. If the process 
finds a RESULT node it must wait until the Previous 
Fetch-and-Add operation finishes using this node (i.e. the 
node will become either FREE or COMBINE). before continu- 
ing up the tree. When a ROOT or COMBINE node is found, 
this node is locked, and the algorithm continues to Part Two. 

In Part Two the Process locks each node Previously 
visited, bottom-up, and tallies the node second incr vahs, 
which may have been updated since the node WC 6rst visited. 
Along the way, the tally for the Previous subtree is stored in 
first-incr. The total tally represents the aggregate increment 
requested by the subtree the Process is responsible for. The 
revisited nodes will remain locked until results are distributed. 

In Part three, if a COMBINE node was reached then the 
hal tally is added to secod-incr for that node, the waitjtag 
field for the node is set to true, and the process spins on the 
status field (using the pairwise-sharing algorithm of Section 5) 
until the node becomes a RESULT node. For either a 
RESULT or ROOT node the result of the node is saved for dis- 
tributing results downward. In the case of the ROOT node the 
result value must be incremented by the total tally, essentially 
Performing the Fetch-and-Add value on the %ctual counter”. 

The algorithm then enters Part Four, where the Process 
reverses it’s Path down the tree, distributing results. At each 

node, if there is a waiting process, the node’s result field is set 
to the result from Part Three plus it’s own subtree’s increment 
(i.e. fvsr_incr), and the node stutus is set to RESULT. Other- 
wise, the node is re-initialized to FREE. 

Figure A.1 shows an example of increment requests (on 
the arcs) and initial result values (in the nodes) that Propagate 
down the tree for one request that reaches the root of a binary 
software combining tree. The Process that claims each node is 
indicated by the bold-face path of arcs below the node. It’s 
combined increment request is the value on the bold incoming 
am. Note that the initial result value in each node has not been 
incremented by either of the subtree requests for the sake of 
clarity. 

p-0 pmcoul pmce3s2 p-3 p-6 p-s7 

Mpre A.1. Exanple Binary Software Combining Tree. Request 
fmm procesmr 4 maches the mot node. Arcs arc labeled with corn- 
biied increment request vdues. Mtii return values are given in the 
nodes. The first suhtrec to be given a result is indicated hy a hold arc. 
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function fetch-and-add (counter, incr) 
begin 

P Patt One. Go up the tree changing FREE nodes to COM- 
BINE nodes (and releasing them), until a ROOT node or 
COMBINE node is found If a RESULT no& is encountered, 
spin wait until its status changes before continuing up the tree. 
Function node-addr returns the address of a node in the tree 
(counter) for a given process and level. The level above the 
processors is the lowest numbered level. */ 

level - FIRST-LEVEL 
going-up - TRUE 
while (going-up) 

node = node-addr(counter,level,pid) 
lock (node) 
if (node-status =- RESULT) then 

unlock (node) 
else if (node.status == FREE) then 

node.status - COMBINE 
unlock (node) 
level = level + 1 

else /* COMBINE or ROOT node */ 
last-level - level 
going-up - FALSE 

end 

P Part Two. Go back through the nodes, first prefetching 
them. Then lock each node and perform the combining at 
each level. The nodes remain locked until results am to be 
distributed. Note that the value assigned to first-&r is the to- 
tal from the previous level. */ 

for level - FIRST-LEVEL to last-level-l do 
visited - node-addr(counter,level,pid) 
QOSB (visited) 

end 
total - incr 
for level - FIRST-LEVEL to last-level-l do 

visited - node-addr (counter, level, pid) 
lock (visited) 
visited-first incr - total 
if (visited-wait flag) then 

total - totai + visited. second-incr 
end 

Figure A.2. The Software Combining Fetch-and-Add Algorithm. 

P Part Three. If Patt One stopped at a COMBINE node then 
place the total for this process into secondjncr for the node, 
set the wait-flag, and wait for the node status to change to 
RESULT. When results are available the result is saved and 
the no& is set to FREE. If Part One stopped at the ROOT 
node then saves the result and add the total in. This step per- 
forms the fetch-and-add on the actual counter value. For both 
cases the node should then be released. */ 

if (node-status -= COMBINE) then 
node-second incr = total 
node-wait-fiag = TRUE 
while (node-status == COMBINE) do 

unlock (node) 
lock (node) 

end 
node.wait-flag = FALSE 
node.status = FREE 
saved result = node.result 

else /* RZOT node */ 
saved-result - node. result 
node-result = node-result + total 

end 
unlock (node) 

r Part Four. Walk back down the tree, either freeing nodes 
or distributing results if combining was performed at this node 
(i.e. w&&g is set). The result left in each node is the save 
result from Part Three incremented by Rrstjncr, which is the 
total from the subtree for which this process is responsible. 
Finally, the saved result from Patt Three is returned by the 
fetch-and-add algorithm. */ 

for level - last-level-l to FIRST-LEVEL do 
visited - node addr(counter,level,pid) 
if (visited-wait_f lag) then 

visited-status = RESULT 
visited.result - saved-result + 

visited.firstincr 
else 

visited-status - FREE 
end 
return (saved-result) 

end /* fetch-and-add */ 
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