
Two Techniques to Enhance the Performance of
Memory Consistency Models

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

The memoryconsistencymodel supportedby a multiprocessor
directly affects its performance. Thus, severalattemptshave
beenmadeto relax the consistencymodelsto allow for more
buffering and pipelining of memory accesses.Unfortunately,
the potential increasein performanceaffordedby relaxing the
consistencymodelis accompaniedby a morecomplexprogram-
ming model. This paperintroducestwo generalimplementation
techniquesthat providehigherperformancefor all the models.
Thefirst techniqueinvolvesprefetching valuesfor accessesthat
are delayeddue to consistencymodel constraints.The second
techniqueemploysspeculative execution to allow the proces-
sor to proceedeventhoughthe consistencymodel requiresthe
memory accessesto be delayed. When combined,the above
techniquesalleviate the limitations imposedby a consistency
model on buffering and pipelining of memory accesses,thus
significantly reducing the impact of the memory consistency
modelon performance.

1 Introduction

Buffering andpipeliningareattractivetechniquesfor hiding the
latencyof memoryaccessesin largescaleshared-memorymulti-
processors.However, theunconstraineduseof thesetechniques
canresultin an intractableprogrammingmodelfor themachine.
Consistencymodelsprovidemoretractableprogrammingmod-
elsby introducingvariousrestrictionsontheamountof buffering
andpipeliningallowed.

Severalmemoryconsistencymodelshavebeenproposedin
the literature. The strictest model is sequential consistency
(SC) [15], which requiresthe executionof a parallel program
to appearas someinterleavingof the executionof the parallel
processeson a sequentialmachine.Sequentialconsistencyim-
posessevererestrictionson bufferingandpipeliningof memory
accesses.One of the leaststrict modelsis release consistency
(RC) [8], which allows significantoverlapof memoryaccesses
givensynchronizationaccessesareidentifiedandclassifiedinto
acquiresandreleases.Otherrelaxedmodelsthathavebeendis-
cussedin the literature are processor consistency (PC) [8, 9],
weak consistency (WC) [4, 5], anddata-race-free-0 (DRF0)[2].
Thesemodelsfall betweensequentialand releaseconsistency
modelsin termsof strictness.

Theconstraintsimposedby a consistencymodelcanbesatis-
fied by placingrestrictionson theorderof completionfor mem-
ory accessesfrom eachprocess.To guaranteesequentialconsis-

tency, for example,it is sufficient to delayeachaccessuntil the
previousaccesscompletes. The more relaxedmodelsrequire
fewer suchdelay constraints.However, the presenceof delay
constraintsstill limits performance.

This paperpresentstwo novel implementationtechniquesthat
alleviatethe limitations imposedon performancethroughsuch
delay constraints. The first techniqueis hardware-controlled
non-binding prefetch. It providespipelining for large latency
accessesthat would otherwisebe delayeddue to consistency
constraints.The secondtechniqueis speculative execution for
load accesses. This allows the processorto proceedwith load
accessesthat would otherwisebe delayeddue to earlier pend-
ing accesses.Thecombinationof thesetwo techniquesprovides
significantopportunityto buffer andpipelineaccessesregardless
of the consistencymodel supported.Consequently, the perfor-
manceof all consistencymodels,eventhe most relaxedmod-
els, is enhanced.More importantly, theperformanceof different
consistencymodelsis equalized,thusreducingthe impactof the
consistencymodelonperformance.This latterresultis notewor-
thy in light of the fact that relaxedmodelsareaccompaniedby
a morecomplexprogrammingmodel.

Thenextsectionprovidesbackgroundinformationonthevari-
ousconsistencymodels.Section3 discussestheprefetchscheme
in detail. The speculativeexecutiontechniqueis describedin
Section4. A generaldiscussionof theproposedtechniquesand
the relatedwork is given in Sections5 and6. Finally, we con-
clude in Section7.

2 Background on Consistency Models

A consistencymodelimposesrestrictionson theorderof shared
memoryaccessesinitiatedby eachprocess.Thestrictestmodel,
originally proposedby Lamport [15], is sequentialconsistency
(SC).Sequentialconsistencyrequirestheexecutionof a parallel
programto appearassomeinterleavingof the executionof the
parallel processeson a sequentialmachine. Processorconsis-
tency(PC) wasproposedby Goodman[9] to relaxsomeof the
restrictionsimposedby sequentialconsistency. Processorcon-
sistencyrequiresthatwrites issuedfrom a processormaynot be
observedin anyorderotherthanthat in which theywereissued.
However, the orderin which writes from two processorsoccur,
as observedby themselvesor a third processor, need not be
identical. Sufficient constraintsto satisfyprocessorconsistency
arespecifiedformally in [8].

A morerelaxedconsistencymodelcanbederivedby relating
memoryrequestorderingto synchronizationpoints in the pro-
gram. The weakconsistencymodel (WC) proposedby Dubois

1

et al. [4, 5] is basedon the aboveidea and guaranteesa con-
sistentview of memoryonly at synchronizationpoints. As an
example,considera processupdatinga datastructurewithin a
critical section.UnderSC, everyaccesswithin the critical sec-
tion is delayeduntil the previousaccesscompletes. But such
delaysareunnecessaryif theprogrammerhasalreadymadesure
that no otherprocesscan rely on the datastructureto be con-
sistent until the critical section is exited. Weak consistency
exploits this by allowing accesseswithin the critical sectionto
be pipelined. Correctnessis achievedby guaranteeingthat all
previousaccessesareperformedbeforeenteringor exiting each
critical section.

Releaseconsistency(RC) [8] is an extensionof weakconsis-
tencythatexploitsfurtherinformationaboutsynchronizationby
classifyingtheminto acquireand releaseaccesses.An acquire
synchronizationaccess(e.g.,a lock operationor a processspin-
ning for a flag to be set) is performedto gainaccessto a setof
sharedlocations.A release synchronizationaccess(e.g.,an un-
lock operationor a processsettinga flag) grantsthis permission.
An acquireis accomplishedby readinga sharedlocation until
an appropriatevalueis read.Thus,an acquireis alwaysassoci-
atedwith a readsynchronizationaccess(see[8] for discussion
of read-modify-write accesses).Similarly, a releaseis always
associatedwith a write synchronizationaccess. In contrastto
WC, RC doesnot requireaccessesfollowing a releaseto bede-
layedfor thereleaseto complete;thepurposeof thereleaseis to
signalthatpreviousaccessesarecomplete,andit doesnot have
anything to say about the ordering of the accessesfollowing
it. Similarly, RC doesnot requirean acquireto be delayedfor
its previousaccesses.The data-race-free-0(DRF0) [2] model
asproposedby Adve andHill is similar to releaseconsistency,
although it does not distinguish betweenacquire and release
accesses.We do not discussthis model any further, however,
becauseof its similarity to RC.

Theorderingrestrictionsimposedby a consistencymodelcan
be presentedin termsof whenan accessis allowedto perform.
A readis consideredperformed whenthe returnvalueis bound
and can not be modified by other write operations.Similarly,
a write is consideredperformed when the valuewritten by the
write operationis visible to all processors.For simplicity, we
assumea write is madevisible to all other processorsat the
sametime. The techniquesdescribedin the papercanbe easily
extendedto allow for the casewhena write is madevisible to
other processorsat different times. The notion of being per-
formed and having completedwill be usedinterchangeablyin
the restof the paper.

Figure1 showsthe restrictionsimposedby eachof the con-
sistencymodelson memoryaccessesfrom the sameprocess.1

As shown,sequentialconsistencycanbe guaranteedby requir-
ing sharedaccessesto perform in programorder. Processor
consistencyallows more flexibility over SC by allowing read
operationsto bypasspreviouswrite operations. Weak consis-
tency and releaseconsistencydiffer from SC and PC in that
they exploit informationaboutsynchronizationaccesses.Both
WC andRC allow accessesbetweentwo synchronizationopera-
tionsto bepipelined,asshownin Figure1. Thenumberson the
blocksdenotetheorderin which theaccessesoccurin program
order. The figure showsthat RC providesfurther flexibility by
exploiting informationaboutthe type of synchronization.

