
The Turn Model for Adaptive Routing *

Christopher J. Glass and Lionel M. Ni

Advanced Computer Systems Laboratory

Department of Computer Science

Michigan State University

East Lansing, MI 48824-1027

{glass ,nl}@cps .msu. edu

Abstract
We present a model for designing wormhole routing algorithms

that are deadlock free, livelock free, minimaf or nonminimal, and

maximally adaptive. A unique feature of this model is that it

is not based on adding physical or virtual channels to network

topologies (though it can be applied to networks with extra chan-

nels). Instead, the model is based on analyzing the dkections in

which packets can turn in a network and the cycles that the turns

can form. Prohibiting just enough turns to break all of the cy-
cles produces routing algorithms that are deadlock free, livelock

free, minimal or nonminimal, and maximally adaptive for the net-
work. In this paper, we focus on the two most common network

topologies for wormhole routing, n-dimensional meshes and Ic-ary

n-cubes, without extra channels. In an n-dimensional mesh, just a

quarter of the turns must be prohibited to prevent deadlock. The

remaining three quarters of the turns permit partial adaptiveness

in routing. Partially adaptive routing algorithms are described

for 2D meshes, n-dimensional meshes, k-ary n-cubes, and hyper-

cubes. Simulations of partially adaptive and nonadaptive routing

algorithms for 2D meshes and hypercubes show that which algo-

rithm has the lowest latencies and highest sustainable throughput

depends on the pattern of message tratlic. For nonuniform trfic,

partially adaptive routing algorithms perform better than non-

adaptive ones.

1 Introduction

Direct networks have become a popular interconnection architec-

ture for constructing large-scale multiprocessors, such as multi-

computers and scalable shared-memory multiprocessors. Direct

net works offer massive parallelism [1, 2, 3, 4, 5] and are far more

scalable than other approaches to multiprocessor intercomection.

Systems based on dh-ect networks are organized as ensembles of

nodes, where each node has its own processor, locaf memory, and

other supportive devices. The nodes communicate by sending
messages. The network connects each node directly to only a few
other nodes, its n eighbora. Which nodes are neighbors is defined

by the topology of the network. A node communicates with a

node that is not its neighbor by sending a message through one

of its neighbors. To handle the complexities of routing messages

*This work was supported in part by the NSF grant EC S.88.14027.

Permission to copy without fee all or part of th]s material IS granted

provided that the copies are not made or dmtrlbuted for direct commercial

advantage. the ACM copyright notice and the title of the publication and

Its date appear, and notice IS gven that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or specific permission.

in the direct network, each node often has a router. The router

controls local input and output channels, which connect it to local

devices, and network input and output channels, which connect

it to neighboring routers.

Worrahole routing [6] is becoming a popular switching tech-

nique in direct networks. Wormhole routing wwitches a message

along a network by first dividing the message into packets and

the packets into flow coniroi digits or flits. It then routes the

tiits in each packet through the network in a, pipeline fashion.

Header jlits contain all of the routing information for a packet

and lead each packet through the network. When the header flits

reach a router that has no suitable output channel available, all of

the tits in the packet wait where they are for a suitable channel

to become available. One of the attractions nf wormhole rout-

ing is that each router requires just enough buffer space to store

a few tilts for each channel. The store-and-forward and virtual

cut- through switching techniques [7] require enough buffer space

to store an entire packet for each channel. Another attraction of

wormhole routing is that its communication latencies are low. In

the absence of contention, the latencies for store-and-forward are

proportional to the product of packet length ancl distance to travel

[s]. The latencies for wormhole routing, virtua~ cut-through, and
cir-ctiit switching, on the other hand, are proportional to the sum

of packet length and distance to travel. Wommhole routing ahro

has some advantages over circuit switching. Channel reservation

and release are an integral part of wormhole routing, but are sep-

arate phases in circuit switching. Wormhole routing also permits

rout ers to repficat e flits and output them over multiple channels,

making multicast and broadcast communications possible [9, 1].

The majority of network topologies for wormhole routing

are n-dimensional meshes and k-ary n-cabcs, particularly low-

dimensionaf meshes and hypercubes. A 2D mesh is used in the

Intel Touchstone DELTA [2], the Intel Paragon, and the Symult

2010 [10]; a 3D mesh is used in the MIT J-machine [11], and the

Caltech MOSAIC; and a hypercube is used in the nCUBE2 [1].

Formally, an n-dimensional mesh has k. x kl x . . . x kn-z x Icn-1

nodes, k, nodes along each dimension i, where k, ~ 2. Each node

X is identified by n coordinates, (c., c1, Zn-2, Zn–l), where

O<xl<k,–lforO~i<n- 1. Two nodes X. and Y are neigh-

bors if and only if z, = y, for all i, O < i < :n – 1, except one,

j, where y, = ZJ & 1. Thus, nodes have from n to 2n neighbors,

depending on their location in the mesh. In a, k-ary n-cube [8],

all nodes have the same number of neighbors. The definition of a

k-ary n-cube differs from that of an n-dimensional mesh in that

all of the k,’s are equaf to k and two nodes X and Y are neighbors

if aud only if z, = vi for all i, O < i < n— 1, except one, j, where

YJ = (Zj + 1) mod k. The change to modular arithmetic in the
definition adds wraparound channels to the k- ary n-cube, giving
it symmetry, Every node has n neighbors if k = 2 and 2n neigh-

bors if k >2. Another topology with symmetry is the hypercube,
which is a special case of both n-dimensional meshes and k-ary

n-cubes. A hypercube is an n-dimensional mesh in which k, = 2

for O < i < n – 1 or a 2-ary n-cube.

