Two Techniques to Enhance the Performance of
Memory Consistency Models

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy

Computer Systems L aboratory
Stanford University, CA 94305

Abstract

The memoryconsistencymodel supportedby a multiprocessor
directly affects its performance. Thus, severalattemptshave
beenmadeto relax the consistencymodelsto allow for more

buffering and pipelining of memory accesses.Unfortunately

the potentialincreasein performanceaffordedby relaxing the

consistencynodelis accompaniedby a morecomplexprogram-
ming model. This paperintroduceswo generalimplementation
techniqueghat provide higher performancefor all the models.

The first techniqueinvolvesprefetching valuesfor accessethat

are delayeddueto consistencymodel constraints. The second
techniqueemploys speculative execution to allow the proces-
sorto proceedeventhoughthe consistencymodel requiresthe

memory accessedo be delayed. When combined,the above
techniquesalleviate the limitations imposedby a consistency
model on buffering and pipelining of memory accessesthus

significantly reducing the impact of the memory consistency
modelon performance.

1 Introduction

Buffering andpipelining are attractivetechniquedor hiding the
latencyof memoryaccesse# largescaleshared-memonnulti-
processorsHowever the unconstrainediseof thesetechniques
canresultin anintractableprogrammingmodelfor the machine.
Consistencymodelsprovide more tractableprogrammingmod-
elsby introducingvariousrestrictionson theamountof buffering
and pipelining allowed.

Severalmemory consistencymodelshave beenproposedin
the literature. The strictest model is sequential consistency
(SC) [15], which requiresthe executionof a parallel program
to appearas someinterleavingof the executionof the parallel
processe®n a sequentiaimachine. Sequentiatonsistencym-
posessevererestrictionson buffering and pipelining of memory
accessesOne of the leaststrict modelsis release consistency
(RC) [8], which allows significantoverlapof memoryaccesses
given synchronizatioraccesseareidentifiedand classifiedinto
acquiresandreleasesOtherrelaxedmodelsthathavebeendis-
cussedin the literature are processor consistency (PC) [8, 9],
weak consistency (WC) [4, 5], anddata-race-free-0 (DRFO0)[2].
Thesemodelsfall betweensequentialand releaseconsistency
modelsin termsof strictness.

The constraintsmposedby a consistencynodelcanbe satis-
fied by placingrestrictionson the orderof completionfor mem-
ory accessefrom eachprocess.To guarantesequentiatonsis-

tency for example|it is sufficientto delayeachaccesauntil the
previousaccesscompletes. The more relaxedmodelsrequire
fewer suchdelay constraints. However the presenceof delay
constraintsstill limits performance.

This paperpresentdwo novelimplementatiortechniqueghat
alleviatethe limitations imposedon performancethroughsuch
delay constraints. The first techniqueis hardware-controlled
non-binding prefetch. It providespipelining for large latency
accesseghat would otherwisebe delayeddue to consistency
constraints. The secondtechniqueis speculative execution for
load accesses. This allows the processotto proceedwith load
accesseshat would otherwisebe delayeddue to earlier pend-
ing accessesThe combinationof thesetwo techniquegprovides
significantopportunityto buffer andpipelineaccessesegardless
of the consistencymodel supported.Consequentlythe perfor-
manceof all consistencymodels,eventhe mostrelaxedmod-
els,is enhancedMore importantly the performancef different
consistencynodelsis equalizedthusreducingtheimpactof the
consistencynodelon performanceThis latterresultis notewor-
thy in light of the fact that relaxedmodelsare accompaniedy
a more complexprogrammingmodel.

Thenextsectionprovidesbackgroundnformationonthevari-
ousconsistencynodels. Section3 discusseshe prefetchscheme
in detail. The speculativeexecutiontechniqueis describedin
Section4. A generaldiscussiorof the proposedechniquesand
the relatedwork is givenin Sections5 and 6. Finally, we con-
cludein Section?.

2 Background on Consistency Models

A consistencynmodelimposesestrictionson the orderof shared
memoryaccessefitiated by eachprocess.The strictestmodel,
originally proposedby Lamport[15], is sequentiakonsistency
(SC). Sequentiatonsistencyequiresthe executionof a parallel
programto appearas someinterleavingof the executionof the
parallel processe®n a sequentialmachine. Processorconsis-
tency (PC) was proposeddy Goodman9] to relax someof the
restrictionsimposedby sequentialconsistency Processorcon-
sistencyrequiresthatwritesissuedfrom a processomay not be
observedn anyorderotherthanthatin which theywereissued.
However the orderin which writes from two processorsccur,
as observedby themselvesor a third processarneednot be
identical. Sufficient constraintgo satisfy processoiconsistency
are specifiedformally in [8].

A morerelaxedconsistencymodelcanbe derivedby relating
memoryrequestorderingto synchronizatiorpointsin the pro-
gram. The weak consistencymodel (WC) proposedby Dubois

et al. [4, 5] is basedon the aboveidea and guarantees con-
sistentview of memoryonly at synchronizatiorpoints. As an
example,considera processupdatinga datastructurewithin a
critical section.Under SC, every accesawithin the critical sec-
tion is delayeduntil the previousaccesscompletes. But such
delaysareunnecessarif the programmehasalreadymadesure
that no other processcan rely on the datastructureto be con-
sistentuntil the critical sectionis exited. Weak consistency
exploits this by allowing accessesvithin the critical sectionto
be pipelined. Correctnesss achievedby guaranteeinghat all
previousaccessesare performedbeforeenteringor exiting each
critical section.

ReleaseconsistencyRC) [§] is an extensionof weak consis-
tencythat exploitsfurtherinformationaboutsynchronizatiorby
classifyingtheminto acquireand releaseaccessesAn acquire
synchronizatioraccesge.g.,a lock operationor a processspin-
ning for a flag to be set)is performedto gainaccesso a setof
sharedocations. A release synchronizatioraccesge.g.,an un-
lock operationor a processsettinga flag) grantsthis permission.
An acquireis accomplishedby readinga sharedlocation until
an appropriatevalueis read. Thus, an acquireis alwaysassoci-
atedwith a readsynchronizatioraccesgsee[8] for discussion
of read-modify-wrie accesses).Similarly, a releaseis always
associatedvith a write synchronizatioraccess. In contrastto
WC, RC doesnot requireaccessefollowing areleaseto be de-
layedfor the releasdo completethe purposeof thereleasds to
signalthat previousaccesseare complete,andit doesnot have
anythingto say aboutthe ordering of the accessedollowing
it. Similarly, RC doesnot requirean acquireto be delayedfor
its previousaccesses.The data-race-free-QDRFO0) [2] model
asproposedby Adve andHill is similar to releaseconsistency
althoughit does not distinguish betweenacquire and release
accesses.We do not discussthis model any further, however
becauseof its similarity to RC.

The orderingrestrictionsimposedby a consistencynodelcan
be presentedn termsof whenan accesds allowedto perform.
A readis considerederformed whenthe returnvalueis bound
and can not be modified by other write operations. Similarly,
a write is consideredperformed whenthe value written by the
write operationis visible to all processors.For simplicity, we
assumea write is madevisible to all other processorsat the
sametime. The techniqueglescribedn the papercanbe easily
extendedo allow for the casewhen a write is madevisible to
other processorsat different times. The notion of being per-
formed and having completedwill be usedinterchangeablyn
the restof the paper

Figure 1 showsthe restrictionsimposedby eachof the con-
sistencymodelson memoryaccesse$rom the sameprocess.
As shown,sequentiakonsistencycan be guaranteedy requir-
ing sharedaccessedo performin programorder Processor
consistencyallows more flexibility over SC by allowing read
operationsto bypasspreviouswrite operations. Weak consis-
tency and releaseconsistencydiffer from SC and PC in that
they exploit information aboutsynchronizatioraccessesBoth
WC andRC allow accessebetweerntwo synchronizatioropera-
tionsto be pipelined,asshownin Figurel. The numbersonthe
blocksdenotethe orderin which the accessesccurin program
order The figure showsthat RC providesfurther flexibility by
exploiting informationaboutthe type of synchronization.