The delay arcs shown in Figure 1 needto be observedfor
correctness.Theconventionalway to achievethis is by actually
delaying eachaccessuntil a required(possibly empty) set of

1The weak consistencyand releaseconsistencymodelsshown are the
WCscandRCpcmodels,respectively, in the terminologypresentedin [8].

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

Weak Consistency (WC)

4

1

2

3

5

6

7

ACQUIRE A

ACQUIRE B

RELEASE B

RELEASE A

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

Release Consistency (RC)

1

42

3

5

7

6

ACQUIRE A

RELEASE A

ACQUIRE B

RELEASE B

Sequential Consistency (SC)

LOAD

LOAD STORE

LOAD

LOAD

STORE

STORE

STORE

Processor Consistency (PC)

LOAD

LOAD STORE

LOAD

LOAD

STORE

STORE

STORE

u

v

v cannot perform
until u is performed

LOAD/STORE

LOAD/STORE

LOADs and STOREs can
perform in any order as long
as local data and control
dependences are observed

Figure1: Orderingrestrictionson memoryaccesses.

accesseshaveperformed.An interestingalternativeis to allow
the accessto partially or fully proceedeven thoughthe delay
arcs demandthat the accessbe delayedand to simply detect
and remedythe casesin which the early accesswould result
in incorrectbehavior. The key observationis that for the ma-
jority of accesses,the executionwould be correct(accordingto
the consistencymodel)evenif the delayarcsarenot enforced.
Suchaccessesare allowed to proceedwithout any delay. The
few accessesthat requirethe delayfor correctnesscanbe prop-
erly handledby detectingthe problemandcorrectingit through
reissuingthe accessto the memory system. Thus, the com-
moncaseis handledwith maximumspeedwhile still preserving
correctness.

The prefetchandspeculativeexecutiontechniquesdescribed
in the following two sectionsarebasedon the aboveobserva-
tions. For brevity, we will presentthe techniquesonly in the
contextof SC andRC sincethey representthe two extremesin
thespectrumof consistencymodels.Extensionof thetechniques
for othermodelsshouldbe straightforward.

3 Prefetching

The previoussectiondescribedhow the delay constraintsim-
posedby a consistencymodellimit theamountof buffering and
pipelining amongmemoryaccesses.Prefetchingprovidesone
methodfor increasingperformanceby partially proceedingwith
an accessthat is delayeddue to consistencymodelconstraints.
The following subsectionsdescribethe prefetchschemepro-
posedandprovideinsight into the strengthsandweaknessesof
the technique.

3.1 Description

Prefetchingcanbe classifiedbasedon whetherit is binding or
non-binding, andwhetherit is controlledby hardware or soft-

Page2

ware. With a binding prefetch,the value of a later reference
(e.g., a register load) is bound at the time the prefetchcom-
pletes.This placesrestrictionson whena binding prefetchcan
be issued,sincethe valuewill becomestale if anotherproces-
sor modifies the location during the interval betweenprefetch
and reference.Hardwarecache-coherentarchitectures,suchas
the StanfordDASH multiprocessor[18], can provideprefetch-
ing that is non-binding. With a non-bindingprefetch,the data
is broughtclose to the processor(e.g., into the cache)and is
keptcoherentuntil theprocessoractuallyreadsthevalue. Thus,
non-bindingprefetchingdoesnot affect correctnessfor any of
theconsistencymodelsandcanbeusedassimplya performance
boostingtechnique.The techniquedescribedin this sectionas-
sumeshardware-controlled non-binding prefetch. We contrast
this techniquewith previouslyproposedprefetchtechniquesin
Section6.

Prefetchingcan enhanceperformanceby partially servicing
largelatencyaccessesthataredelayeddueto consistencymodel
constraints.For a readoperation,a read prefetch can be used
to bring the datainto the cachein a read-sharedstatewhile the
operationis delayeddue to consistencyconstraints.Sincethe
prefetchis non-binding,we are guaranteedthat the readoper-
ation will returna correctvalueonceit is allowed to perform,
regardlessof when the prefetchcompleted. In the majority of
cases,we expectthe result returnedby the prefetchto be the
correctresult. Theonly time theresultmaybedifferentis if the
location is written to betweenthe time the prefetchreturnsthe
valueandthe time the readis allowedto perform. In this case,
the prefetchedlocationwould eitherget invalidatedor updated,
dependingon the coherencescheme. If invalidated,the read
operationwill missin the cacheandaccessthe new valuefrom
the memorysystem,as if the prefetchneveroccurred. In the
caseof an updateprotocol,the locationis kept up-to-date,thus
providing the new valueto the readoperation.

For a write operation,a read-exclusive prefetch canbe used
to acquireexclusiveownershipof the line, enablingthe write
to that location to completequickly once it is allowed to per-
form. A read-exclusiveprefetchis only possibleif thecoherence
schemeis invalidation-based.Similar to the readprefetchcase,
the line is invalidatedif anotherprocessorwrites to the location
betweenthe time the read-exclusiveprefetchcompletesandthe
actual write operationis allowed to proceed. In addition, ex-
clusiveownershipis surrenderedif anotherprocessorreadsthe
locationduring that time.

3.2 Implementation

This subsectiondiscussesthe requirementsthat the prefetch
techniqueimposeson a multiprocessorarchitecture.Let us first
considerhow the proposedprefetchtechniquecan be incorpo-
ratedinto the processorenvironment.Assumethe generalcase
where the processorhas a load and a store buffer. The usual
way to enforcea consistencymodel is to delay the issue of
accessesin the buffer until certainpreviousaccessescomplete.
Prefetchingcanbeincorporatedin this frameworkby havingthe
hardwareautomaticallyissuea prefetch(readprefetchfor reads
andread-exclusiveprefetchfor writes andatomicread-modify-
writes) for accessesthat are in the load or storebuffer, but are
delayeddue to consistencyconstraints.A prefetchbuffer may
be usedto buffer multiple prefetchrequests.Prefetchescanbe
retiredfrom this buffer asfastasthecacheandmemorysystem
allow.

A prefetchrequestfirst checksthe cacheto seewhetherthe
line is alreadypresent.If so, the prefetchis discarded.Other-

wise, the prefetchis issuedto the memorysystem. When the
prefetchresponsereturnsto the processor, it is placed in the
cache.If a processorreferencesa locationit hasprefetchedbe-
fore the result hasreturned,the referencerequestis combined
with the prefetchrequestso that a duplicaterequestis not sent
out and the referencecompletesas soonas the prefetchresult
returns.

The prefetch techniquediscussedimposesseveral require-
mentson thememorysystem.Most importantly, thearchitecture
requireshardwarecoherentcaches. In addition, the location
to be prefetchedneedsto be cachable. Also, to be effective
for writes,prefetchingrequiresan invalidation-basedcoherence
scheme.In update-basedschemes,it is difficult to partially ser-
vice a write operationwithout making the new valueavailable
to otherprocessors,which resultsin the write beingperformed.

For prefetching to be beneficial, the architectureneedsa
high-bandwidthpipelined memory system, including lockup-
free caches[14, 21], to sustainseveraloutstandingrequestsat
a time. The cachewill alsobe morebusysincememoryrefer-
encesthat are prefetchedaccessthe cachetwice, oncefor the
prefetchand anothertime for the actual reference. As previ-
ouslymentioned,accessingthecachefor theprefetchrequestis
desirablefor avoidingextraneoustraffic. We do not believethat
the doubleaccesswill be a major issuesinceprefetchrequests
aregeneratedonly whennormalaccessesarebeingdelayeddue
to consistencyconstraints,andby definition, thereareno other
requeststo the cacheduring that time.