@ 1992 ACM 0=89791 -509.7/92/0005/0278 $1.50 278

Meshes and k-ary n-cubes are pop&r in part because their

regular topologies simplify routing. In general, low-dimensional

meshes are preferred over high-dimensional meshes and k-ary n-

cubes. Low-dimensionaf meshes have low, fixed node degrees,

which makes them more scalable than high-dimensionaf meshes

and k-ary n-cubes. They also have fewer channels and higher

channel bandwidth per bisection density and have lower con-

tention and blocking latencies, which result in lower comunicm
tion latencies and higher hot-spot throughputs [8]. On the other

hand, high-dimensional meshes and k-ary n-cubes have some ad-

vantages that partialf y offset those of low-dimensional meshes.

They tend to have lower diameters, which shortens path lengths.

They also have more paths between pairs of nodes, which permits

more fault tolerance. Finally, the symetry of k-ary n-cubes can

make it easier to spread packet traflic more evenly.

Algorithms for routing message packets through a network

topology should have three characteristics: low communication

latency, high network throughput, and ease of implementation

in VLSI. Features contributing to ease of implementation are lit-

tle hardware for channels, buRem, and control logic. Features

cent ributing to low latency and high throughput are freedom

from deadlock, freedom from indefinite postponement, freedom

from livelock, fault tolerance, routing packets along short paths,

spreading packet tratlic evenly, and routing packets adaptively.

Many of these terms require some definition (partly because they

have been used in different ways by d,fferent authors). Deadlock

occurs when a packet waits for an event that cannot happen. For

example, a packet may wait for a network resource to be released

by a packet that is, in turn, waiting for the first packet to re-

lease some resource. In wormhole routing, such a circular wait

condition will cause deadlock, because a packet holds resources

while waiting and excludes other packets from acquiring the held

resources. Indefinite postponement is similar to deadlock, but

occurs when a packet waits for an event that can happen but

never does. For example, a packet may wait forever to acquire

a network resource for which other packets are always compet-

ing successfully. The issue here is fairness. Both deadlock and

indefinite postponement can stop a packet from being injected

into a network or from moving once it is in the network. In con-

trast, livelock does not stop a packet’s movement, but rather its

progress toward the destination. Livelock occurs when the routing

of a packet never leads it to its destination. Llvelock is possible

only when routing is adaptive (not along a predetermined path)

and n on minimal (possibly away from or equidistant to the desti-

nation at times). Minimal routing, in contrast, restricts packets

to shortest paths. Although minimaf routing may initially sound

more promising, nonminimal routing provides better fault toler-

ance.

Of these features, the most important is freedom from dead-

lock. Deadlock can keep many or all packets from reaching their

destinations and occurs readily unless a routing algorithm in-

cludes preventive measures. Indefinite postponement and livelock

are less likely to occur and are generally easier to prevent. Adap-

tiveness is also an important feature, because it contributes to

severaf of the other features [12]. It provides alternative paths

for packets that encounter continuously blocked channels, faulty

hardware, or hot spots in trat%c patterns.

The drawback to previous routing algorithms for meshes and

k-ary n-cubes is that they either sacrifice adaptiveness for dead-
lock freedom or achieve adaptiveness and deadlock freedom at the

expense of adding phyiicaf or virtual channels. The popular zy
routing algorithm for 2D meshes [10, 2] routes a packet first along

the z dimension (dimension O) and then along the y dimension

(dimension 1). The e-cube r.tittng algorithm for hypercubes [13]

routes a packet first along the lowest dimension and then along

higher and higher dimensions. Ordering the dimensions in thk
way ensures that the zu and e-cube algorithms avoid deadlock,

but it also ensures nonadaptiveness. Another popular way to

avoid deadlock, and possibly to provide adaptiveness, is to add

virtual channels to networks. Dally and Seitz [14] introduced the

idea for nonadaptive routing, and several researchers [15, 12, 16]

have extended it to adaptive routing. Adding a virtual channel

to a physical channel is less expensive than adding a new physi-

cal channel, but it is not free. It involves adding buffer space and

control logic to the two routers at the ends of the physical channel

so that the virtual channels can share the physicaf channel and

routers. It also reduces the bandwidths of the virtual channels

already sharing the physical channel. An advantage of adding

virtual or physical channels, however, is that they can support

routing algorithms with a high degree of adaptiveness. A minim-

al, fully adaptive algorithm can route packets along any of the

shortest paths in the topology. Dally [17] and Lhder and Harden

[16] describe such an algorithm for 2D meshes. A partially adap-

tive algorithm cannot route packets along every shortest path.

This paper presents a model for designing wormhole routing

algorithms that are deadlock free, livelock free, minimal or non-

minimal, and maximally adaptive for networks. A unique feature

of this model is that it is not based on adding physical or vir-

tual channels to network topologies (though it can be applied to

networks with extra channels). Instead, the model is based on
analyzing the directions in which packets can turn in a network

and the cycles that the turns can form. Section 2 presents the

model in general terms and applies it to n-dimensional meshes

without extra channels. Sections 3, 4, and 5 describe many of

the partially adaptive routing algorithms derived for 2D meshes,

n-dimensional meshes and k-ary n-cubes, and hypercubes respec-

tively. Simulations studying the performance of partially adap-

tive and nonadaptive algorithms in 2D meshes and hypercubes

for different patterns of message traffic are described in Section 6.

Section 7 concludes the paper.

2 Turn Model

Deadlock in wormhole routing is caused by packets waiting on

each other in a cycle. Figure 1 shows one way that deadlock can

occur in a 2D mesh. Four packets travellhg in different directions

try to turn left and wind up in a circular wait. If only one of the

packets had not turned, this deadlock would have been avoided.

This suggests that, by prohibiting certain turns in a network, a

routing algorithm might prevent deadlock altogether. The routing

algorithm would have to prohibit at least one turn in each of the

many possible cycles. At the same time, the algorithm would

have to leave a path between every pair of nodes. In addition,

it should not prohibit more turns than necessary; otherwise, the

adaptiveness of the algorithm would be reduced.