The delay arcs shownin Figure 1 needto be observedfor
correctnessThe conventionalvay to achievethis is by actually
delaying eachaccessuntil a required (possibly empty) set of

1The weak consistencyand releaseconsistencymodels shown are the
WCscand RCpcmodels,respectivelyin the terminologypresentedn [8].

[LOAD] [LOAD] [STORE] [STORE] [LoaD] [LoAD] lSTOREHSTORE]

[LoAD] [STORE| [LOAD| [STORE]

Sequential Consistency (SC)

[LOAD] [STORE] [LOAD]| [STORE]

Processor Consistency (PC)

=l

() LOAD/STORE LOAD/STORE

. .]
LOADI/STORE ' 2 o 4

LOAD/STORE LOAD/STORE
RELEASE A| 3

LOAD/STORE
.
. 4
LOAD/STORE

o]

LOAD/STORE

ACQUIRE B |5

LOAD/STORE
.
o 6
LOAD/STORE

L]

RELEASE B| 7

Release Consistency (RC)

i}

LOAD/STORE v cannot perform
' 6 ; until uis performed
LOAD/STORE v
: FORDISTORE | ot n any o 25 1ong
LOAD/‘STORE aslocal data and control
Weak Consistency (WC) dependences are observed

Figure1: Orderingrestrictionson memoryaccesses.

accessedaveperformed.An interestingalternativeis to allow
the accessto partially or fully proceedeventhoughthe delay
arcs demandthat the accessbe delayedand to simply detect
and remedythe casesin which the early accesswould result
in incorrectbehavior The key observationis that for the ma-
jority of accessegshe executionwould be correct(accordingto
the consistencymodel) evenif the delay arcsare not enforced.
Suchaccessesre allowed to proceedwithout any delay The
few accessethat requirethe delayfor correctnessanbe prop-
erly handledby detectingthe problemand correctingit through
reissuingthe accessto the memory system. Thus, the com-
mon caseis handledwith maximumspeedwhile still preserving
correctness.

The prefetchand speculativeexecutiontechniquesdescribed
in the following two sectionsare basedon the aboveobserva-
tions. For brevity, we will presentthe techniquesonly in the
contextof SC andRC sincethey representhe two extremesn
the spectrunof consistencynodels. Extensionof thetechniques
for othermodelsshouldbe straightforward.

3 Prefetching

The previoussectiondescribedhow the delay constraintsim-
posedby a consistencymodellimit the amountof buffering and
pipelining amongmemoryaccesses.Prefetchingprovidesone
methodfor increasingperformancey partially proceedingwith
an accesghatis delayeddue to consistencymodel constraints.
The following subsectionsdescribethe prefetch schemepro-
posedand provideinsightinto the strengthsand weaknessesf
the technique.

3.1 Description

Prefetchingcan be classifiedbasedon whetherit is binding or
non-binding, and whetherit is controlledby hardware or soft-

Page2

ware. With a binding prefetch,the value of a later reference
(e.g., a registerload) is bound at the time the prefetchcom-
pletes. This placesrestrictionson when a binding prefetchcan
be issued,sincethe valuewill becomestaleif anotherproces-
sor modifiesthe location during the interval betweenprefetch
and reference.Hardwarecache-cohererdrchitecturessuchas
the StanfordDASH multiprocessof18], can provide prefetch-
ing thatis non-binding. With a non-bindingprefetch,the data
is broughtclose to the processor(e.g., into the cache)and is
keptcoherenuntil the processoractuallyreadsthe value. Thus,
non-bindingprefetchingdoesnot affect correctnesdor any of
the consistencynodelsandcanbe usedassimply a performance
boostingtechnique.The techniquedescribedn this sectionas-
sumeshardware-controlled non-binding prefetch. We contrast
this techniquewith previouslyproposedprefetchtechniquesn
Section6.

Prefetchingcan enhanceperformanceby partially servicing
largelatencyaccessethataredelayeddueto consistencynodel
constraints. For a read operation,a read prefetch can be used
to bring the datainto the cachein a read-sharedtatewhile the
operationis delayeddue to consistencyconstraints. Sincethe
prefetchis non-binding,we are guaranteedhat the readoper-
ationwill returna correctvalue onceit is allowedto perform,
regardlesof when the prefetchcompleted. In the majority of
cases,we expectthe resultreturnedby the prefetchto be the
correctresult. Theonly time the resultmay be differentis if the
locationis written to betweenthe time the prefetchreturnsthe
valueandthe time the readis allowedto perform. In this case,
the prefetchedocationwould eithergetinvalidatedor updated,
dependingon the coherencescheme. If invalidated,the read
operationwill missin the cacheandaccesghe new valuefrom
the memory system,as if the prefetchneveroccurred. In the
caseof an updateprotocol,the locationis kept up-to-datethus
providing the new valueto the readoperation.

For a write operation,a read-exclusive prefetch canbe used
to acquireexclusive ownershipof the line, enablingthe write
to that locationto completequickly onceit is allowedto per-
form. A read-exclusiverefetchis only possiblef thecoherence
schemes invalidation-basedSimilar to the readprefetchcase,
theline is invalidatedif anothemprocessomritesto the location
betweenthe time the read-exclusiverefetchcompletesandthe
actual write operationis allowed to proceed. In addition, ex-
clusive ownershipis surrenderedf anotherprocessoreadsthe
locationduring thattime.

3.2 Implementation

This subsectiondiscussesthe requirementsthat the prefetch
techniqueémposeson a multiprocessoarchitecture.Let us first
considerhow the proposedprefetchtechniquecan be incorpo-
ratedinto the processoenvironment.Assumethe generalcase
wherethe processothasa load and a store buffer. The usual
way to enforcea consistencymodel is to delay the issue of
accessedn the buffer until certainpreviousaccessesomplete.
Prefetchingcanbeincorporatedn this frameworkby havingthe
hardwareautomaticallyissuea prefetch(readprefetchfor reads
andread-exclusiverefetchfor writes and atomicread-modify-
writes) for accesseshatarein the load or storebuffer, but are
delayeddueto consistencyconstraints.A prefetchbuffer may
be usedto buffer multiple prefetchrequests.Prefetchesan be
retiredfrom this buffer asfastasthe cacheand memorysystem
allow.

A prefetchrequestfirst checksthe cacheto seewhetherthe
line is alreadypresent.If so, the prefetchis discarded.Other-

wise, the prefetchis issuedto the memory system. When the
prefetchresponsereturnsto the processarit is placedin the
cache.If aprocessoreferences locationit hasprefetchede-
fore the result hasreturned,the referencerequestis combined
with the prefetchrequestso that a duplicaterequestis not sent
out and the referencecompletesas soon as the prefetchresult
returns.

The prefetch techniquediscussedimposesseveral require-
mentson the memorysystem.Mostimportantly thearchitecture
requireshardwarecoherentcaches. In addition, the location
to be prefetchedneedsto be cachable. Also, to be effective
for writes, prefetchingrequiresan invalidation-base@oherence
scheme.In update-basedchemesit is difficult to partially ser-
vice a write operationwithout making the new value available
to otherprocessorswhich resultsin the write being performed.

For prefetchingto be beneficial, the architectureneedsa
high-bandwidthpipelined memory system, including lockup-
free cacheg[14, 21], to sustainseveraloutstandingrequestsat
atime. The cachewill alsobe more busysincememoryrefer-
encesthat are prefetchedaccessthe cachetwice, oncefor the
prefetchand anothertime for the actual reference. As previ-
ously mentioned accessinghe cachefor the prefetchrequests
desirablefor avoidingextraneousraffic. We do not believethat
the doubleaccesawill be a major issuesince prefetchrequests
aregenerateanly whennormalaccessearebeingdelayeddue
to consistencyconstraintsand by definition, thereare no other
requestgo the cacheduring thattime.