Lookaheadin the instruction streamis also beneficial for
hardware-controlledprefetchschemes.Processorswith dynamic
instructionscheduling,wherebythe decodingof an instruction
is decoupledfrom the executionof the instruction,help in pro-
viding suchlookahead.Branchpredictiontechniquesthatallow
executionof instructionspast unresolvedconditionalbranches
further enhancethis. Aggressivelookaheadprovidesthe hard-
warewith severalmemoryrequeststhatarebeingdelayedin the
loadandstorebuffers dueto consistencyconstraints(especially
for thestrictermemoryconsistencymodels)andgivesprefetch-
ing theopportunityto pipelinesuchaccesses.Thestrengthsand
weaknessesof hardware-controllednon-bindingprefetchingare
discussedin the next subsection.

3.3 Strengths and Weaknesses

This subsectionpresentstwo examplecodesegmentsto provide
intuition for thecircumstanceswhereprefetchingboostsperfor-
manceandwhereprefetchingfails. Figure2 showsthetwo code
segments.All accessesare to read-writesharedlocations. We
assumea processorwith non-blockingreadsandbranchpredic-
tion machinery. The cachecoherenceschemeis assumedto be
invalidation-based,with cachehit latencyof 1 cycle andcache
miss latency of 100 cycles. Assumethe memory systemcan
acceptan accesson every cycle (e.g., cachesare lockup-free).
We alsoassumeno otherprocessesarewriting to the locations
usedin theexamplesandthatthe lock synchronizationssucceed
(i.e., the lock is free).

Let usfirst considerthecodesegmenton the left sideof Fig-
ure2. This codesegmentresemblesaproducerprocessupdating
the valuesof two memorylocations. Given a systemwith se-
quentialconsistency, eachaccessis delayedfor thepreviousac-
cessto beperformed.Thefirst threeaccessesmissin thecache,
while theunlock accesshits dueto the fact thatexclusiveown-
ershipwas gainedby the previouslock access.Therefore,the
four accessestakea total of 301cyclesto perform. In a system
with releaseconsistency, thewrite accessesaredelayeduntil the

Page3

lock L
write A
write B

unlock L

(miss)

(miss)

(miss)

(hit)

Example 1

read C
read D

read E[D]

unlock L

(hit)

(miss)

(miss)

(hit)

lock L (miss)

Example 2

Figure2: Examplecodesegments.

lock accessis performed,and the unlock accessis delayedfor
the write accessesto perform. However, the write accessesare
pipelined.Therefore,the accessestake202 cycles.

The prefetchtechniquedescribedin this sectionbooststhe
performanceof both the sequentialand releaseconsistentsys-
tems. Concerningthe loop that would be used to implement
the lock synchronization,we assumethe branchpredictortakes
the path that assumesthe lock synchronizationsucceeds.Thus,
the lookaheadinto the instructionstreamallowslocationsA and
B to be prefetchedin read-exclusivemode. Regardlessof the
consistencymodel, the lock accessis servicedin parallel with
prefetchfor the two write accesses.Oncetheresultfor the lock
accessreturns,the two write accesseswill be satisfiedquickly
since the locationsare prefetchedinto the cache. Therefore,
with prefetching,the accessescompletein 103 cyclesfor both
SC and RC. For this example,prefetchingbooststhe perfor-
manceof both SC andRC and alsoequalizesthe performance
of the two models.

We now considerthe secondcodesegmenton the right side
of Figure2. This codesegmentresemblesa consumerprocess
readingseveralmemorylocations.Therearethreereadaccesses
within the critical section.As shown,the readto locationD is
assumedto hit in the cache,and the readof array E depends
on the valueof D to accessthe appropriateelement. For sim-
plicity, we will ignore the delaydue to addresscalculationfor
accessingthe arrayelement. UnderSC, the accessestake 302
cycles to perform. Under RC, they take 203 cycles. With the
prefetchtechnique,the accessestake203 cyclesunderSC and
202cyclesunderRC. Althoughtheperformanceof bothSCand
RC areenhancedby prefetching,the maximumperformanceis
not achievedfor eithermodel. The reasonis simply becausethe
addressof the readaccessto arrayE dependson thevalueof D
andalthoughthe readaccessto D is a cachehit, this accessis
not allowed to perform(i.e., the value can not be usedby the
processor)until the readof C completes(underSC)or until the
lock accesscompletes(underRC). Thus,while prefetchingcan
boost performanceby pipelining severalaccessesthat are de-
layeddueto consistencyconstraints,it fails to remedythecases
whereout-of-orderconsumptionof returnvaluesis importantto
allow the processorto proceedefficiently.

In summary, prefetchingis aneffectivetechniquefor pipelin-
ing large latencyreferenceseventhoughthe consistencymodel
disallows it. However, prefetchingfails to boost performance
when out-of-orderconsumptionof prefetchedvaluesis impor-
tant. Such casesoccur in many applications,where accesses
that hit in the cacheare dispersedamongaccessesthat miss,
andthe out-of-orderuseof the valuesreturnedby cachehits is
critical for achievingthehighestperformance.Thenextsection
describesa speculativetechniquethatremediesthis shortcoming
by allowing theprocessorto consumereturnvaluesout-of-order
regardlessof the consistencyconstraints. The combinationof
prefetchingfor storesand the speculativeexecutiontechnique
for loadswill be shownto beeffective in regainingopportunity
for maximumpipelining andbuffering.

4 Speculative Execution

This sectiondescribesthe speculativeexecutiontechniquefor
load accesses.An exampleimplementationis presentedin the
latterpartof thesection.As will beseen,this techniqueis partic-
ularly applicableto superscalardesignsthat arebeingproposed
for nextgenerationmicroprocessors.Finally, the lastsubsection
showstheexecutionof a simplecodesegmentwith speculative
loads.

4.1 Description

The ideabehindspeculativeexecutionis simple. Assume� and
� are two accessesin programorder, with � being any large
latencyaccessand � being a load access.In addition,assume
that the consistencymodel requiresthe completionof � to be
delayeduntil � completes.Speculative execution for load ac-
cesses works as follows. The processorobtainsor assumesa
returnvaluefor access� before � completesandproceeds.At
the time � completes,if the returnvaluefor � usedby the pro-
cessoris thesameasthecurrentvalueof � , thenthespeculation
is successful.Clearly, thecomputationis correctsinceevenif �

wasdelayed,the valuethe accessreturnswould havebeenthe
same.However, if thecurrentvalueof � is differentfrom what
wasspeculatedby theprocessor, thenthecomputationis incor-
rect. In this case,we needto throw out the computationthat
dependedon the value of � and repeatthat computation.The
implementationof sucha schemerequiresa speculation mech-
anism to obtain a speculatedvalue for the access,a detection
mechanism to determinewhetherthespeculationsucceeded,and
a correction mechanism to repeatthe computationif the specu-
lation wasunsuccessful.

Let us considerthe speculationmechanismfirst. The most
reasonablething to do is to perform the accessand use the
returnedvalue. In casethe accessis a cachehit, the valuewill
be obtainedquickly. In the caseof a cachemiss,althoughthe
returnvaluewill notbeobtainedquickly, theaccessis effectively
pipelinedwith previousaccessesin a way similar to prefetching.
In general,guessingon the valueof the accessis not beneficial
unlessthevalueis known to be constrainedto a small set(e.g.,
lock accesses).