To solve this problem of designing wormhole routing algorithms

that are deadlock free and maximally adaptive for a network, we

propose the turn model. The model involves analyzing the di-
rections in which packets can turn in the network and the cycles

that the turns can form. It prohibits just enough turns to break

all of tbe cycles. Routing algorithms that employ the remain-

ing turns are deadlock free, livelock free, minimal or nonminimal,

and maximally adaptive for the network. The model produces

partially adaptive routing algorithms for such basic topologies as

mesh-connected, k-ary n-cube, hexagonal, octagonal, and cube-

connected cycle networks. Adding extra physical or virtual chan-

nels to the topologies allows the model to produce fulfy adaptive

routing algorithms, the topic of a forthcoming paper [18]. The

current paper focuses on improving performance without the ex-

pense of extra channels, as might be done by changing the routing
algorithms in existing routers.

The steps of the turn model are given in more detail below.
Unless specified otherwise, the term “channel” will be used to

indicate either a virtual or physical channel.

1. Partition the channels in the network into sets according to

the directions in which they route packets. If each node has
v channels in a physical dhection, treat these channels as

being in v dktinct virtual directions and divide them into v

dktinct sets accordingly. Put any wraparound channels (for

tori) in a separate set to be incorporated during Step 5.

279

1

m ❑ lmil
II

❑

a“’n cm

1
packet 4

+
packet 1

packet 2

+

Figure 1. A wormhole deadlock involving four routers and four

packets in a 2D mesh.

2.

3.

4.

5.

6.

Identify the possible turns from one virtual direction to an-

other, ignoring 180-degree and O-degree turns. A O-degree

turn is only possible when there are multiple channels in one

direction. It represents a transition from one set of channels

to another when the two sets route packets in the same phys-

icaf direction, but different virtual directions.

Identify the cycles that these abstract turns can form. Gen-

erally, identifying the simplest cycles in each plane of the

topology is adequate.

Prohibit one turn in each abstract cycle so as to prevent

deadlock. The turns must be chosen carefully in order to

break every possible cycle, including complex cycles not

identified in Step 3. A useful approach is first to break the

cycles in each plane and then to check whether this allows

more complex cycles.

Incorporate as many turns as possible from the set of

wraparound channels, without reintroducing cycles. At least

one turn for each wraparound channel can always be incor-

porated.

Incorporate as many 180-degree and O-degree turns as pos-

sible, without reintroducing cycles.

Routing algorithms that route packets along the sets of channels
identified in Step 1 and use only the turns from one set to an-

other allowed by Steps 4, 5, and 6 are deadlock free, livelock free,

minimal or nonminimal, and maximal!y adaptive for the network.

They are deadlock free because breaking all of the cycles prevents

circular waits. (We demonstrate deadlock freedom for individual

routing algorithms later.) Preventing circular waits in thk way

means that it is possible to number the channels in the network so

that each algorithm routes every packet along channels in strictly

decreasing (or increasing) order [14]. This, together with the fact

that a network contains a finite number of channels, means that

a packet will reach its destination after a limited nmuber of hops.

Thus, routing is Iivelock free. Routing is maximally adaptive for
the network because the model prohibits the minimum number of

turns from one dkection to another. The algorithms the model

produces will also be nomninimal, but can easily be made minimal

by modifying them to use channels only when they lead toward

the destination. Nomninimal routing is more adaptive and fault

tolerant, though.

To make the steps of the turn model clearer, the remainder of

this section applies them to n-dimensional meshes, starting with

2D meshes. For 2D meshes, we first simplify the terminology used

in the definition of n-dimensional meshes. Dimensions O and 1 be-

come z and V. The lengths of the dimensions, kO and kl, become

m and n. The directions —z, +a, -g, and +y become west, east,

south, rmd north. From these four directions, eight 90-degree

turns can be formed: left rmd right turns when traveling west,

east, south, and north. The eight turns form two abstract cycles

as shown in Figure 2. The ny routing algorithm prevents dead-
lock by prohibiting four of the turns (Figure 3). The remaining

four turns cannot form a cycle; they also do not allow any adap-

tiveness. Deadlock can be prevented by prohibiting fewer than

four turns, however. In fact, only two turns need to be prohib-

ited, one from each abstract cycle, allowing for some adaptiveness

in routing. Prohibiting any two turns will not prevent deadlock,

however, as F@re 4 illustrates. The three left turns allowed in

Figmre 4a are equivalent to the prohibited right turn in Figure 4b,

and the three right turns allowed in Figure 41b are equivalent to

the prohibited left turn in Figure 4a. Thus, bc,th cycles still exist

and deadlock is possible (Figure 4c). Section 3 describes which

pairs of turns can be prohibited to prevent deadlock and describes

the partially adaptive routing algorithms based on these turns.

F&gure 2. The possible abstract cycles and turns in a 2D

Figure 3. Only four turns (solid lines) are alllowed in the

zy routing algorithm.

(a) (c)

Figure 4. Six turns that complete the abstract cycles and allow

deadlock.

In an n-dimensional mesh, each node has up to 2n input chan-
nels and 2n output channels. For each of these 2n directions,

there are 2n – 2 possible 90-degree turns to a different direction,

making 4n(n — 1) total turns. These turns form two abstract cy -

280

cles in each of the n(n – 1)/2 planes, making n(n – 1) total cycles

of four turns.

Theorem 1 The minimum number O! turns that must be pro-

hibited to prevent deadlock in an n-dimensional mesh is n(n– 1),

OT a quarter of the possible turns.