Lookaheadin the instruction streamis also beneficial for
hardware-controllegrefetchschemesProcessorwith dynamic
instructionscheduling,wherebythe decodingof an instruction
is decoupledrom the executionof the instruction,helpin pro-
viding suchlookahead.Branchpredictiontechniqueghat allow
executionof instructionspast unresolvedconditional branches
further enhancethis. Aggressivelookaheadprovidesthe hard-
warewith severamemoryrequestshatarebeingdelayedn the
load andstorebuffers dueto consistencyconstraintgespecially
for the strictermemoryconsistencymodels)andgives prefetch-
ing the opportunityto pipelinesuchaccessesThe strengthsand
weaknessesf hardware-controlledion-bindingprefetchingare
discussedn the next subsection.

3.3 Strengths and Weaknesses

This subsectiorpresentdwo examplecodesegmentso provide
intuition for the circumstancesvhereprefetchingboostsperfor-

manceandwhereprefetchingdfails. Figure2 showsthetwo code
segments.All accessesre to read-writesharedlocations. We

assumea processowith non-blockingreadsandbranchpredic-

tion machinery The cachecoherenceschemes assumedo be

invalidation-basedwith cachehit latencyof 1 cycle andcache
miss latency of 100 cycles. Assumethe memory systemcan

acceptan accesson every cycle (e.g., cachesare lockup-free).
We also assumeno other processesre writing to the locations
usedin theexamplesandthatthe lock synchronizationsucceed
(i.e., thelock is free).

Let usfirst considerthe codesegmenbn the left side of Fig-
ure2. This codesegmentesembles producemprocessupdating
the valuesof two memorylocations. Given a systemwith se-
quentialconsistencyeachaccesss delayedfor the previousac-
cessto be performed.The first threeaccessemissin the cache,
while the unlock accesdhits dueto the fact that exclusiveown-
ershipwas gainedby the previouslock access.Therefore,the
four accessetakea total of 301 cyclesto perform. In a system
with releaseconsistencythe write accessearedelayeduntil the

Page3

) lock L (miss)
lock L (miss) read C (mise)
write A (miss) read D (hit)
write B (miss) read E[D] (miso)
unlock L (hit) unlock L (hit)

Example 1 Example 2

Figure2: Examplecodesegments.

lock accesss performed,and the unlock accesss delayedfor
the write accesse$o perform. However the write accessesre
pipelined. Therefore the accessesake 202 cycles.

The prefetchtechniquedescribedin this sectionbooststhe
performanceof both the sequentialand releaseconsistentsys-
tems. Concerningthe loop that would be usedto implement
the lock synchronizationye assumehe branchpredictortakes
the paththatassumeshe lock synchronizatiorsucceedsThus,
the lookaheadnto the instructionstreamallows locationsA and
B to be prefetchedn read-exclusivanode. Regardlesof the
consistencymodel, the lock accesss servicedin parallel with
prefetchfor the two write accessesOncethe resultfor the lock
accesgeturns,the two write accessesvill be satisfiedquickly
since the locations are prefetchedinto the cache. Therefore,
with prefetching,the accessesompletein 103 cyclesfor both
SC and RC. For this example, prefetchingbooststhe perfor-
manceof both SC and RC and also equalizesthe performance
of the two models.

We now considerthe secondcode segmenton the right side
of Figure2. This codesegmentesembles consumerprocess
readingseveraimemorylocations. Therearethreereadaccesses
within the critical section. As shown,the readto locationD is
assumedo hit in the cache,and the read of array E depends
on the value of D to accesshe appropriateelement. For sim-
plicity, we will ignore the delay due to addresscalculationfor
accessinghe array element. Under SC, the accessesake 302
cyclesto perform. Under RC, they take 203 cycles. With the
prefetchtechnique the accessesake 203 cyclesunderSC and
202cyclesunderRC. Althoughthe performancef both SCand
RC are enhancedy prefetchingthe maximumperformances
not achievedor eithermodel. The reasonis simply becausehe
addres®f thereadaccesdo arrayE dependon the valueof D
and althoughthe readaccesgo D is a cachehit, this accesss
not allowed to perform(i.e., the value can not be usedby the
processoruntil the readof C completeunderSC) or until the
lock accesscompleteslunderRC). Thus, while prefetchingcan
boost performanceby pipelining severalaccesseghat are de-
layeddueto consistencyconstraintsit fails to remedythe cases
whereout-of-orderconsumptiorof returnvaluesis importantto
allow the processoto proceedefficiently.

In summary prefetchings an effective techniquefor pipelin-
ing large latencyreference®venthoughthe consistencymodel
disallowsit. However prefetchingfails to boostperformance
when out-of-orderconsumptionof prefetchedvaluesis impor-
tant. Such casesoccurin many applications,where accesses
that hit in the cacheare dispersedamongaccesseghat miss,
andthe out-of-orderuseof the valuesreturnedby cachehits is
critical for achievingthe highestperformance The next section
describes speculativeechniquethatremedieghis shortcoming
by allowing the processoto consumeeturnvaluesout-of-order
regardlesof the consistencyconstraints. The combinationof
prefetchingfor storesand the speculativeexecutiontechnique
for loadswill be shownto be effective in regainingopportunity
for maximumpipelining and buffering.

4 Speculative Execution

This sectiondescribesthe speculativeexecutiontechniquefor

load accessesAn exampleimplementationis presentedn the

latterpartof thesection. As will beseenthistechniquds partic-

ularly applicableto superscaladesignsthat are being proposed
for nextgeneratiommicroprocessorsFinally, the lastsubsection
showsthe executionof a simple codesegmentwith speculative
loads.

4.1 Description

Theideabehindspeculativeexecutionis simple. Assumeu and
v aretwo accessesn programorder, with » being any large
latencyaccessand v being a load access.In addition, assume
that the consistencymodel requiresthe completionof » to be
delayeduntil » completes. Speculative execution for load ac-
cesses works as follows. The processombtainsor assumes
returnvalue for access beforeu completesand proceeds.At
thetime » completesjf thereturnvaluefor » usedby the pro-
cessolis the sameasthe currentvalueof », thenthe speculation
is successful Clearly, the computationis correctsinceevenif »
was delayed,the value the accesgeturnswould have beenthe
same.However if the currentvalueof v is differentfrom what
was speculatedy the processarthenthe computationis incor-
rect. In this case,we needto throw out the computationthat
dependeddn the value of » and repeatthat computation. The
implementationof sucha schemerequiresa speculation mech-
anism to obtain a speculatedvalue for the accessa detection
mechanism to determinewvhetherthe speculatiorsucceededand
a correction mechanism to repeatthe computationif the specu-
lation was unsuccessful.

Let us considerthe speculationmechanismfirst. The most
reasonablething to do is to perform the accessand use the
returnedvalue. In casethe accesss a cachehit, the value will
be obtainedquickly. In the caseof a cachemiss, althoughthe
returnvaluewill notbeobtainedquickly, theaccesss effectively
pipelinedwith previousaccesses away similar to prefetching.
In general,guessingon the value of the accesds not beneficial
unlessthe valueis knownto be constrainedo a small set(e.qg.,
lock accesses).