Regardingthe detectionmechanism,a naive way to detect
an incorrectspeculatedvalue is to repeatthe accesswhen the
consistencymodelwould haveallowedit to proceedundernon-
speculativecircumstancesand to check the return value with
the speculatedvalue. However, if the speculationmechanism
performsthe speculativeaccessand keepsthe location in the
cache,it is possibleto determinewhetherthe speculatedvalue
is correctby simply monitoring the coherencetransactionson
that location. Thus, the speculativeexecutiontechniquecanbe
implementedsuchthat the cacheis accessedonly onceper ac-
cessversusthe two times requiredby the prefetchtechnique.
Let us refer back to accesses� and � , where the consistency
model requiresthe completionof load access� to be delayed
until � completes. The speculativetechniqueallows access�

to be issuedand the processoris allowed to proceedwith the
returnvalue. The detectionmechanismis asfollows. An inval-
idationor updatemessagefor location � before� hascompleted
indicatesthat the valueof the accessmay be incorrect.2 In ad-
dition, the lack of invalidation and updatemessagesindicates

2There are two caseswhere the speculatedvalue remainscorrect. The
first is if the invalidationor updateoccursdue to false sharing,that is, for
anotherlocation in the samecacheline. The secondis if the new value
written is the sameas the speculatedvalue. We conservativelyassumethe
speculatedvalue is incorrectin eithercase.

Page4

that the speculatedvalue is correct. Cachereplacementsneed
to be handledproperlyalso. If location � is replacedfrom the
cachebefore � completes,then invalidation and updatemes-
sagesmay no longerreachthe cache.The speculatedvaluefor
� is assumedstale in sucha case(unlessone is willing to re-
peattheaccessonce � completesandto checkthecurrentvalue
with thespeculatedvalue). Thenextsubsectionprovidesfurther
implementationdetailsfor this mechanism.

Once the speculatedvalue is determinedto be wrong, the
correctionmechanisminvolvesdiscardingthe computationthat
dependedon the speculatedvalueandrepeatingthe accessand
computation.This mechanismis almostthesameasthecorrec-
tion mechanismusedin processorswith branchpredictionma-
chinery and the ability to executeinstructionspastunresolved
branches.With branchprediction,if thepredictionis determined
to be incorrect,the instructionsandcomputationfollowing the
brancharediscardedandthenewtargetinstructionsarefetched.
In a similar way, if a speculatedvalue is determinedto be in-
correct, the load accessand the computationfollowing it can
be discardedand the instructionscan be fetchedand executed
againto achievecorrectness.

The speculativetechniqueovercomesthe shortcomingof the
prefetch techniqueby allowing out-of-order consumptionof
speculatedvalues. Referring back to the secondexamplein
Figure 2, let us considerhow well the speculativetechnique
performs. We still assumethat no other processesare writing
to the locations.Speculativeexecutionachievesthe samelevel
of pipelining achievedby prefetching.In addition,the readac-
cessto D no longer hinders the performancesince its return
value is allowed to be consumedwhile previousaccessesare
outstanding.Thus, both SC and RC completethe accessesin
104 cycles.

Given speculativeexecution,load accessescan be issuedas
soonas the addressfor the accessis known, regardlessof the
consistencymodelsupported.Similar to theprefetchtechnique,
the speculativeexecution techniqueimposesseveral require-
mentson the memory system. Hardware-coherentcachesare
requiredfor providingan efficient detectionmechanism.In ad-
dition, a high-bandwidthpipelinedmemorysystemwith lockup-
freecaches[14, 21] is necessaryto sustainmultiple outstanding
requests.

4.2 Example Implementation

This subsectionprovides an example implementationof the
speculativetechnique. We use a processorthat has dynamic
schedulingandbranchpredictioncapability. As with prefetch-
ing, the speculativetechniquealsobenefitsfrom the lookahead
in the instructionstreamprovidedby suchprocessors.In addi-
tion, thecorrectionmechanismfor thebranchpredictionmachin-
ery caneasilybe extendedto handlecorrectionfor speculative
load accesses.Althoughsuchprocessorsarecomplex,incorpo-
ratingspeculativeexecutionfor loadaccessesinto the designis
simple and doesnot significantly add to the complexity. This
subsectionbeginswith a descriptionof a dynamicallyscheduled
processorthatwe choseasthebasefor our exampleimplemen-
tation. Next, the detailsof implementingspeculativeexecution
for load accessesarediscussed.

We obtainedthe organizationfor the baseprocessordirectly
from a studyby Johnson[11] (theorganizationis alsodescribed
by Smith et al. [23] as the MATCH architecture). Figure 3
showsthe overall structureof the processor. Only a brief de-
scription of the processoris given; the interestedreaderis re-
ferred to Johnson’s thesis[11] for more detail. The processor

Instruction
Memory

I−CacheBTB

Decoder

Branch

Register
File

ALU Shifter

Data
Memory

D−Cache

Reorder
Buffer

Addr
Data

Unit
Load/Store

Figure3: Overall structureof Johnson’s dynamicallyscheduled
processor.

consistsof severalindependentfunction units. Eachfunctional
unit hasa reservation station [25]. The reservationstationsare
instructionbuffers that decoupleinstructiondecodingfrom the
instructionexecutionand allow for dynamicschedulingof in-
structions. Thus, the processorcan executeinstructionsout of
order thoughthe instructionsare fetchedand decodedin pro-
gram order. In addition, the processorallows executionof in-
structionspastunresolvedconditionalbranches.A branchtarget
buffer (BTB) [16] is incorporatedinto the instructioncacheto
provideconditionalbranchprediction.

The reorder buffer [22] usedin thearchitectureis responsible
for severalfunctions. The first function is to eliminatestorage
conflictsthroughregisterrenaming[12]. Thebufferprovidesthe
extra storagenecessaryto implementregisterrenaming. Each
instructionthat is decodedis dynamicallyallocateda locationin
the reorderbuffer anda tag is associatedwith its resultregister.
The tag is updatedto theactualresultvalueoncethe instruction
completes. When a later instructionattemptsto read the reg-
ister, correctexecutionis achievedby providing the value (or
tag) in the reorderbuffer insteadof thevaluein the registerfile.
Unresolvedoperandtagsin the reservationstationsarealsoup-
datedwith the appropriatevalue when the instructionwith the
correspondingresultregistercompletes.

The secondfunction of the reorder buffer is to allow the
processorto executeinstructionspast unresolvedconditional
branchesby providingstoragefor theuncommittedresults.The
reorderbuffer functionsas a FIFO queuefor instructionsthat
havenot beencommitted. When an instructionat the headof
the queuecompletes,the locationbelongingto it is deallocated
andthe resultvalueis written to the registerfile. Sincethepro-
cessordecodesandallocatesinstructionsin programorder, the
updatesto the registerfile take placein programorder. Since
instructionsare kept in FIFO order, instructionsin the reorder
buffer that areaheadof a branchdo not dependon the branch,
while the instructionsafter the brancharecontroldependenton
it. Thus, the resultsof instructionsthat dependon the branch
arenot committedto theregisterfile until thebranchcompletes.
In addition, memory storesthat are control dependenton the
conditional branchare held back until the branchcompletes.
If the branchis mispredicted,all instructionsthat are after the
branchare invalidatedfrom the reorderbuffer, the reservation
stationsandbuffersareappropriatelycleared,anddecodingand
executionis startedfrom the correctbranchtarget.

Page5

Load/Store
Reservation

Station

Address
Unit

Store
Buffer

store
data

load

store

cache
addr

cache
write
data

store tag load addrdoneacq

Speculative−Load Buffer

Figure4: Organizationof the load/storefunctionalunit.

The mechanismprovided in the reorderbuffer for handling
branchesis also usedto providepreciseinterrupts. Precisein-
terruptsare providedto allow the processorto restartquickly
without needto saveandrestorea lot of state.We will discuss
the effect of requiringpreciseinterruptson the implementation
of consistencymodels later in the section. Thus the reorder
buffer plays an importantrole by eliminating storageconflicts
throughregisterrenaming,allowing conditionalbranchesto be
bypassed,andproviding preciseinterrupts.