Proofi The 4n(n – 1) turns in an n-dimensional mesh can be

partitioned into n(n – 1) abstract cycles of four turns each. Each

of the n(n – 1)/2 planes contains two of these cycles. At least

one of the four turns in each cycle must be prohibited in order

to prevent these cycles. Therefore, prohibiting a quarter of the

turns is necessary to prevent deadlock. •1

In the following sections, we introduce specific partially adap-

tive routing algorithms based on the turn model for 2D mesh,

n-dimensional mesh, k-ary n-cube, and hypercube topologies. A

detailed study for the 3D mesh can be found in [19].

3 Partially Adaptive Routing in 2D

Meshes

In a 2D mesh, there are four dkections, eight 90-degree turns,

and two abstract cycles of four turns. One turn from each cycle

must be prohibited to prevent deadlock. Of the 16 different ways

to prohibit these two turns, 12 prevent deadlock (see Figure 4 for

a deadlock case) and three are unique if symmetry is taken into

account.

3.1 West-First Routing Algorithm

Figure 5a shows one way to prohibit two turns in a 2D mesh.

The prohibited turns are the two to the west. Therefore, to travel

west, a packet must start out in that direction. This suggests the

west-jimt t-outing algorithm: route a packet fist west, if neces-

sary, and then adaptively south, east, and north. Example paths

for the west-first algorithm are shown in Figure 5b. In this fig-

ure, black squares represent nodes, and gray bars indicate blocked

channels requiring that packets wait (dashed lines) or take alter-

native paths. Note that both minimal and nonminimal paths are

shown.
Proof that the west-first partially adaptive algorithm is dead-

lock free is based on the work of Dally and Seitz [14], who show

that a routing algorithm is deadlock free if the channels in the

interconnection network can be numbered so that the algorithm

routes every packet along channels with strictly decreasing (or in-

creasing) numbers. Because the west-first algorithm routes pack-

ets first west and then in the other directions, we assign lower

numbers to westward channels the farther west they are, and as-

sign still lower numbers to eastward, northward, and southward

channels the farther east they are.

Theorem 2 The west-first routing algorithm is deadlock free.

Proofi Assign each channel in the m x n mesh a two-digit
number a, b in base r, where T is the greater of 3m — 2 and n — 1.
Figure 6 shows the particular numbers to assign to the channels
leaving node (z, V). Figure 7 illustrates the numbering of a 4 x 4

mesh. To show that west-first routes every packet along channels
with strictly decreasing numbers, it is sutiicient to show that, for

each channel into an arbltrru-y node, the algorithm can only route

the packet out along a channel with a lower number. Figure 8

shows the four possible cases. Examination shows that, in each

case, the channels used to route a packet out of a node have lower

numbers than the input channel. Note that in part (c) a packet

can make a 180-degree turn. This turn is only useful for nonmin-

imal routing. ❑

r -~ r~

1-d L.-i
(a) The six turns allowed (solid lines) by the west-first algorithm.

U:m::

+“
WI blllil
■ ■

■ ■ FIi

—

■

■

■

■

■

LA ■

m ■ ■
A

(b) Examples of the west-tirst algorithm in an 8 x 8 mesh.

Figure 5. The west-tirst routing algorithm for 2D meshes.

2m-2-2x@-y

t
2m-2-2x,y-l

Figure 6. Numbering of the channels leaving each node (z, V) for

the west-fist routing algorithm.

281

3.2 North-Last Routing Algorithm

F@re 9a shows another way to prohibit two turns in a 2D mesh.

The prohibited turns are the two when traveling north. There-

fore, a packet should only travel north when that is the last di-

rection it needs to travel. This suggests the north-last routing
algorithm: route a packet tlrst adaptively west,, south, and east,

and then north. Exrunple paths for the north-last algorithm are

shown in Figure 9b.

7,0 9,0

5,0 1,0

~1 6,1 4,1 4,1 2,1 2J 0,1 0,1
(a) The six turns allowed (solid lines) by the north-l=t algorithm.

7,0 &o 9,0

5,0 3,0 1,0

&o 9,0

3,0 1,0 L T ■

Figure 7. Numbering of a 4 x 4 mesh for the west-first routing

algorithm.

2m-2-2x,n-2-y 2m-2-2x,y
(b) Examples of the north-last algorithm in an 8 x 8 mesh.

Jl-2m-1-2x,0 2m-3-2x,0
X,y

+-

2m-3-2x,0
X,y

2m-2-2x,y-l

Figure 9. The north-laxt routing algorithm for 2D meshes.

T
2m-2-2x,y-l

(a) input from west

Theorem 3 The north-last routing algorithm is deadlock jree.

(b) input from north
Proofi The proof is similar to that for Theorem 2. Rotate

Figures 6 rmd 7 counterclockwise 90 degrees, and reverse the di-

rections of the channels. The figures now show that north-last

routes every packet along channels with strictly increasing num-

bers. •1

2m-2-2x?n-2-y 2m-2-2x,n-2-y

b

2m-3-2x,0
X,yJ-t2m-2+x,0

2m-l+x,O

X,y

T 2m-3-2x,0

2m-2-2x,y-l
3.3 Negative-First Routing Algorithm

2m-2-2x,n-l-y

(d) input from south
Figure 10a shows a third way to prohibit two turns in a 2D mesh.

The prohibited turns are the two from a positive direction to a

negative direction. Therefore, to travel in a negative direction, a

packet must start out in a negative direction. This suggests the

negative-jirat Touting algorithm: route a packet th-st adaptively

west and south, and then adaptively east and north. Yrmtchev

and Jesshope propose a similar algorithm [15], lbut only for minim-

al routing. The negative-tirst algorithm can lbe either minimal
or nonminimal, the nonminimal version being more adaptive and

fault tolerant. Example paths for the negative-first algorithm are

shown in Figure 10b.

(c) input from east

Figure 8. For each input channel, the output channels allowed by

the west-first routing algorithm have lower numbers.

282

Theorem 4 The negative- fir8t routing algorithm is deadlock

jree.

The proof is a special case of the one given for n-dimensional

meshes in Section 4.