Regardingthe detectionmechanism,a naive way to detect
an incorrectspeculatedvalue is to repeatthe accesswhen the
consistencynodelwould haveallowedit to proceedundernon-
speculativecircumstancesand to check the return value with
the speculatedvalue. However if the speculationmechanism
performsthe speculativeaccessand keepsthe location in the
cache,it is possibleto determinewhetherthe speculatedralue
is correctby simply monitoring the coherenceransactionon
thatlocation. Thus, the speculativeexecutiontechniquecan be
implementedsuchthat the cacheis accessednly onceper ac-
cessversusthe two times requiredby the prefetchtechnique.
Let us refer back to accessea and v, wherethe consistency
model requiresthe completionof load accessv to be delayed
until w completes. The speculativetechniqueallows accessv
to be issuedand the processolis allowedto proceedwith the
returnvalue. The detectionmechanismis asfollows. An inval-
idationor updatemessagéor location» beforex hascompleted
indicatesthat the value of the accessmay be incorrect? In ad-
dition, the lack of invalidation and updatemessagesndicates

2There are two caseswhere the speculatedvalue remainscorrect. The
first is if the invalidationor updateoccursdue to false sharing,that s, for
anotherlocation in the samecacheline. The secondis if the new value
written is the sameas the speculatedsalue. We conservativelyassumethe
speculatedralueis incorrectin eithercase.

Page4

that the speculatedvalue is correct. Cachereplacementsieed
to be handledproperlyalso. If locationv is replacedfrom the
cachebefore w completes,then invalidation and updatemes-
sagesmay no longerreachthe cache. The speculatedsalue for
v IS assumedstalein sucha case(unlessoneis willing to re-
peatthe accesonceu completesandto checkthe currentvalue
with the speculatedralue). The nextsubsectiomprovidesfurther
implementatiordetailsfor this mechanism.

Once the speculatedvalue is determinedto be wrong, the
correctionmechanisninvolvesdiscardingthe computationthat
dependedn the speculatedralue and repeatingthe accessand
computation.This mechanisnis almostthe sameasthe correc-
tion mechanisrusedin processorwith branchpredictionma-
chinery and the ability to executeinstructionspastunresolved
branchesWith branchprediction,if thepredictionis determined
to be incorrect, the instructionsand computationfollowing the
brancharediscardecandthe newtargetinstructionsarefetched.
In a similar way, if a speculatedralueis determinedto be in-
correct, the load accessand the computationfollowing it can
be discardedand the instructionscan be fetchedand executed
againto achievecorrectness.

The speculativetechnigueovercomeghe shortcomingof the
prefetch technique by allowing out-of-order consumptionof
speculatedvalues. Referringback to the secondexamplein
Figure 2, let us considerhow well the speculativetechnique
performs. We still assumethat no other processesre writing
to the locations. Speculativeexecutionachieveghe samelevel
of pipelining achievedby prefetching.In addition,the readac-
cessto D no longer hindersthe performancesinceits return
value is allowed to be consumedwhile previousaccessesre
outstanding. Thus, both SC and RC completethe accessesn
104 cycles.

Given speculativeexecution,load accessesan be issuedas
soonas the addresdor the accesss known, regardlesf the
consistencymodelsupported.Similar to the prefetchtechnique,
the speculativeexecutiontechniqueimposesseveral require-
mentson the memory system. Hardware-coherentachesare
requiredfor providing an efficient detectionmechanism.n ad-
dition, a high-bandwidttpipelinedmemorysystemwith lockup-
freecacheq 14, 21] is necessaryo sustainmultiple outstanding
requests.

4.2 Example Implementation

This subsectionprovides an example implementationof the
speculativetechnique. We use a processorthat has dynamic
schedulingand branchpredictioncapability As with prefetch-
ing, the speculativetechniquealso benefitsfrom the lookahead
in the instructionstreamprovidedby suchprocessorsin addi-
tion, the correctionmechanisnfor thebranchpredictionmachin-
ery can easily be extendedto handlecorrectionfor speculative
load accessesAlthough suchprocessorsare complex,incorpo-
rating speculativeexecutionfor load accesseito the designis
simple and doesnot significantly add to the complexity This
subsectiorbeginswith a descriptionof a dynamicallyscheduled
processothatwe choseasthe basefor our exampleimplemen-
tation. Next, the detailsof implementingspeculativeexecution
for load accessesre discussed.

We obtainedthe organizationfor the baseprocessodirectly
from a studyby Johnsor{11] (the organizationis alsodescribed
by Smith et al. [23 as the MATCH architecture). Figure 3
showsthe overall structureof the processar Only a brief de-
scription of the processolis given; the interestedreaderis re-
ferred to Johnsors thesis[11] for more detail. The processor

Instruction
Memory ‘
‘7 Reorder
Buffer
|-CacheBTB Register J
File]
Decoder
{ i {
]]]]
1 1 1 1
Branch ALU Shifter Load/Store
Unit
JE——
Data A—+ D-Cache [~ Addr—
Memory | Data

Figure3: Overall structureof Johnsors dynamicallyscheduled
processar

consistsof severalindependenfunction units. Eachfunctional
unit hasa reservation station [25]. The reservatiorstationsare
instructionbuffers that decoupleinstructiondecodingfrom the
instruction executionand allow for dynamic schedulingof in-
structions. Thus, the processorcan executeinstructionsout of
order thoughthe instructionsare fetchedand decodedin pro-
gramorder In addition, the processomllows executionof in-
structionspastunresolvecconditionalbranches A branchtarget
buffer (BTB) [16] is incorporatednto the instructioncacheto
provide conditionalbranchprediction.

Thereorder buffer [22] usedin the architecturds responsible
for severalfunctions. The first functionis to eliminate storage
conflictsthroughregisterenaming12]. Thebufferprovidesthe
extra storagenecessaryo implementregisterrenaming. Each
instructionthatis decodeds dynamicallyallocateda locationin
thereorderbuffer andatagis associatedvith its resultregister
Thetagis updatedo the actualresultvalueoncetheinstruction
completes. When a later instruction attemptsto read the reg-
ister, correctexecutionis achievedby providing the value (or
tag)in the reorderbuffer insteadof the valuein the registerfile.
Unresolvedoperandtagsin the reservatiorstationsarealso up-
datedwith the appropriatevalue whenthe instructionwith the
correspondingesultregistercompletes.

The secondfunction of the reorder buffer is to allow the
processorto executeinstructions past unresolvedconditional
branchedy providing storagefor the uncommittedresults. The
reorderbuffer functionsas a FIFO queuefor instructionsthat
have not beencommitted. When an instruction at the headof
the queuecompletesthe locationbelongingto it is deallocated
andtheresultvalueis written to the registerfile. Sincethe pro-
cessordecodesand allocatesinstructionsin programorder, the
updatesto the registerfile take placein programorder Since
instructionsare kept in FIFO order, instructionsin the reorder
buffer that are aheadof a branchdo not dependon the branch,
while the instructionsafter the branchare control dependenbn
it. Thus, the resultsof instructionsthat dependon the branch
arenot committedto the registerfile until the branchcompletes.
In addition, memory storesthat are control dependenbn the
conditional branchare held back until the branch completes.
If the branchis mispredictedall instructionsthat are after the
branchare invalidatedfrom the reorderbuffer, the reservation
stationsandbuffersareappropriatelycleared,anddecodingand
executionis startedfrom the correctbranchtarget.

Page5

Load/Store
Reservation
Station

1 L
Address store
Unit data

store }

Store acq [dong store t
load Buffer &

S

i

cache cache

addr write
data

I
— Speculative—-Load Buffer —

Toad addr

Figure4: Organizationof the load/storefunctional unit.

The mechanismprovidedin the reorderbuffer for handling
brancheds also usedto provide preciseinterrupts. Precisein-
terruptsare providedto allow the processorto restartquickly
without needto saveandrestorea lot of state. We will discuss
the effect of requiring preciseinterruptson the implementation
of consistencymodelslater in the section. Thus the reorder
buffer plays an importantrole by eliminating storageconflicts
throughregisterrenaming,allowing conditionalbranchego be
bypassedand providing preciseinterrupts.