To implement the speculative load technique, only the
load/store(memory)unit of thebaseprocessorneedsto bemod-
ified andtherestof thecomponentsremainvirtually unchanged.
Figure 4 showsthe componentsof the memoryunit. We first
describethe componentsshown on the left side of the figure.
Thesecomponentsarepresentregardlessof whetherspeculative
loadsaresupported.The only new componentthat is required
for supportingspeculativeloads is the speculative-load buffer
that will be describedlater.

The load/store reservation station holds decodedload and
store instructionsin programorder. Theseinstructionsare re-
tired to the addressunit in a FIFO manner. Sincethe effective
addressfor the memory instruction may dependon an unre-
solvedoperand,it is possiblethat theaddressfor the instruction
at theheadof the reservationstationcannot becomputed.The
retiring of instructionsis stalleduntil the effective addressfor
the instructionat the headcanbe computed.The address unit
is responsiblefor computingtheeffectiveaddressanddoingthe
virtual to physicaltranslation.Oncethe physicaladdressis ob-
tained,the addressanddatafor storeoperationsareplacedinto
the store buffer. The retiring of storesfrom the storebuffer is
donein a FIFO mannerand is controlledby the reorderbuffer
to assurepreciseinterrupts(the mechanismis explainedin the
nextparagraph).Loadoperationsareallowedto bypassthestore
buffer and dependencecheckingis doneon the storebuffer to
assurea correctreturnvalue for the load. Although the above
implementationis sufficient for a uniprocessor, we needto add
mechanismsto enforceconsistencyconstraintsfor a multipro-
cessor.

Let us first considerhow accessordercanbe guaranteedfor
sequentialconsistency. The conventionalmethodfor achieving
this is to delay the completionof eachaccessuntil its previous
accessis complete.We first considerhow the storeoperations
aredelayedappropriately. In general,astoreoperationmayneed
to be delayeduntil certainpreviousload or storeoperationsare
completed.Themechanismfor delayingthestoreis aidedby the

fact thatstoresarealreadywithheldto providepreciseinterrupts.
The mechanismis as follows. All uncommittedinstructions
areallocateda location in the reorderbuffer andare retired in
programorder. Exceptfor a storeinstruction,an instructionat
the headof the reorderbuffer is retiredwhenit completes.For
store instructions,the store is retired from the reorderbuffer
as soonas the addresstranslationis done. The reorderbuffer
controls the store buffer by signaling when it is safe to issue
a store to the memorysystem. This signal is given when the
store reachesthe headof the reorderbuffer. Consequently, a
storeis not issueduntil all previousloadsandcomputationare
complete.This mechanismsatisfiesthe requirementsplacedby
the SC model on a store with respectto previousloads. To
makethe implementationsimplerfor SC, we changethe policy
for retiring storessuchthat the storeat the headof the reorder
buffer is not retired until it completesalso (for RC, however,
thestoreat theheadis still retiredassoonasaddresstranslation
is done).Thus,underSC,the storeis alsodelayedfor previous
storesto completeand the storebuffer endsup issuingstores
one-at-a-time.

We now turn to how the restrictionson load accessesare
satisfied.First, we discussthe requirementsassumingthespec-
ulative load mechanismis not used. For SC, it is sufficient to
delay a load until previousloads and storeshave completed.
This canbedoneby stallingthe load/storereservationstationat
loadsuntil the previousload is performedand the storebuffer
empties.

Forspeculativeexecutionof loadaccesses,themechanismfor
satisfyingthe restrictionson load accessesis changed.The ma-
jor componentfor supportingthemechanismis thespeculative-
load buffer. The reservationstationis no longerresponsiblefor
delayingcertainloadaccessesto satisfyconsistencyconstraints.
A load is issuedas soonas its effective addressis computed.
The speculationmechanismcomprisesof issuing the load as
soonaspossibleandusingthespeculatedresultwhenit returns.

Thespeculative-loadbuffer providesthedetectionmechanism
by signalingwhenthe speculatedresultis incorrect.The buffer
works as follows. Loads that are retired from the reservation
stationareput into the buffer in additionto beingissuedto the
memorysystem. Thereare four fields per entry (as shownin
Figure 4): load address,acq, done, and store tag. The load
addressfield holds the physicaladdressfor the load. The acq
field is set if the load is consideredan acquireaccess.For SC,
all loads are treatedas acquires. The done field is set when
the load is performed.If theconsistencyconstraintsrequirethe
load to be delayedfor a previousstore,the storetag uniquely
identifies that store. A null store tag specifiesthat the load
dependson no previousstores. When a store completes,its
correspondingtag in the speculative-loadbuffer is nullified if
present.Entriesare retired in a FIFO manner. Two conditions
needto be satisfiedbeforean entry at the headof the buffer is
retired. First, the storetag field shouldequalnull. Second,the
donefield shouldbesetif theacqfield is set. Therefore,for SC,
an entry remainsin the buffer until all previousload andstore
accessescompleteand the load accessit refers to completes.
AppendixA describeshow anatomicread-modify-write canbe
incorporatedin the aboveimplementation.

We now describethe detection mechanism. The follow-
ing coherencetransactionsare monitoredby the speculative-
load buffer: invalidations(or ownershiprequests),updates,and
replacements.3 Theloadaddressesin thebufferareassociatively

3A replacementis requiredif theprocessoraccessesanaddressthatmaps
ontoa cacheline with valid datafor a differentaddress.To avoiddeadlock,a
replacementrequestto a line with anoutstandingaccessneedsto bedelayed
until the accesscompletes.

Page6

checkedfor amatchwith theaddressof suchtransactions.4 Mul-
tiple matchesarepossible.We assumethe matchclosestto the
headof the buffer is reported. A match in the buffer for an
addressthat is being invalidatedor updatedsignalsthe possi-
bility of an incorrectspeculation.A matchfor an addressthat
is beingreplacedsignifiesthat futurecoherencetransactionsfor
thataddresswill not besentto theprocessor. In eithercase,the
speculatedvaluefor the load is assumedto be incorrect.

Guaranteeingthe constraintsfor releaseconsistencycan be
donein a similar way to SC. The conventionalway to provide
RC is to delaya releaseaccessuntil its previousaccessescom-
pleteandto delayaccessesfollowing anacquireuntil theacquire
completes.Let us first considerdelaysfor stores. The mecha-
nism that providespreciseinterruptsby holding backstoreac-
cessesin thestorebuffer is sufficient for guaranteeingthatstores
aredelayedfor the previousacquire. Although the mechanism
describedis stricterthanwhatRC requires,theconservativeim-
plementationis requiredfor providing preciseinterrupts. The
samemechanismalsoguaranteesthata release(which is simply
a specialstoreaccess)is delayedfor previousloadaccesses.To
guaranteea releaseis alsodelayedfor previousstoreaccesses,
the store buffer delaysthe issueof the releaseoperationuntil
all previously issuedstoresare complete. In contrastto SC,
however, ordinarystoresareissuedin a pipelinedmanner.

Let us considerthe restriction on load accessesunder RC.
The conventionalmethodinvolvesdelayinga load accessuntil
the previousacquireaccessis complete. This can be doneby
stalling the load/storereservationstationafteranacquireaccess
until the acquirecompletes. However, the reservationstation
neednot be stalled if we use the speculativeload technique.
Similar to the implementationof SC, loadsare issuedas soon
as the addressis known and the speculative-loadbuffer is re-
sponsiblefor detectingincorrect values. The speculative-load
buffer descriptiongiven for SC appliesfor RC. The only dif-
ferenceis that the acq field is only set for accessesthat are
consideredacquireaccessesunder RC. Therefore,for RC, an
entry remainsin the speculative-loadbuffer until all previous
acquiresarecompleted.Furthermore,an acquireentry remains
in the buffer until it completesalso. The detectionmechanism
describedfor SC remainsunchanged.