(a) The six turns allowed (solid lines) by the negative-tirst algo-

rithm.

99 ■ !9. ■ ■ ■
4

■ mmm u.
(b) Examples of the negative-tirst algorithm in an 8 x 8 mesh.

Figure 10. The negative-fist routing algorithm for 2D meshes.

3.4 Degree of Adaptiveness

How adaptive are these partially adaptive routing algorithms?

Let Salgor,thm be the number of shortest paths the algorithm al-

lows from source node (s=, SY) to destination node (d=, dv). Also,

let j be a fully adaptive algorithm, p be one of the three partially

adaptive algorithms, Ax = Idz — s= 1, and Ay = IdY – Sg [. Then,

(Ax + Ay)!

‘f = AZ!AY!

{

&J!#
s if d% ~ s%

west -f:rst =
1 otherwise

{

(.4a&2
Snorth_la.t = ~ ~z!AY! if dv ~ Sv

otherwise

{

w if (dz < s= anddg < SY)
s negattve-fsrst = or (d~ z so and dv ~ SU)

1 otherwise

For minimal routing algorithms, the larger Salgor,t~~ is, the

more adaptive the algorithm is. For the three partially adap

tive routing algorithms, however, SP = 1 for at least half of

the source-destimtion pairs. Another measure of the degree

to which a minimal routing algorithm is adaptive is the ratio

Salgm,thm/Sf. Sp/Sf ranges from O to 1, but averaged across

all source-destination pairs, Sp/Sf > 1/2, which indicates a sig-

nificant degree of adaptiveness. Note that Sp = 1 for a source-

destination pair does not imply that algorithm p is nonadaptive

for that pair. The partially adaptive algorithms all permit non-

rninimed routing. In the case of the negative-first algorithm, this

means that rout ing can be adaptive even when d= < s= and

dv ~ Su or when d= > s= and du < Sg. For an illustration of

this, see the bottom path in Figure 10b.

4 Partially Adaptive Routing in

n-Dimensional Networks

This section describes the adaptive routing algorithms resnlting
from the application of the turn model to n-dimensional meshes

and k-ary n-cubes. In general, these topologies are not practical

unless n is small or the k’s equal 2.

4.1 n-Dimensional Meshes

Of the many routing algorithms formed by prohibiting one turn

per cycle, three are noteworthy for their simplicity. They are

analogs of the west-first, north-last, and negative-first routing al-

gorithms for 2D meshes. The analog of the west-first routing al-

gorithm is the all-but- one-negative-jirst routing algorithm: route

a packet first adaptively in the negative directions of all but one

dimension (n – 1) and then adaptively in the other directions.

The analog of the north-last routing algorithm is the all-but-one-

positive-last routing algorithm: route a packet tirst adaptively in
the negative directions and the positive direction of one dimen-

sion (0) and then adaptively in the other directions. The analog of
the negative-tlmt routing algorithm is also called the n egative-jirst

muting alg orithrn: route a packet first adaptively in the negative

directions and then adaptively in the positive directions. All of

these algorithms are deadlock free, but the only proof we present

is for the negative-fist algorithm.

Theorem 5 The negative- fivst routing algorithm foT

n-dimensional meshes is deadlock free.

Proofi Let K be the sum of the k, for an n-dimensional

mesh, and let X be the snm of the z, for any node
(ZO , Z* , z.-2, Zn-I). Nnmber each channel leaving a node

in a positive direction K — n + X and each channel leaving a

node in a negative direction K — n — X. Then, if a packet enters

a node when traveling in a negative direction, it enters along a

channel nmnbered K – n – X – 1, which is less than K – n – X

and K – n + X, the numbers of the channels leaving the node

in the negative and positive directions. If a packet ente~ a node

when traveling in a positive direction, it enters along a channel

numbered K-n+X –1, which islessthan K-n+X, thenurn-

ber of the channels leaving the node in the positive directions.

Therefore, the negative-first algorithm routes every packet along

channels with strictly increasing numbers and is deadlock free. ❑

The negative-fit algorithm is deadlock free as a result of pro-
hibiting just one turn per abstract cycle, the turn from a positive

direction to a negative direction. Therefore, prohibiting some

quarter of the turns is sntiicient to prevent deadlock in an n-

dimensional mesh. Combining this with Theorem 1, we have the

following theorem, which supports our claim that the tnrn model

produces maximally adaptive routing algorithms.

Theorem 6 Prohibiting some quarter of the turns (that is,

n(n — 1)) in an n-dimensional mesh is necessary and suficient
to prevent deadlock.

283

As the number of dimensions increases, the minimal par-

tially adaptive algorithms are more likely to be able to route

messages adaptively. SP = 1 less often, especially when the

k, are large. But averaged across all source-destination pairs,

Sp/Sj >1 /2n–1, indicating that the degree of adaptiveness rela-

tive to fully adaptive algorithms decreases as n increases. Again,

adaptiveness can be increased by nouminimal routing.

4.2 k-ary n-cubes

The partially adaptive routing algorithms for meshes can be ex-

tended to use the wraparound channels of k-ary n-cubes. One

way is to allow a packet to be routed along a wraparound channel

only on its first hop. To prove that the routing is still dead-

lock free, number the mesh channels as before and assign the

wraparound channels a number that is either greater than or less

than those of the mesh channels, depending on whether packets

are routed along channels in strictly decreasing or increasing or-

der in the proof. The negative-tirst algorithm can be extended to

k-ary n-cubes in another way: classify each wraparound channel

according to the direction in which it routes packets and then

apPIY the negative-tit algorithm. Thus, a node at the east edge
of the mesh channels will have two channels to the west: a mesh

channel to the node immediately to its west and a wraparound

channel to a node at the west edge of the mesh channels. Again,

the proof of deadlock freedom is a simple modification of the proof

for meshes.