To implement the speculative load technique, only the
load/storglmemory)unit of the baseprocessoneedso be mod-
ified andtherestof the componentsemainvirtually unchanged.
Figure 4 showsthe componentof the memoryunit. We first
describethe componentsshown on the left side of the figure.
Thesecomponentarepresentregardles®f whetherspeculative
loadsare supported.The only new componenthat is required
for supportingspeculativeloadsis the speculative-load buffer
thatwill be describedater.

The load/store reservation station holds decodedload and
storeinstructionsin programorder Theseinstructionsare re-
tired to the addresaunit in a FIFO manner Sincethe effective
addressfor the memory instruction may dependon an unre-
solvedoperandjt is possiblethatthe addresgor the instruction
at the headof the reservatiorstationcannot be computed.The
retiring of instructionsis stalled until the effective addressfor
the instructionat the headcan be computed. The address unit
is responsibldor computingthe effectiveaddressanddoingthe
virtual to physicaltranslation.Oncethe physicaladdresss ob-
tained,the addressand datafor storeoperationsare placedinto
the store buffer. The retiring of storesfrom the storebuffer is
donein a FIFO mannerandis controlledby the reorderbuffer
to assurepreciseinterrupts(the mechanismis explainedin the
nextparagraph)Loadoperationsreallowedto bypasghestore
buffer and dependenceheckingis doneon the storebuffer to
assurea correctreturnvalue for the load. Although the above
implementationis sufficient for a uniprocessqrwe needto add
mechanismdo enforceconsistencyconstraintsfor a multipro-
cessor

Let usfirst considerhow accessordercan be guaranteedor
sequentiakonsistency The conventionaimethodfor achieving
this is to delay the completionof eachaccesauntil its previous
accesds complete. We first considerhow the store operations
aredelayedappropriately In generala storeoperatiormayneed
to be delayeduntil certainpreviousload or storeoperationsare
completed.Themechanisnfor delayingthe storeis aidedby the

factthatstoresarealreadywithheldto providepreciseinterrupts.
The mechanismis as follows. All uncommittedinstructions
are allocateda locationin the reorderbuffer and areretired in

programordet Exceptfor a storeinstruction,an instructionat
the headof the reorderbuffer is retiredwhenit completes.For
store instructions,the storeis retired from the reorderbuffer

as soon as the addresdranslationis done. The reorderbuffer
controlsthe store buffer by signalingwheniit is safeto issue
a storeto the memorysystem. This signalis given whenthe
store reachesthe head of the reorderbuffer. Consequentlya
storeis not issueduntil all previousloadsand computationare
complete. This mechanisnsatisfiesthe requirementgplacedby
the SC model on a store with respectto previousloads. To

makethe implementatiorsimplerfor SC, we changethe policy

for retiring storessuchthat the storeat the headof the reorder
buffer is not retired until it completesalso (for RC, however
the storeat the headis still retiredassoonasaddresgranslation
is done). Thus,underSC, the storeis alsodelayedfor previous
storesto completeand the store buffer endsup issuing stores
one-at-a-time.

We now turn to how the restrictionson load accessesre
satisfied.First, we discussthe requirementassuminghe spec-
ulative load mechanisris not used. For SC, it is sufficient to
delay a load until previousloads and storeshave completed.
This canbe doneby stallingthe load/storereservatiorstationat
loadsuntil the previousload is performedand the store buffer
empties.

For speculativeexecutionof load accesseshe mechanisnfor
satisfyingthe restrictionson load accessess changed.The ma-
jor componenfor supportingthe mechanisnis the speculative-
load buffer. The reservatiorstationis no longerresponsibldor
delayingcertainload accesseto satisfy consistencyconstraints.
A load is issuedas soonas its effective addresss computed.
The speculationmechanismcomprisesof issuing the load as
soonaspossibleandusingthe speculatedesultwhenit returns.

The speculative-loadbuffer providesthe detectiormechanism
by signalingwhenthe speculatedesultis incorrect. The buffer
works as follows. Loadsthat are retired from the reservation
stationare put into the buffer in additionto beingissuedto the
memorysystem. Thereare four fields per entry (as shownin
Figure 4): load address,acq, done, and storetag. The load
addresdield holds the physicaladdressor the load. The acq
field is setif theload is consideredan acquireaccess.For SC,
all loads are treatedas acquires. The donefield is set when
theloadis performed.If the consistencyconstraintsequirethe
load to be delayedfor a previousstore, the storetag uniquely
identifies that store. A null store tag specifiesthat the load
dependson no previousstores. When a store completes,its
correspondingag in the speculative-loaduffer is nullified if
present.Entriesareretiredin a FIFO manner Two conditions
needto be satisfiedbeforean entry at the headof the buffer is
retired. First, the storetag field shouldequalnull. Secondthe
donefield shouldbe setif theacqfield is set. Thereforefor SC,
an entry remainsin the buffer until all previousload and store
accessexompleteand the load accessit refersto completes.
AppendixA describesiow an atomicread-modify-wrie canbe
incorporatedn the aboveimplementation.

We now describethe detection mechanism. The follow-
ing coherencetransactionsare monitored by the speculative-
load buffer: invalidations(or ownershiprequests)updatesand
replacement®. Theloadaddressem the buffer areassociatively

3A replacemenis requiredif the processoaccesseanaddresghatmaps
ontoa cacheline with valid datafor a differentaddress.To avoid deadlocka
replacementequesto a line with an outstandingaccesmeedso be delayed
until the accesscompletes.

Page6

checkedor amatchwith theaddres®f suchtransactiong. Mul-
tiple matchesare possible. We assumehe matchclosestto the
headof the buffer is reported. A matchin the buffer for an
addressthat is being invalidatedor updatedsignalsthe possi-
bility of anincorrectspeculation.A matchfor an addresghat
is beingreplacedsignifiesthat future coherenceransactiongor
thataddresswill notbe sentto the processarln eithercase the
speculatedsaluefor the loadis assumedo be incorrect.

Guaranteeinghe constraintsfor releaseconsistencycan be
donein a similar way to SC. The conventionalway to provide
RCis to delaya releaseaccesauntil its previousaccessesom-
pleteandto delayaccessefollowing anacquireuntil theacquire
completes.Let us first considerdelaysfor stores. The mecha-
nism that providespreciseinterruptsby holding back storeac-
cessesn the storebuffer is sufficientfor guaranteeinghatstores
are delayedfor the previousacquire. Although the mechanism
describeds stricterthanwhatRC requires the conservativem-
plementationis requiredfor providing preciseinterrupts. The
samemechanisnalsoguaranteethata releasgwhichis simply
a specialstoreaccess)s delayedfor previousload accessesTo
guaranteen releaseis also delayedfor previousstoreaccesses,
the store buffer delaysthe issueof the releaseoperationuntil
all previously issuedstoresare complete. In contrastto SC,
however ordinarystoresareissuedin a pipelinedmanner

Let us considerthe restriction on load accessesinder RC.
The conventionalmethodinvolves delayinga load accessuntil
the previousacquireaccessis complete. This can be done by
stalling the load/storereservatiorstationafteran acquireaccess
until the acquirecompletes. However the reservationstation
neednot be stalled if we use the speculativeload technique.
Similar to the implementationof SC, loadsare issuedas soon
as the addresss known and the speculative-loaduffer is re-
sponsiblefor detectingincorrectvalues. The speculative-load
buffer descriptiongiven for SC appliesfor RC. The only dif-
ferenceis that the acq field is only setfor accesseghat are
consideredacquireaccessesinder RC. Therefore,for RC, an
entry remainsin the speculative-loaduffer until all previous
acquiresare completed.Furthermorean acquireentry remains
in the buffer until it completesalso. The detectionmechanism
describedor SC remainsunchanged.