Whenthe speculative-loadbuffer signalsan incorrectspecu-
latedvalue,all computationthatdependson thatvalueneedsto
bediscardedandrepeated.Therearetwo casesto consider. The
first caseis that the coherencetransaction(invalidation,update,
or replacement)arrivesafter thespeculativeloadhascompleted
(i.e., donefield is set). In this case,the speculatedvalue may
havebeenusedby the instructionsfollowing the load. We con-
servativelyassumethat all instructionspastthe load instruction
dependon the value of the load and the mechanismfor han-
dling branchmispredictionis usedto treat the load instruction
as“mispredicted”.Thus,thereorderbuffer discardstheloadand
the instructionsfollowing it andthe instructionsarefetchedand
executedagain.The secondcaseoccursif the coherencetrans-
action arrives before the speculativeload has completed(i.e.,
done field is not set). In this case,only the speculativeload
needsto be reissued,since the instructionsfollowing it have
not yet usedan incorrectvalue. This can be done by simply
reissuingthe load accessand doesnot requirethe instructions
following the loadto bediscarded.5 Thenextsubsectionfurther

4It is possibleto ignore the entry at the headof the buffer if the store
tag is null. The null storetag for the headentry signifiesthat all previous
accessesthat are requiredto completehavecompletedand the consistency
modelconstraintswould haveallowedthe accessto performat sucha time.

5To handlethis caseproperly, we needto tagreturnvaluesto distinguish
betweentheinitial returnvalue,which hasnot yet reachedtheprocessorand

illustratesspeculativeloadsby steppingthroughthe execution
of a simplecodesegment.

4.3 Illustrative Example

In this subsection,we step throughthe executionof the code
segmentshownat the top of Figure5. The sequentialconsis-
tency model is assumed. Both the speculativetechniquefor
loadsand the prefetchtechniquefor storesareemployed.Fig-
ure 5 also showsthe contentsof severalof the buffers during
theexecution.Weshowthedetectionandcorrectionmechanism
in action by assumingthat the speculatedvalue for locationD
(originally in the cache)is later invalidated.

The instructionsare assumedto be decodedand placed in
the reorderbuffer. In addition,it is assumedthat the load/store
reservationstation has issuedthe operations. The first event
showsthat both the loadsand the exclusiveprefetchesfor the
storeshavebeenissued. The storebuffer is buffering the two
storeoperationsand the speculative-loadbuffer hasentriesfor
the threeloads. Note that the speculatedvalue for load D has
alreadybeenconsumedby the processor. The secondeventoc-
curswhenownershiparrivesfor locationB. The completionof
storeB is delayedby the reorderbuffer, however, since there
is an uncommittedinstructionaheadof the store(this observes
preciseinterrupts).Event3 signifiesthe arrival of the valuefor
location A. The entry for load A is removedfrom the reorder
buffer andthespeculative-loadbuffer sincetheaccesshascom-
pleted. Onceload A completes,the storebuffer is signaledby
the reorderbuffer to allow storeB to proceed. Sincelocation
B is now cachedin exclusivemode,storeB completesquickly
(event4). Thus,storeC reachesthe headof the reorderbuffer.
The store buffer is signaledin turn to allow store C to issue
and the accessis mergedwith the previousexclusiveprefetch
requestfor the location.

At this point, we assumean invalidationarrivesfor location
D. Since there is a match for this location in the speculation
buffer and since the speculatedvalue is used, the load D in-
structionandthe following loadinstructionarediscarded(event
5). Event6 showsthat thesetwo instructionsarefetchedagain
anda speculativeload is issuedto locationD. The load is still
speculativesincethepreviousstore(storeC) hasnot completed
yet. Event7 showsthe arrival of the new valuefor locationD.
Sincethe value for D is known now, the load accessE[D] can
beissued.Notethatalthoughtheaccessto D hascompleted,the
entryremainsin thereorderbuffer sincestoreC is still pending.
Once the ownershipfor location C arrives (event 8), store C
completesand is retired form the reorderbuffer and the store
buffer. In addition,loadD is no longerconsidereda speculative
load and is retired from both the reorderand the speculative-
load buffers. The executioncompleteswhenthevaluefor E[D]
arrives(event9).

5 Discussion

The two implementationtechniquespresentedin this paperpro-
vide a greateropportunity for buffering and pipelining of ac-
cessesthan any of the previously proposedtechniques. This
section discussessome implications associatedwith the two
techniques.

needsto be discarded,andthe returnvaluefrom the repeatedaccess,which
is the one to be used. In addition, in casethereare multiple matchesfor
the addressin the speculative-loadbuffer, we haveto guaranteethat initial
returnvaluesarenot usedby any of the correspondingloads.

Page7

Reorder
Buffer

Store
Buffer

Speculative−Load
Buffer

Cache
ContentsEvent

ld E[D]
ld D
st C
st B
ld A

A: ld pending
B: ex−prf pending
C: ex−prf pending
D: valid
E[D]: ld pending

A: ld pending
B: valid exclusive
C: ex−prf pending
D: valid
E[D]: ld pending

acq done st tag ld addr

ld A
ld D

ld E[D]
st C

E[D]: ld pending

A,D: valid
B: valid exclusive
C: ex−prf pending

acq done st tag ld addr

ld D
ld E[D]

st C

1

2

E[D]: ld pending

A,D: valid
B: valid exclusive
C: ex−prf pending

acq done st tag ld addr

ld D
ld E[D]

st C

3

D: invalid

A: valid
B: valid exclusive
C: ex−prf pending

4

D: ld pending

A: valid
B: valid exclusive
C: ex−prf pending

acq done st tag ld addr
ld Dst C

5

E[D]: ld pending

A,D: valid
B: valid exclusive
C: ex−prf pending

acq done st tag ld addr

ld D
ld E[D]

st C

6

ld E[D]
ld D
st C
st B
ld A

acq done st tag ld addr

ld A
ld D

ld E[D]
st C

st C
st B

st C
st B

st C
st B

st C

st C

st C

st C

ld E[D]
A,D: valid
B,C: valid exclusive
E[D]: ld pending

acq done st tag ld addr
ld E[D]

7

8

A,D,E[D]: valid
B,C: valid exclusive

9

reads are
issued and
writes are
prefetched

ownership for
B arrives

value for
A arrives

write to B
completes

invalidation
for D arrives

read of D
is reissued

value for
D arrives;
read of E[D]
is reissued

ownership for
C arrives

value for
E[D] arrives

read A
write B
write C
read D
read E[D]

(miss)
(miss)
(miss)
(hit)

(miss)

Example code segment:

ld E[D]
ld D
st C
st B

ld E[D]
ld D
st C

st C

ld E[D]
ld D
st C

ld E[D]
ld D
st C

Figure 5: Illustration of buffers during executionof the code
segment.

The main ideabehindtheprefetchandspeculativeload tech-
niquesis to serviceaccessesas soonas possible,regardlessof
the constraintsimposedby the consistencymodel. Of course,
since correctnessneedsto be maintained,the early serviceof
the accessis not alwayshelpful. For thesetechniquesto pro-
vide performancebenefits,the probability that a prefetchedor
speculatedvalue is invalidatedmust be small. Thereare sev-
eral reasonswhy we expect such invalidations to be infre-
quent. Whetherprefetchedor speculatedlocationsare invali-
dated loosely dependson whether it is critical to delay such
accessesto obtaina correctexecution.If the supportedconsis-
tencymodelis a relaxedmodelsuchasRC, delaysareimposed
only at synchronizationpoints. In many applications,the time
at which one processreleasesa synchronizationis long before
the time anotherprocesstries to acquirethe synchronization.
This implies that no otherprocessis simultaneouslyaccessing
the locationsprotectedby the synchronization.Correctnesscan
be achievedin this casewithout the needto delay the accesses
following an acquireuntil the acquirecompletesor to delay a
releaseuntil its previousaccessescomplete. For caseswhere
the supportedconsistencymodel is strict, suchasSC, the strict
delaysimposedon accessesarealsorarelynecessaryfor correct-
ness. We haveobservedthat most programsdo not havedata
racesandprovidesequentiallyconsistentresultsevenwhenthey
are executedon a releaseconsistentarchitecture(see[8] for a
formal definitionof programswith sucha property).Therefore,
most delaysimposedon accessesby a typical SC implementa-
tion aresuperfluousfor achievingcorrectness.It is importantto

substantiatethe aboveobservationsin the futurewith extensive
simulationexperiments.