Note that all of these routing algorithms are strictly nonmini-

maL For k-ary n-cubes with k > 4, it is impossible to construct

deadlock-free routing algorithms that are minimal without addhg

extra channels. This is a result of the many cycles that do not

involve turns in the topology. By adding channels to a k-ary n-

cube, Linder and Harden [16] construct a routing algorithm that

is deadlock free, minimal, and fully adaptive. They add, how-

ever, enough channels to partition the k-ary n-cube into 2n -1

subnetworks with n + 1 levels per subnetwork and kn channels

per level.

5 p-cube Routing in Hypercubes

Hypercubes are a special case of both n-dimensional meshes and
k-ary n-cubes. Consequently, the partially adaptive routing al-

gorithms for hypercubes are special cases of the algorithms for

n-dimensional meshes and k-ary n-cubes. Proofs that the routing

algorithms are deadlock free are corollaries of the proofs for the

more general cases.

The special case of the negative-first algorithm has a particu-

larly compact expression, the p-cube routing algorithm. Let S be
the binary address of the source node for a packet, C be the bi-

nary address of the node the header flits currently occupy, and D

be the binary address of the destination node. The p-cube rout-

ing algorithm has two phases. In the case of minimal routing, the

fist phase routes the packet along a dimension i for which c, = 1

and d, = O. When there is no such dimension, the second phase

routes the packet along a dimension i for which c, = O and d, = 1.

These steps are easily computed using bitwise logic operations as

shown in Figure 11. If nomninimal routing is desired, because

of its increased adaptiveness and fault tolerance, the first phase

can also route the packet along any dimension i for which c, = 1

and d, = 1. Then, the steps can be computed as shown in Fig-

ure 12. In both of these algorithms, the only input transmitted in

the header flits is D. C is a unique constant for each router, and

p depends on which input buffer the header Wits occupy in the

router. Konstantinidou proposes an algorithm similar to p-cube

[20], but only for minimal routing.

The number of shortest paths from S to D, SP_cti~e, is hl !ho !,

where IX I represents the number of 1‘s in the binary number X,

hl=l(S A ~)1, and ho=l(s A D)l. For a fully adaptive routing
algorithm, ~, Sf = h!, where h = hl +ho = l(S@D)[is the Ham-

ming distance bet ween S and D. The other measure of the degree

of adaptiveness for the p-cube routing Is Sp—ctibe /.$f = 1/(:,).

Algorithm: Minimal p-cube routing for hypercubes.

Input: Current address, C, and destination address, D.

Procedure:

1. If C = D, route the packet to the local processor and
exit.

2. R= CAD.

3. If R= O,then R= CAD.

4. Route the packet along any available channel in a di-

mension i for which ~i = 1.

Figure 11. The minimal p-cube routing algorithm for hypercubes.

Overall, the p-cube routing algorithm offers a choice of many

shortest paths, especially when compared to tlhe nonadaptive e-

cube routing algorithm. The following table illustrates this for

a binary 10-cube where the source node (1011010100) sends a

message to the destination node (0010111001). For this example,

h = 6, hO = 3, and h] = 3. One of the 36 possible shortest paths

is shown. For each node transmitting the message, the number of

choices based on the p-cube routing is also shown. The number

of choices in rmrentheses indicates the additional choices available

with nonmi~mal routing.

nr”uti’gf”r

Current address C. destination address D; and

whether the last hop was m a posltwe dmectlon, p.

1.

2.

3.

4.

5.

If C = D, route the packet to the local processor and

exit.

Ifp=l, then R=CA D.

Elseif CA D= O,then R= CV (CA D).

Else R = C.

Route the packet along any available channel in a di-

mension i for which r, = 1.

Figure 12. The minimal p-cube routing algorithm for hypercubes.

address choices dimension taken comment

‘- g: ,

OO1OO1OOOL , . 1
nnlm lnnnn I 7 n./-.-..-”” “ . 1

0010110001 I 1

0010111001 I I ‘w

6 Simulation Experiments

To compare the partially adaptive routing algorithms all-but-one

negative-fist (ABONF), all-but-one-positive-last (ABOPL), and

negative-tirst (NF) with the nonadaptive routing algorithms Zy

and e-cube, we simulate a 16 x 16 mesh and a binary 8-cube for
three different tratlic patterns. Each of these topologies contains

256 nodes. A pair of unidirectional channels connects each pair

of neighboring routers and each router to its local processor. All

284

of the channels have the same bandwidth, 20 tlits/flsec. Each

input channel into a router has a bufTer the size of a single flit.

The routers operate asynchronously and synchronize to simult~

neously transmit the tlits in a packet.

The processors generate messages at time intervals chosen from

a negative exponential distribution. Each message has an equal

probability of being one packet of 10 or 200 tlits. Messages that

are blocked from immediately entering the net work are queued at
the source processor. Messages that arrive at a destination pro-

cessor are immediately consumed. When multiple input channels

contain header flits waiting for the same available output channel,

an input selection policy must arbitrate. The policy used is called

local first-come-first-served and decides in favor of the header flits

that arrived in the router first. This policy is fair and therefore

prevents indefinite postponement. When a header fit in an input

channel has multiple output channels available to it, an output

selection policy must arbitrate. The policy used is called ZY and

decides in favor of the output channel along the lowest dimension.

All routing is minimal.

For each simulation, two characteristics of network perfor-

mance are measured: average communication latency (in Usec)

and average sustainable net work throughput (in tlits delivered

per psec). The throughput is sustainable when the number of

packets queued at their source processors is small and bounded.