Whenthe speculative-loaduffer signalsan incorrectspecu-
latedvalue,all computatiorthat dependsn thatvalue needsto
bediscardedandrepeated Therearetwo casego consider The
first caseis thatthe coherencdransaction(invalidation,update,
or replacementgrrivesafterthe speculativdoad hascompleted
(i.e., donefield is set). In this case,the speculatedsalue may
havebeenusedby the instructionsfollowing the load. We con-
servativelyassumehat all instructionspastthe load instruction
dependon the value of the load and the mechanismfor han-
dling branchmispredictionis usedto treatthe load instruction
as“mispredicted”. Thus,thereorderbuffer discardgheloadand
theinstructionsfollowing it andthe instructionsarefetchedand
executedagain. The secondcaseoccursif the coherencerans-
action arrives before the speculativeload has completed(i.e.,
donefield is not set). In this case,only the speculativeload
needsto be reissued,since the instructionsfollowing it have
not yet usedan incorrectvalue. This can be doneby simply
reissuingthe load accessand doesnot requirethe instructions
following the loadto be discarded. The nextsubsectiorfurther

4t is possibleto ignore the entry at the headof the buffer if the store
tag is null. The null storetag for the headentry signifiesthat all previous
accesseshat are requiredto completehave completedand the consistency
modelconstraintsvould haveallowedthe accesgo performat sucha time.

5To handlethis caseproperly we needto tag returnvaluesto distingush
betweentheinitial returnvalue,which hasnotyet reachedhe processoand

illustratesspeculativeloads by steppingthroughthe execution
of a simple codesegment.

4.3

In this subsectionwe step throughthe executionof the code
segmentshownat the top of Figure5. The sequentiakonsis-
tency model is assumed. Both the speculativetechniquefor
loadsandthe prefetchtechniquefor storesare employed. Fig-
ure 5 also showsthe contentsof severalof the buffers during
the execution.We showthe detectionandcorrectionmechanism
in action by assumingthat the speculatedralue for location D
(originally in the cache)is later invalidated.

The instructionsare assumedo be decodedand placedin
the reorderbuffer. In addition, it is assumedhatthe load/store
reservationstation has issuedthe operations. The first event
showsthat both the loads and the exclusiveprefetchedor the
storeshave beenissued. The store buffer is buffering the two
store operationsand the speculative-loaduffer hasentriesfor
the threeloads. Note that the speculatedralue for load D has
alreadybeenconsumedy the processarThe secondeventoc-
curswhenownershiparrivesfor locationB. The completionof
storeB is delayedby the reorderbuffer, however since there
is an uncommittedinstructionaheadof the store(this observes
preciseinterrupts). Event3 signifiesthe arrival of the valuefor
location A. The entry for load A is removedfrom the reorder
buffer andthe speculative-loaduffer sincethe acceshascom-
pleted. Onceload A completesthe storebuffer is signaledby
the reorderbuffer to allow storeB to proceed. Sincelocation
B is now cachedin exclusivemode,storeB completesquickly
(event4). Thus, storeC reacheghe headof the reorderbuffer.
The store buffer is signaledin turn to allow store C to issue
and the accessis meiged with the previousexclusiveprefetch
requestfor the location.

At this point, we assumean invalidation arrivesfor location
D. Sincethereis a matchfor this locationin the speculation
buffer and since the speculatedvalue is used, the load D in-
structionandthe following loadinstructionarediscardedevent
5). Event6 showsthat thesetwo instructionsare fetchedagain
and a speculativeload is issuedto locationD. The load is still
speculativesincethe previousstore(storeC) hasnot completed
yet. Event7 showsthe arrival of the new valuefor locationD.
Sincethe valuefor D is known now, the load accessE[D] can
beissued.Notethatalthoughthe accesgo D hascompletedthe
entryremainsin the reorderbuffer sincestoreC is still pending.
Once the ownershipfor location C arrives (event8), store C
completesand is retired form the reorderbuffer and the store
buffer. In addition,load D is no longerconsidered speculative
load andis retired from both the reorderand the speculative-
load buffers. The executioncompletesvhenthe valuefor E[D]
arrives(event9).

Illustrative Example

5 Discussion

The two implementatiortechniquegresentedn this paperpro-
vide a greateropportunity for buffering and pipelining of ac-
cessesthan any of the previously proposedtechniques. This
section discussessome implications associatedwith the two
techniques.

needsto be discardedandthe returnvaluefrom the repeatedaccesswhich
is the one to be used. In addition, in casethere are multiple matchesfor
the addressn the speculative-loaduffer, we haveto guaranteehat initial
returnvaluesare not usedby any of the correspondindoads.

Page7

read A miss)
Example code segment: \yrite B Em@;
write C (miss)
read D (hit)
read E[D] (miss)
Event Reorder | Store Speculative-Load Cache
ven Buffer Buffer Buffer Contents
1 Id E[D .)
reads are Td E] acq done sttag Idagdr |A: ldpending
isuedand |5 (= C [id D] & &xZpripending
writesare : —prf pending
sB || 2B]|~ ~[£C] 1dD | p: vaid
prefetched : ’
d A / Id A || E[D]: Id pending
2 ldldEgD] acq done sttag Id addr g Idalpsndinlg .
ownership for [sC [« Id E[D]]| o Va'Cexcusive
B arrives st C &8 ||[C[=[Scl @b C: e; é)rf pending|
D: vali
|Std 2 / Id A || E[D]: Id pending
Id E[D] - vali
3 AD: valid
value for IdD | |[sC] acq done st tag Id addr B: valid exclusive
A arives stC | |[sB] -] [[idED] C: ex—prf pending
4B [~ [sC[1dD] E[D]: Id pending
4 Id E[D done sttag Idadar |AD: vaid
writeto B Td E] [€C | laiq[onel ag“d E[Dr]l g val|deF<cIusc\j/_e
onvies |57 B S ExaChn [
5 AT vaid
invalidation B: valid exclusive
for D arrives fDZg ex- ig pending
6 A vaid
read of D 'dldEED] [sc |2 donesitag Idaddr |B: valid exclusive
isreissued | (& (T[S C[1dD]|G: exr pending
7 value for 1d E[D AD: vaid
D arrives, Td E] IEE ‘aiqldonelsxtaglllccii aECEg” B: vaid exclusive
read of E[D] C: ex—prf pending
i's reissued s C | [stC] 1d D]|E[D]: Idpending
Sownerdqipfor Id E[D] acq done st tag Id addr ég \\/Igilc(ii exclusive
Carrives [~ [Tid E[D]]| £Bj: id pending
9 value for A,D,E[D]: valid
E[D] arrives B,C: valid exclusive

Figure 5: lllustration of buffers during executionof the code
segment.

The mainideabehindthe prefetchand speculativdoad tech-
niguesis to serviceaccessess soonas possible,regardlesf
the constraintsmposedby the consistencymodel. Of course,
since correctneseedsto be maintained,the early service of
the accesss not always helpful. For thesetechniqueso pro-
vide performancebenefits,the probability that a prefetchedor
speculatedvalue is invalidatedmust be small. Thereare sev-
eral reasonswhy we expect such invalidations to be infre-
quent. Whetherprefetchedor speculatedocationsare invali-
datedloosely dependson whetherit is critical to delay such
accesse$o obtaina correctexecution.If the supportedconsis-
tencymodelis a relaxedmodelsuchasRC, delaysareimposed
only at synchronizatiorpoints. In many applications the time
at which one processreleasesa synchronizatioris long before
the time anotherprocesstries to acquirethe synchronization.
This implies that no other processis simultaneouslyaccessing
the locationsprotectedby the synchronization Correctnesgan
be achievedin this casewithout the needto delaythe accesses
following an acquireuntil the acquirecompletesor to delay a
releaseuntil its previousaccessesomplete. For caseswhere
the supportedconsistencymodelis strict, suchas SC, the strict
delaysimposedon accessearealsorarelynecessaryor correct-
ness. We have observedthat most programsdo not havedata
racesandprovidesequentiallyconsistentesultsevenwhenthey
are executedon a releaseconsistentarchitecture(see[8] for a
formal definition of programswith sucha property). Therefore,
mostdelaysimposedon accessedy a typical SC implementa-
tion aresuperfluoudor achievingcorrectnesslt is importantto

substantiatehe aboveobservationsn the future with extensive
simulationexperiments.