A majorimplicationof thetechniquesproposedis thattheper-
formanceof differentconsistencymodelsis equalizedoncethese
techniquesareemployed. If one is willing to implementthese
techniques,thechoiceof theconsistencymodelto besupported
in hardwarebecomesless important. Of course,the choiceof
themodelfor softwarecanstill affectoptimizations,suchasreg-
ister allocationand loop transformation,that the compiler can
performon the program. However, this choicefor softwareis
orthogonalto the choiceof the consistencymodelto supportin
hardware.

6 Related Work

In this section,we discusspreviouswork regardingprefetching
and speculativeexecution. Next, we considerother proposed
techniquesfor providingmoreefficient implementationsof con-
sistencymodels.

The main advantageof the prefetchschemedescribedin this
study is that it is non-binding. Hardware-controlledbinding
prefetchinghasbeenstudiedby Lee [17]. Gornish,Granston,
andViedenbaum[10] haveevaluatedsoftware-controlledbind-
ing prefetching. However, binding prefetchingis quite limited
in its ability to enhancetheperformanceof consistencymodels.
For example,in the SC implementationdescribed,a binding
prefetchcannot be issuedany earlier than the actualaccessis
allowedto be issued.

Non-binding prefetching is possible if hardware cache-
coherence is provided. Software-controlled non-binding
prefetchinghas beenstudiedby Porterfield[20], Mowry and
Gupta [19], and Gharachorlooet al. [7]. Porterfieldstudied
the techniquein the context of uniprocessorswhile the work
by Mowry and Gharachorloostudiesthe effect of prefetching
for multiprocessors.In [7], we provide simulationresults,for
processorswith blocking reads,that show software-controlled
prefetchingbooststhe performanceof consistencymodelsand
diminishesthe performancedifferenceamongmodels if both
readandread-exclusiveprefetchesareemployed.Unfortunately,
software-controlledprefetchingrequiresthe programmeror the
compiler to anticipateaccessesthat may benefitfrom prefetch-
ing andto addthe appropriateinstructionsin the applicationto
issuea prefetchfor the location. The advantageof hardware-
controlledprefetchingis that it doesnot requiresoftwarehelp,
neitherdoesit consumeinstructionsor processorcycles to do
theprefetch.Thedisadvantageof hardware-controlledprefetch-
ing is that the prefetchingwindow is limited to the size of
the instructionlookaheadbuffer, while theoretically, software-
controllednon-bindingprefetchinghasan arbitrarily largewin-
dow. In general,it should be possibleto combinehardware-
controlledandsoftware-controllednon-bindingprefetchingsuch
that they complementoneanother.

Speculativeexecutionbasedon possibly incorrectdata val-
ues hasbeenpreviouslydescribedby Tom Knight [13] in the
context of providing dynamic parallelismfor sequentialLisp
programs. The compiler is assumedto transformthe program
into sequencesof instructionscalled transactionblocks. These
blocks areexecutedin parallel and instructionsthat side-effect
main memoryare delayeduntil the block is committed. The
sequentialorder of blocks determinesthe order in which the
blockscancommit their side-effects. The mechanismdescribed
by Knight checksto seewhethera laterblock useda valuethat
is changedby theside-effectinginstructionsof thecurrentblock,
andin caseof a conflict, abortstheexecutionof the laterblock.

Page8

This is safesincethe side-effecting instructionsof later blocks
aredelayed,makingthe blocks fully restartable.Although this
schemeis loosely similar to the speculativeload schemedis-
cussedin thispaper, ourschemeis uniquein thewayspeculation
is usedto enhancethe performanceof multiprocessorsgiven a
setof consistencyconstraints.

Adve and Hill [1] haveproposedan implementationfor se-
quential consistencythat is more efficient than conventional
implementations.Their schemerequiresan invalidation-based
cachecoherenceprotocol. At pointswherea conventionalim-
plementationstalls for the full latencyof pendingwrites, their
implementationstalls only until ownershipis gained. To make
theimplementationsatisfysequentialconsistency, thenewvalue
written is not madevisible to otherprocessorsuntil all previous
writes by this processorhavecompleted. The gains from this
are expectedto be limited, however, since the latency of ob-
tainingownershipis oftenonly slightly smallerthanthe latency
for the write to complete.In addition,theproposedschemehas
no provision for hiding the latencyof readaccesses.Sincethe
visibility-control mechanismreducesthe stall time for writes
only slightly and doesnot affect the stall time for reads,we
do not expectit to performmuchbetterthanconventionalim-
plementations. In contrast,the prefetchand speculativeload
techniquesprovidemuch greateropportunityfor buffering and
pipelining of readandwrite accesses.

Stenstrom[24] has proposeda mechanismfor guaranteeing
accessorder at the memoryinsteadof at the processor. Each
requestcontainsa processoridentificationanda sequencenum-
ber. Consecutiverequestsfrom the sameprocessorget con-
secutivesequencenumbers. Each memorymodulehasaccess
to a commondatastructurecalled next sequence-number table
(NST). The NST containsP entries,one entry per processor.
Each entry containsthe sequencenumberof the next request
to be performedby the correspondingprocessor. This allows
the mechanismto guaranteethat accessesfrom eachprocessor
are kept in programorder. Theoretically, this schemecan en-
hancethe performanceof sequentialconsistency. However, the
major disadvantageis that cachesare not allowed. This can
severelyhinder the performancewhencomparedto implemen-
tationsthat allow sharedlocationsto be cached. Furthermore,
the techniqueis not scalableto a large numberof processors
sincethe increment network usedto updatethe differentNST’s
growsquadraticallyin connectionsasthe numberof processors
increases.

The detectionmechanismdescribedin Section4 is interest-
ing since it can be extendedto detectviolations of sequential
consistencyin architecturesthat implementmorerelaxedmod-
els suchasreleaseconsistency. Releaseconsistentarchitectures
are guaranteedto provide sequentialconsistencyfor programs
that arefreeof dataraces[8]. However, determiningwhethera
programis free of dataracesis undecidable[3] and is left up
to the programmer. In [6], we presentan extensionof the de-
tectionmechanismwhich, for everyexecutionof the program,
determineseither that theexecutionis sequentiallyconsistentor
that the programhasdataracesand may result in sequentially
inconsistentexecutions. Since it is not desirableto conserva-
tively detectviolationsof SCfor programsthat arefree of data
racesand due to the absenceof a correctionmechanism,the
detectiontechniqueusedin [6] is lessconservativethantheone
describedhere. In addition, the extendedtechniqueneedsto
checkfor violationsof SCarisingfrom performingeithera read
or a write accessout of order.

7 Concluding Remarks

To achievehigher performance,a numberof relaxedmemory
consistencymodelshavebeenproposedfor sharedmemorymul-
tiprocessors.Unfortunately, the relaxedmodelspresenta more
complexprogrammingmodel. In this paper, we haveproposed
two techniques,that of prefetchingand speculativeexecution,
that boost the performanceunderall consistencymodels. The
techniquesarealsonoteworthyin that theyallow thestrict mod-
els,suchassequentialconsistency, to achieveperformanceclose
to that of relaxedmodelslike releaseconsistency. The cost,of
course,is theextrahardwarecomplexityassociatedwith theim-
plementationof the techniques.While the prefetchtechnique
is simple to incorporateinto cache-coherentmultiprocessors,
the speculativeexecutiontechniquerequiresmoresophisticated
hardwaresupport. However, the mechanismsrequiredto im-
plementspeculativeexecutionaresimilar to thoseemployedin
severalnextgenerationsuperscalarprocessors.In particular, we
showedhow the speculativetechniquecould be incorporated
into one such processordesignwith minimal additionalhard-
ware.