Obviously, the network performance is largely determined by

the message trafFic pattern, which is application dependent. Three

network workloads are considered: uniform, matrix-transpose,

and Teverse-jiip. The uniform pattern sends each message to

any of the other processors with equal probability. In the mesh,

the matrix-transpose pattern sends each message from the pru-

cessor at row i and column j to the one at row j and col-

umn i. In the hypercube, a matrix-transpose patterm is derived

by mapping a 16 x 16 mesh to the hypercube so that neigh-

bors in the mesh are neighbors in the hypercube. Messages are

then sent to the nodes dictated by the matrix transpose in the

mesh. The resulting pattern in the hypercube sends each message

from the processor at (ZO, ZI, $2, Z3, X4, Z5, Z6, X7) to the one at

(3Y4, W, Z6, X7, ZZO,r~, w, q). The reverse-tlip pattern sends each

message from the processor at (ZO, ZI, zz, Z3, ZA, Z5, ~Ij, $7) to the

one d (Z-7, Z-f, $–~, ~–~,Z-3, @, Z–I, Z-o).

40 I I I I I i

35

30
(

Average 25 -
commun-

ication Z.

latency

(flsec) 15 -
xv *

10 west-first -Q-

5; north-last -Q--

negative-first -A-

0 1 1 I I I I I

0 100 200 300 400 500 600 700 800

Average network throughput (flits/Psec)

Figure 13. Comparison of routing algorithms for uniform traffic

in a 16 x 16 mesh.

The simulations ind]cate that, for uniform traffic in the mesh

and hypercube, the nonadaptive routing algorithms have lower

latencies at high throughputs than the partially adaptive algo-

rithms (Figure 13). At low throughputs, the algorithms perform

about the same. For the nonuniform tratiic patterns, the partially

adaptive routing algorithms have the lower latencies, especially at

high throughputs (Figures 14, 15, and 16). For matrix-transpose

traflic in both the mesh and hypercube, the maximum sustain-
able throughput of the partially adaptive algorithms is twice that

of the nonadaptive algorithms. For reverse-fllp traftic, the maxi-

mum sustainable throughput of the partially adaptive algorithms
is four times that of the nonadaptive e-cube algorithm.

Average 25
commun-

ication zo
latency F

0 100 200 300 400 500 600 700 800

Average network throughput (flits/flsec)

Figure 14. Comparison of routing algorithms for matrix-transpose

traffic in a 16 x 16 mesh.

Overall in the hypercube, the highest sustainable throughputs

are for the partially adaptive algorithms and reverse-tlip tratiic.

These throughputs are 50% higher than the next highest sustain-

able throughput in the hypercube, which occurs for the e-cube

algorithm and uniform tratiic. This improvement in throughput

is not due to shorter path lengths for reverse-flip tratlic. The av-

erage path length for reverse-flip tratlic is 4.27 hops, versus 4.01

hops for uniform tratlic. Overall in the mesh, the highest sustti’n-

able throughput is for the negative-&t algorithm and matrix-

transpose trallic. This throughput is 30~o higher than the second

highest sustainable throughput in the mesh, which occurs for the

xy algorithm and uniform tratRc. Again, average path length is

longer for matrix-transpose tratfic (11.34 hops) than for uniform

traflic (10.61 hops).

The reason the nonadaptive routing algorithms perform bet-

ter than the partially adaptive routing algorithms for uniform

tratlic is that they happen to embody global, long-term informa-

tion about this tratlic pattern. From a global, long-term point of

view, the uniform trafhc pattern starts with message traffic spread

evenly across the mesh or hypercube, and the zv and e-cube algo-

rithms maintain that evenness. The adaptive algorithms, on the

other hand, select channels based on local, short-term informa-

tion. These selections tend to benefit just the routed packet and
ordy for the immediate future and tend to interfere with other

packets. The result is that the evenness of uniform tratiic is not

maintained as well as when global information is used.

Despite the superior performance of the nonadaptive routing

algorithms for uniform traiiic, the partially adaptive algorithms

probably provide better perforrmmce in real systems. Uniform

tratiic has been used in many previous simulation studies, but

we know of no real applications that generate uniform traffic.

A traffic pattern is determined by the application and how its

processes are mapped to the nodes of the network. For most

applications, each node will communicate with some nodes much

285

40

35

30
ABONF Q

ABOPL =
Average25 .

commun-
p-cube L

ication Z.
latency

(psec) 15 -

10

54

o~
o 100 200 300 400 500 600 700 800

Average network throughput (flits/psec)

Figure 15. Comparison ofroutingalgorittis formatrix-trampose
traffic in an 8-cube.

40 I I I I

35 e-cube *

ABONF ~
30

Average 25
ABOPL Q

commun-
p-cube (NF) -,&

ication .20
latency

(flsec) 15 -

10

54
u]o~

o 500 1000 1500 2000 2500

Average network throughput (flits/psec)

Figure 16. Comparison of routing algorithms for reverse-flip traf-

fic in an 6-cube.

more than others. Nonuniform tratlic presents a problem for the

ZY and e-cube algorithms because they are nonadaptive. Just

as they maintain the evenness of uniform tratlic, they blindly

maintain the unevenness of nonuniform trafiic. The result, ss the

figures illustrate, is often poor performance.

7 Conclusions and Future Work

Our goal has been to make the best use of the channels in

wormhole-routed interconnection net works. Analyzing the direc-

tions in which packets can turn in a network and prohibiting the

minimum number of turns that break all of the cycles produces

routing algorithms that are deadlock free, livelock free, minimal

or nonminimal, and maximally adaptive. Deadlock freedom and

livelock freedom are essentiaf for routing algorithms. Adaptive-
ness increases the chances that packets can avoid hot spots and

faulty hardware and decreases the chances of indefinite postpone-

ment and livelock. Nonminimal routing allows, even greater hot-

spot avoidance and fault tolerance. The turn model, urdike other

apprOmhes to designing ~aptive routing algorithms, is applica-
ble to networks with only the channels required by the network

topologies (as well as to networks with extra physicaf or virtual

channels). Applied to n-dimensional meshes and k-ary n-cubes

without extra chanuels, the turn model produces severaf new, par-

tially adaptive routing algorithms. Simulations of these partially

adaptive routing algorithms indicate that they can perform better

than nonadaptive algorithms for nonuniform pat terns of message

tratiic.