A majorimplicationof thetechniqueproposeds thattheper-
formanceof differentconsistencynodelsis equalizebncethese
techniquesare employed. If oneis willing to implementthese
techniquesthe choiceof the consistencymodelto be supported
in hardwarebecomedessimportant. Of course,the choice of
themodelfor softwarecanstill affectoptimizationssuchasreg-
ister allocationand loop transformation that the compiler can
performon the program. However this choicefor softwareis
orthogonatto the choiceof the consistencymodelto supportin
hardware.

6 Related Work

In this section,we discusspreviouswork regardingprefetching
and speculativeexecution. Next, we considerother proposed
techniquedor providing moreefficientimplementation®f con-
sistencymodels.

The main advantagef the prefetchschemedescribedn this
study is that it is non-binding. Hardware-controllecinding
prefetchinghasbeenstudiedby Lee [17]. Gornish, Granston,
and Viedenbaun{10] haveevaluatedsoftware-controlledind-
ing prefetching. However binding prefetchingis quite limited
in its ability to enhancehe performanceof consistencymodels.
For example,in the SC implementationdescribed,a binding
prefetchcan not be issuedany earlierthan the actualaccesss
allowedto beissued.

Non-binding prefetching is possible if hardware cache-
coherenceis provided. Software-conwlled non-binding
prefetchinghas beenstudied by Porterfield[20], Mowry and
Gupta [19], and Gharachorloocet al. [7]. Porterfield studied
the techniquein the context of uniprocessoravhile the work
by Mowry and Gharachorloostudiesthe effect of prefetching
for multiprocessors.In [7], we provide simulationresults,for
processorswvith blocking reads,that show software-controlled
prefetchingbooststhe performanceof consistencymodelsand
diminishesthe performancedifferenceamongmodelsif both
readandread-exclusiv@refetcheareemployed.Unfortunately
software-controllegrefetchingrequiresthe programmeror the
compilerto anticipateaccesseshat may benefitfrom prefetch-
ing andto addthe appropriateénstructionsin the applicationto
issuea prefetchfor the location. The advantageof hardware-
controlledprefetchingis thatit doesnot requiresoftwarehelp,
neitherdoesit consumeinstructionsor processorcyclesto do
the prefetch. The disadvantagef hardware-controllegrefetch-
ing is that the prefetchingwindow is limited to the size of
the instructionlookaheadbuffer, while theoretically software-
controllednon-bindingprefetchinghasan arbitrarily large win-
dow. In general,it shouldbe possibleto combine hardware-
controlledandsoftware-controllechon-bindingprefetchingsuch
that they complemenibne another

Speculativeexecutionbasedon possibly incorrectdata val-
ues hasbeenpreviouslydescribedby Tom Knight [13] in the
context of providing dynamic parallelismfor sequentialLisp
programs. The compileris assumedo transformthe program
into sequence®f instructionscalled transactiorblocks. These
blocks are executedn parallel and instructionsthat side-efect
main memory are delayeduntil the block is committed. The
sequentialorder of blocks determinesthe order in which the
blockscancommittheir side-efects. The mechanisndescribed
by Knight checksto seewhethera later block useda value that
is changedy the side-efectinginstructionsof the currentblock,
andin caseof a conflict, abortsthe executionof the later block.

Page8

This is safe sincethe side-efecting instructionsof later blocks
aredelayed,makingthe blocksfully restartable.Although this
schemeis loosely similar to the speculativeload schemedis-
cussedn this paper our schemas uniquein theway speculation
is usedto enhancethe performanceof multiprocessorgiven a
setof consistencyconstraints.

Adve and Hill [1] have proposedan implementatiorfor se-
guential consistencythat is more efficient than conventional
implementations.Their schemerequiresan invalidation-based
cachecoherencerotocol. At pointswherea conventionalim-
plementationstalls for the full latencyof pendingwrites, their
implementatiorstalls only until ownershipis gained. To make
theimplementatiorsatisfysequentiatonsistencythe newvalue
written is not madevisible to otherprocessorsintil all previous
writes by this processotave completed. The gains from this
are expectedto be limited, however since the latency of ob-
taining ownershipis oftenonly slightly smallerthanthelatency
for the write to complete.In addition,the proposedschemehas
no provisionfor hiding the latencyof readaccessesSincethe
visibility-control mechanismreducesthe stall time for writes
only slightly and does not affect the stall time for reads,we
do not expectit to performmuch betterthan conventionalim-
plementations. In contrast,the prefetchand speculativeload
techniquegprovide much greateropportunityfor buffering and
pipelining of readand write accesses.

Stenstrom[24] has proposeda mechanisnfor guaranteeing
accessorder at the memoryinsteadof at the processar Each
requesttontainsa processoidentificationand a sequencewum-
ber Consecutiverequestsfrom the sameprocessorget con-
secutivesequencenumbers. Each memory module hasaccess
to a commondatastructurecalled next sequence-number table
(NST). The NST containsP entries, one entry per processar
Each entry containsthe sequencenumberof the next request
to be performedby the correspondingorocessar This allows
the mechanisnto guaranteehat accesse$rom eachprocessor
are keptin programorder Theoretically this schemecan en-
hancethe performanceof sequentiatonsistency However the
major disadvantages that cachesare not allowed. This can
severelyhinderthe performancevhen comparedo implemen-
tationsthat allow sharedlocationsto be cached. Furthermore,
the techniqueis not scalableto a large numberof processors
sincethe increment network usedto updatethe differentNST’s
growsquadraticallyin connectionsasthe numberof processors
increases.

The detectionmechanismdescribedin Section4 is interest-
ing sinceit can be extendedto detectviolations of sequential
consistencyin architectureghatimplementmore relaxedmod-
els suchasreleaseconsistency Releaseconsistentarchitectures
are guaranteedo provide sequentialconsistencyfor programs
that arefree of dataraces[8]. However determiningwhethera
programis free of dataracesis undecidabld3] andis left up
to the programmer In [6], we presentan extensionof the de-
tection mechanismwhich, for every executionof the program,
determinesither thatthe executionis sequentiallyconsistenor
that the programhasdataracesand may resultin sequentially
inconsistentexecutions. Sinceit is not desirableto conserva-
tively detectviolationsof SCfor programshat arefree of data
racesand due to the absenceof a correctionmechanismthe
detectiontechniqueusedin [6] is lessconservativeéhanthe one
describedhere. In addition, the extendedtechniqueneedsto
checkfor violationsof SC arisingfrom performingeithera read
or a write accessout of ordet

7 Concluding Remarks

To achievehigher performancea numberof relaxedmemory
consistencynodelshavebeenproposedor sharedmemorymul-
tiprocessors.Unfortunately the relaxedmodelspresenta more
complexprogrammingmodel. In this paper we haveproposed
two techniquesthat of prefetchingand speculativeexecution,
that boostthe performanceunderall consistencymodels. The
techniquesrealsonoteworthyin thattheyallow the strict mod-
els, suchassequentiatonsistencyto achieveperformancelose
to that of relaxedmodelslike releaseconsistency The cost, of
course|s theextrahardwarecomplexityassociateavith theim-
plementationof the techniques. While the prefetchtechnique
is simple to incorporateinto cache-cohereninultiprocessors,
the speculativeexecutiontechniquerequiresmore sophisticated
hardwaresupport. However the mechanismgequiredto im-
plementspeculativeexecutionare similar to thoseemployedin
severalnextgeneratiorsuperscalaprocessorsin particular we
showedhow the speculativetechniquecould be incorporated
into one such processordesignwith minimal additional hard-
ware.