8 Acknowledgments

We greatly appreciatethe insight provided by Ruby Lee that
led to the prefetchtechniquedescribedin this paper. We thank
Mike Smith and Mike Johnsonfor helping us with the details
of out-of-order issueprocessors.SaritaAdve, Phillip Gibbons,
Todd Mowry, andPerStenstromprovideduseful commentson
anearlierversionof this paper. This researchwassupportedby
DARPA contractN00014-87-K-0828.KouroshGharachorloois
partly supportedby TexasInstruments.Anoop Guptais partly
supportedby a NSFPresidentialYoungInvestigatorAwardwith
matchingfundsfrom Sumitomo,Tandem,andTRW.

References

[1] SaritaAdve andMark Hill. Implementingsequentialcon-
sistencyin cache-basedsystems. In Proceedings of the
1990 International Conference on Parallel Processing,
pagesI: 47–50,August1990.

[2] SaritaAdve andMark Hill. Weakordering- A new def-
inition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages2–14, May
1990.

[3] A. J. Bernstein. Analysis of programsfor parallel pro-
cessing.IEEE Transactions on Electronic Computers, EC-
15(5):757–763,October1966.

[4] Michel DuboisandChristophScheurich.Memory access
dependenciesin shared-memorymultiprocessors. IEEE
Transactions on Software Engineering, 16(6):660–673,
June1990.

[5] Michel Dubois, Christoph Scheurich,and Faýe Briggs.
Memory accessbuffering in multiprocessors.In Proceed-
ings of the 13th Annual International Symposium on Com-
puter Architecture, pages434–442,June1986.

[6] Kourosh Gharachorlooand Phillip B. Gibbons. Detect-
ing violationsof sequentialconsistency. In Symposium on
Parallel Algorithms and Architectures, July 1991.

[7] KouroshGharachorloo,AnoopGupta,andJohnHennessy.
Performanceevaluation of memory consistencymodels

Page9

for shared-memorymultiprocessors. In Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages245–257,
April 1991.

[8] Kourosh Gharachorloo, Dan Lenoski, James Laudon,
Phillip Gibbons,AnoopGupta,andJohnHennessy. Mem-
ory consistencyand event ordering in scalableshared-
memorymultiprocessors.In Proceedings of the 17th An-
nual International Symposium on Computer Architecture,
pages15–26,May 1990.

[9] JamesR. Goodman.Cacheconsistencyandsequentialcon-
sistency. TechnicalReportno. 61, SCI Committee,March
1989.

[10] E. Gornish,E. Granston,and A. Veidenbaum.Compiler-
directeddataprefetchingin multiprocessorswith memory
hierarchies.In International Conference on Supercomput-
ing, pages354–368,September1990.

[11] William M. Johnson.Super-Scalar Processor Design. PhD
thesis,StanfordUniversity, June1989.

[12] R. M. Keller. Look-aheadprocessors.Computing Surveys,
7(4):177–195,1975.

[13] Tom Knight. An architecturefor mostly functional lan-
guages.In ACM Conference on Lisp and Functional Pro-
gramming, 1986.

[14] D. Kroft. Lockup-freeinstructionfetch/prefetchcacheor-
ganization.In Proceedings of the 8th Annual International
Symposium on Computer Architecture, pages81–85,1981.

[15] Leslie Lamport. How to make a multiprocessorcom-
puterthatcorrectlyexecutesmultiprocessprograms.IEEE
Transactions on Computers, C-28(9):241–248,September
1979.

[16] J. K. F. Lee andA. J. Smith. Branchpredictionstrategies
andbranchtargetbuffer design.IEEE Computer, 17:6–22,
1984.

[17] RolandLun Lee. The Effectiveness of Caches and Data
Prefetch Buffers in Large-Scale Shared Memory Multipro-
cessors. PhD thesis, University of Illinois at Urbana-
Champaign,May 1987.

[18] Dan Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The directory-based
cachecoherenceprotocolfor theDASH multiprocessor. In
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages148–159,May 1990.

[19] ToddMowry andAnoopGupta.Toleratinglatencythrough
software-controlledprefetchingin shared-memorymulti-
processors.Journal of Parallel and Distributed Comput-
ing, June1991.

[20] Allan K. Porterfield.Software Methods for Improvement of
Cache Performance on Supercomputer Applications. PhD
thesis,Departmentof ComputerScience,Rice University,
May 1989.

[21] ChristophScheurichandMichel Dubois. Concurrentmiss
resolution in multiprocessorcaches. In Proceedings of
the 1988 International Conference on Parallel Processing,
pagesI: 118–125,August1988.

[22] J. E. SmithandA. R. Pleszkun.Implementationof precise
interruptsin pipelinedprocessors.In Proceedings of the
12th Annual International Symposium on Computer Archi-
tecture, pages36–44,June1985.

[23] Michael Smith,Monica Lam, andMark Horowitz. Boost-
ing beyondstaticschedulingin a superscalarprocessor. In
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages344–354,May 1990.

[24] Per Stenstrom.A latency-hidingaccessorderingscheme
for multiprocessorswith buffered multistage networks.
Technical Report Departmentof ComputerEngineering,
Lund University, Sweden,November1990.

[25] R. M. Tomasulo.An efficient hardwarealgorithmfor ex-
ploiting multiple arithmeticunits. IBM Journal, 11:25–33,
1967.

Appendix A: Read-Modify-Write Accesses

Atomic read-modify-write accessesare treateddifferently from
other accessesas far as speculativeexecution is concerned.
Someread-modify-write locationsmaynot becached.Thesim-
plest way to handlesuch locationsis to delay the accessuntil
previousaccessesthat are requiredto completeby the consis-
tencymodelhavecompleted.Thus,thereis no speculativeload
for non-cachedread-modify-write accesses.In the following,
we will describethe treatmentof cachableread-modify-write
accessesunderthe SCmodel. Extensionsfor the RC modelare
straightforward.

The reorderbuffer treats the read-modify-writes as both a
readanda write. Therefore,asis thecasefor normalreads,the
read-modify-write retires from the headof the reorderbuffer
only when the accesscompletes.In addition,similar to a nor-
mal write, the reorderbuffer signalsthe storebuffer when the
read-modify-write reachesthe head. The load/storereservation
stationservicesa read-modify-write by splitting it into two op-
erations,a speculativeload that resultsin a read-exclusivere-
questandthe actualatomicread-modify-write. The speculative
load is issuedto the memorysystemand is also placedin the
speculative-loadbuffer. The read-modify-write is simply placed
in thestorebuffer. Thestoretagfor thespeculativeloadentryis
set to the tag for the read-modify-write in the storebuffer. The
donefield is set when exclusiveownershipis attainedfor the
locationandthereturnvalueis sentto theprocessor. Theactual
read-modify-write occurswhen the read-modify-write is issued
by the storebuffer. The entry correspondingto the speculative
loadis guaranteedto beat theheadof thespeculative-loadbuffer
when the actual read-modify-write is issued. In the caseof a
matchonthespeculativeloadentrybeforetheread-modify-write
is issued,the read-modify-write andthecomputationsfollowing
it are discardedfrom all buffers and are repeated.The return
result of the speculativeread-exclusiverequestis ignoredif it
reachesthe processorafter the read-modify-write is issuedby
the store buffer (the processorsimply waits for the return re-
sult of the read-modify-write). If a match on the speculative
loadentryoccursafter the read-modify-write is issued,only the
computationfollowing the read-modify-write is discardedand
repeated.In this case,the valueusedfor the read-modify-write
will bethe returnvalueof the issuedatomicaccess.The specu-
lative loadentry is retiredfrom the speculativebuffer whenthe
read-modify-write completes.

Page10