While the turn model has many advantages, it also has some

disadvantages. Adaptive routing can require more complex con-

trol logic for route selection than does nonadaptive routing, and

this may increase node delay. Part of the complexity is due to

the need for a router to decide between multiple output chan-

nels, all of which lead to the destination. Another part of the

complexity is due to the need for a router to base the route selec-

tion on more header information. For dimension-order routing,

a router typically bases a selection on the distance remaining in

one of the dimensions. For adaptive routing, a, router must base

a selection on the distance remaining in more than one, or all, di-

mensions. Every extra bit of header information that is required

for the router to select an output channel increases router storage

requirements and makes communication latencies more like those

of store and f&ward.

There are mauy directions for future work. In [19], we inves-

tigate the effects of different input and output selection policies

on network performance. In [18], we illustrate the application of

the turn model to networks that include extra virtuaf or physi-

cal channels. Other models for designing adaptive routing algo-

rithms are based on adding extra channels to networks, but do

not produce routing algorithms that are maximally adaptive for

the enhanced networks. Another obvious extension of our work is

to apply the turn model to other topologies, such as hexagonal,

octagonal, and cube-connected cycle net works, all of which per-

mit adaptive routing without the addition of channels. In such

topologies, the turns are not necessarily 90-degrees and the ab-

stract cycles are not necessarily formed by four turns. A final

important task is the identification of realktic workload distri-

butions, so that the results of future simulations can be more

meaningful.

Acknowledgments

The authors wish to thank Dr. Philip K. McKinley for helping us

develop the simulator.

References

1. NCUBE Company, NCUBE 6400 P70ce88c,r Manual, 1990.

2. Intel Corporation, A Touchdone DELTA System De8crip-

iion, 1991.

286

3. S. B. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. 19. C. J. Glass and L. M. N], “Adaptive routing in mesh-
Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankh, connected networks,” in Proceedings of the 12th International

P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb, “iWarp: Conference on Distributed Computing System., June 1992.

An integrated solution to high-speed parallel computing: in

Proceedings oj Svpercompnting ’88, pp. 330-339, Nov. 1988. 20. S. Konstantinidou, “Adaptive, minimal routing in hyper-
cubes, “ in Proc. of the 6th MIT Conference: Advanced Re-

4. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and search in VLSI, pp. 139–153, 1990.

J. Hennessy, “The directory-baaed cache coherence protocol

for the DASH multiprocessorfl in Proc. of the 17th Interna-

tional Symposium on Computer Architecture, pp. 148–159,

May 1990.

5. A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz,

“APRIL: A processor tmchitecture for multiprocessing mul-

tiprocessor,” in Proc. of the 17th International Symposium

on Computer Architecture, pp. 104–114, May 1990.

6. W. J. Dally and C. L. Seitz, “The torus routing chipfl Journal

of Distributed Computing, vol. 1, no. 3, pp. 187–196, 1986.

7. P. Kermani and L. Kleinrock, “Virtual cut-through: A new
computer communication switching technique,” Computer

Networks, vol. 3, no. 4, pp. 267–286, 1979.

8. W. J. Dally, “Performance analysis of Ic-ary n-cube intercon-

nection net works,” IEEE Transactions on Compute.., vol. C-

39, pp. 775–785, June 1990.

9. X. Lh and L. M. Ni, “Deadlock-fi-ee multicast wormhole rout-

ing in in multicomputer networks,” in Proceedings of the 18th

Annual International Symposium on Computer Architecture,

pp. 116–125, May 1991.

10. C. L. Seitz, W. C. Athas, C. M. Flaig, A. J. Martin,

J. Seizovic, C. S. Steele, and W.-K. Su, “The arch] tecturc
and programming of the Ametek Series 2010 multicomputer~

in Proceedings of the Third Conference on Hypercube Con-

current Computers and Applications, Volume I, (Pasadena,

CA), pp. 33–36, Association for Computing Mach] nery, Jan.

1988.

11. W. J. Dally, “The J-machine: System support for Actors)

in Actors: Knowledge-Based Concument Computing (Hewitt

and Agha, eds.), MIT Press, 1989.

12. W. J. DallY and H. Aoki, “Adaptive routing using virtual
channels,” tech. rep., Massachusetts Institute of Technology,

Laboratory for Computer Science, Sept. 1990.

13. H. Sullivan and T. R. Bashkow, “A large scale, homogeneous,

fully distributed parallel machine? in Proceedings oj the lth

Annu. Symp. Comput. Architecture, vol. 5, pp. 105–124, Mar.

1977.

14. W. J. DallY and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” IEEE Tmnsac-

tions on Computers, vol. C-36, pp. 547–553, May 1987.

15. J. T. Yantchev and C. R. Jesshope, “Adaptive, low latency,

deadlock-free packet routing for networks of processorsfl in

IEE Proceedings, Pt. E, vol. 136(3), pp. 178-186, May 1988.

16. D. H. Linder and J. C. Harden, “An adaptive and fault tol-
erant wormhole routing strategy for k-ary n-cubes ,“ IEEE

Transactions on Computers, vol. 40, pp. 2-12, Jan. 1991.

17. W. J. Dally, “Fine-grain message passing concurrent comput-

ers,” in PTOC. of the Third Conference on Hypercube Concur-

rent Computers, vol. 1, (Pasadena, CA.), pp. 2–12, Jan. 1988.

18. C. J. GhSS and L. M. Ni, “Maximally fully adaptive rout-
ing in 2d meshes; Tech. Rep. MSU-CPS-ACS-51, Dept. of
Computer Science, Michigan State University, East Lansing,
Michigan, Jan. 1992.

287