8 Acknowledgments

We greatly appreciatethe insight provided by Ruby Lee that
led to the prefetchtechniquedescribedn this paper We thank
Mike Smith and Mike Johnsonfor helping us with the details
of out-of-oider issueprocessors.SaritaAdve, Phillip Gibbons,
Todd Mowry, and Per Stenstromprovideduseful commentson
an earlierversionof this paper This researctwas supportecoy
DARPA contractN00014-87-K-0828 KouroshGharachorloas
partly supportedby TexasInstruments.Anoop Guptais partly
supportedy a NSFPresidentialyounglnvestigatorAwardwith
matchingfunds from Sumitomo,Tandemand TRW.

References

[1] SaritaAdve andMark Hill. Implementingsequentiakton-
sistencyin cache-basedystems. In Proceedings of the
1990 International Conference on Parallel Processing,
pagesl: 47-50,August1990.

[2] SaritaAdve and Mark Hill. Weakordering- A new def-
inition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages2-14, May
1990.

[3] A. J. Bernstein. Analysis of programsfor parallel pro-
cessing.|EEE Transactions on Electronic Computers, EC-
15(5):757-7630ctober1966.

[4] Michel Dubois and ChristophScheurich.Memaory access
dependenciesn shared-memorymultiprocessors. |EEE
Transactions on Software Engineering, 16(6):660-673,
June1990.

[5] Michel Dubois, Christoph Scheurich,and Faye Briggs.
Memory accessbuffering in multiprocessorsin Proceed-
ings of the 13th Annual International Symposium on Com-
puter Architecture, pages434-442 Junel986.

[6] Kourosh Gharachorloocand Phillip B. Gibbons. Detect-
ing violations of sequentiatonsistencyIn Symposium on
Parallel Algorithms and Architectures, July 1991.

[7] KouroshGharachorlooAnoop Gupta,andJohnHennessy
Performanceevaluation of memory consistencymodels

Page9

for shared-memorynultiprocessors. In Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages245-257,
April 1991.

[8] Kourosh Gharachorloo, Dan Lenoski, James Laudon,
Phillip Gibbons,Anoop Gupta,andJohnHennessyMem-
ory consistencyand event ordering in scalable shared-
memory multiprocessors.In Proceedings of the 17th An-
nual International Symposium on Computer Architecture,
pagesl5-26,May 1990.

[9] JameR. GoodmanCacheconsistencyandsequentiaton-
sistency TechnicalReportno. 61, SCI Committee March
1989.

[10] E. Gornish,E. Granston,and A. Veidenbaum.Compiler
directeddataprefetchingin multiprocessorsvith memory
hierarchies.In International Conference on Supercomput-
ing, pages354-368,Septembed990.

[11] William M. JohnsonSuper-Scalar Processor Design. PhD
thesis,StanfordUniversity, June1989.

[12] R. M. Keller. Look-aheadprocessorsComputing Surveys,
7(4):177-1951975.

[13] Tom Knight. An architecturefor mostly functional lan-
guages.In ACM Conference on Lisp and Functional Pro-
gramming, 1986.

[14] D. Kroft. Lockup-freeinstructionfetch/prefetchcacheor-
ganization.In Proceedings of the 8th Annual International
Symposium on Computer Architecture, pages81-85,1981.

[15] Leslie Lamport. How to make a multiprocessorcom-
puterthat correctlyexecutesnultiprocesprograms. EEE
Transactions on Computers, C-28(9):241-248September
1979.

[16] J. K. F. LeeandA. J. Smith. Branchpredictionstrategies
andbranchtargetbuffer design.|EEE Computer, 17:6—22,
1984.

[17] RolandLun Lee. The Effectiveness of Caches and Data
Prefetch Buffers in Large-Scale Shared Memory Multipro-
cessors. PhD thesis, University of lllinois at Urbana-
ChampaignMay 1987.

[18] Dan Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy The directory-based
cachecoherencerotocolfor the DASH multiprocessarin
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pagesl48-159,May 1990.

[19] ToddMowry andAnoopGupta.Toleratinglatencythrough
software-controlledprefetchingin shared-memorymulti-
processors.Journal of Parallel and Distributed Comput-
ing, Junel1991.

[20] Allan K. Porterfield.Software Methods for Improvement of
Cache Performance on Supercomputer Applications. PhD
thesis,Departmenbf ComputerScience Rice University,
May 1989.

[21] ChristophScheurichand Michel Dubois. Concurrentmiss
resolutionin multiprocessorcaches. In Proceedings of
the 1988 International Conference on Parallel Processing,
pagesl: 118-125,August1988.

[22] J.E. SmithandA. R. Pleszkun.Implementatiorof precise
interruptsin pipelined processors.In Proceedings of the
12th Annual International Symposium on Computer Archi-
tecture, pages36—44,June1985.

[23] Michael Smith, MonicaLam, and Mark Horowitz. Boost-
ing beyondstaticschedulingn a superscalaprocessarin
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages344-354 May 1990.

[24] Per Stenstrom. A latency-hidingaccessorderingscheme
for multiprocessorswith buffered multistage networks.
Technical Report Departmentof Computer Engineering,
Lund University, SwedenNovember1990.

[25] R. M. Tomasulo.An efficient hardwarealgorithmfor ex-
ploiting multiple arithmeticunits. IBM Journal, 11:25-33,
1967.

Appendix A: Read-Modify-Write Accesses

Atomic read-modify-wrie accessesire treateddifferenty from
other accessesas far as speculativeexecutionis concerned.
Someread-modify-wite locationsmay not be cached.The sim-
plestway to handlesuchlocationsis to delay the accessuntil
previousaccesseshat are requiredto completeby the consis-
tencymodelhavecompleted.Thus, thereis no speculativdoad
for non-cachedead-modify-wite accesses.In the following,
we will describethe treatmentof cachableread-modify-wrie
accessesinderthe SC model. Extensiongfor the RC modelare
straightforward.

The reorderbuffer treatsthe read-modify-wites as both a
readanda write. Thereforeasis the casefor normalreadsthe
read-modify-wrie retires from the head of the reorderbuffer
only whenthe accesscompletes.In addition, similar to a nor-
mal write, the reorderbuffer signalsthe store buffer whenthe
read-modify-wrie reacheghe head. The load/storereservation
stationservicesa read-modify-wite by splitting it into two op-
erations,a speculativeload that resultsin a read-exclusivee-
questandthe actualatomic read-modify-wite. The speculative
load is issuedto the memorysystemand is also placedin the
speculative-loadbuffer. The read-modifywrite is simply placed
in the storebuffer. The storetagfor the speculativdoad entryis
setto the tag for the read-modify-wite in the storebuffer. The
donefield is setwhen exclusive ownershipis attainedfor the
locationandthereturnvalueis sentto the processar The actual
read-modify-wrie occurswhen the read-modify-wite is issued
by the storebuffer. The entry correspondingo the speculative
loadis guaranteedb be atthe headof the speculative-loatuffer
when the actual read-modify-wite is issued. In the caseof a
matchonthe speculativdoad entrybeforetheread-modify-wrie
is issued the read-modifywrite andthe computationgollowing
it are discardedfrom all buffers and are repeated. The return
result of the speculativeread-exclusivaequestis ignoredif it
reachesthe processonmafter the read-modify-wite is issuedby
the store buffer (the processorsimply waits for the return re-
sult of the read-modifywrite). If a matchon the speculative
load entry occursafterthe read-modify-wite is issued,only the
computationfollowing the read-modify-wrie is discardedand
repeated.n this case,the value usedfor the read-modify-wrie
will bethereturnvalueof theissuedatomicaccess.The specu-
lative load entry is retiredfrom the speculativebuffer whenthe
read-modify-wrie completes.

Pagel0

