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Abstract

Second generation multicomputers use wormhole routing, allowing
a very low channel set-up time and drastically reducing the depen-
dency between network latency and internode distance. Deadlock-free
routing strategies have been developed, allowing the implementation
of fast hardware routers that reduce the communication bottleneck.
Also, adaptive routing algorithms with deadlock-avoidance or deadlock-
recovery techniques have been proposed for some topologies, being very
effective and outperforming static strategies.

This paper develops the theoretical background for the design of
deadlock-free adaptive routing algorithms for wormhole networks. Some
basic definitions and two theorems are proposed, developing conditions
to verify that an adaptive algorithm is deadlock-free, even when there are
cycles in the channel dependency graph. Also, two design methodologies
are proposed. The first one supplies algorithms with a high degree of
freedom, without increasing the number of physical channels. The sec-
ond methodology is intended for the design of fault-tolerant algorithms.
Some examples are given, showing the application of the methodologies.
Finally, some simulations show the performance improvement that can

be achieved by designing the routing algorithms with the new theory.
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1 Introduction

Multicomputers [1] rely on an interconnection network between processors to
support the message-passing mechanism. The network latency [1] can be de-
fined as the time from when the head of a message enters the network at the
source until the tail emerges at the destination. In first generation multicom-
puters, a store-and-forward mechanism has been used to route messages. Each
time a message reaches a node, it is buffered in local memory, and the pro-
cessor interrupted to execute the routing algorithm. Accordingly, the network

latency is proportional to the distance between the source and the destination.

However, second generation multicomputers are most distinguished by mes-
sage routing hardware that makes the topology of the message-passing network
practically invisible to the programmer. The message routing hardware uses a
routing mechanism known as wormhole routing [10]. As messages are typically
at least a few words long, each message is serialized into a sequence of parallel
data units, referred to as flow control units, or flits [9]. The flit at the head of
a message governs the route. As the header flit advances along the specified
route, the remaining flits follow it in a pipeline fashion. If the header encoun-
ters a channel already in use, it is blocked until the channel is freed; the flow

control within the network blocks the trailing flits.

This form of routing and flow control has two important advantages over
the store-and-forward routing used in first generation multicomputers. Firstly,

it avoids using storage bandwidth in the nodes through which messages are



routed. Secondly, this routing technique makes the message latency largely
insensitive to the distance in the message-passing network. Since the flits move
through the network in a pipeline fashion, in the absence of channel contention,

the network latency equals the sum of two terms:

— T,d is the time associated with forming the path through the network,
where T, is the delay of the individual routing nodes found on the path, and d

is the number of nodes traversed.

— L/B is the time required for a message of length L to pass through a
channel of bandwidth B.

In second generation multicomputers, the network latency is dominated by

the second term for all but very short messages.

Another improvement in message performance results from selecting the
optimal topology for the implementation on printed circuit boards or VLSI
chips. As message latency is dominated by the term L/B, more wirable net-
work topologies will increase the bandwidth B at the expense of increasing
the network diameter. An analysis [5, 7] shows that, under the assumption of
constant number of wires through the network bisection, a two dimensional net-
work minimizes latency for typical message lengths for up to 1024 nodes. For
larger sizes, a three dimensional network achieves better performance. Among
these networks, meshes are preferred because they offer useful edge connectiv-
ity, which can be used for I/O controllers. Also, meshes partition into units
that are still meshes, simplifying the design of routing algorithms that are in-
dependent of the network size, as well as the implementation of space-sharing

techniques.

However, deadlocks may appear if the routing algorithms are not carefully
designed. A deadlock in the interconnection network of a multicomputer occurs

when no message can advance toward its destination because the queues of the



message system are full. The size of the queues strongly influences the proba-
bility of reaching a deadlocked configuration. First generation multicomputers
buffer full messages or relatively large packets. By contrary, second generation
machines buffer flits, being more deadlock-prone. So, the only practical way

to avoid deadlock is to design deadlock-free routing algorithms.

Many deadlock-free routing algorithms have been developed for store-and-
forward computer networks [13, 15, 23]. These algorithms are based on a
structured buffer pool. However, with wormhole routing, buffer allocation can-
not be restricted, because flits have no routing information. Once the header
of a message has been accepted by a channel, the remaining flits must be ac-
cepted before the flits of any other message can be accepted. So, routing must

be restricted to avoid deadlock.

Dally [10] has proposed a methodology to design static routing algorithms
under general assumptions. He defines a channel dependency graph and estab-
lishes a total order among channels. Routing is restricted to visit channels in
decreasing or increasing order to eliminate cycles in the channel dependency
graph. This methodology has been applied to the design of routing chips for
multicomputers [9] and multicomputer nodes with integrated communication

support [2]. It has also been applied to systolic communication [21, 2].

The restriction of routing, although it avoids deadlock, can increase traffic
jams, especially in heavily loaded networks with long messages. In order to
avoid congested regions of the network, an adaptive routing algorithm can be
used. Adaptive strategies have been shown to outperform static strategies in
store-and-forward routing [3] and in packet-switched communications [20, 24].

In general, adaptive routing needs additional hardware support.

Several adaptive algorithms have been developed for wormhole routing. A

deadlock-free adaptive algorithm for the hypercube is the Hyperswitch algo-



rithm [4], which is based on backtracking and hardware modification of message
headers to avoid congestion and cycles. Another deadlock-free adaptive algo-
rithm has been proposed for the MEGA [14]. This algorithm always routes
messages, sending them away from their destination if necessary, like the Con-
nection Machine [16]. If the message arrives at a node without free output
channels, deadlocks are avoided by storing the message and removing it from
the network. In this respect, it is similar to virtual cut-through [19]. Jesshope
[18] has proposed an algorithm for n dimensional meshes, by decomposing them
into 2n virtual networks. Inside each virtual network, displacements along a
given dimension are always made in the same direction, thus avoiding cycles
and deadlock. A similar strategy for the development of adaptive and fault
tolerant routing algorithms for k-ary n-cubes has been proposed in [22]. It
is also based on the concept of virtual networks and requires the absence of
cycles in the channel dependency graph. That strategy is only feasible for low-
dimensional networks because the number of virtual channels increases very

rapidly with the dimension.

An alternative way consists of recovering from deadlock. Reeves et al. [25]
have used an abort-and-retry technique to remove messages blocked for longer
than a certain threshold from the network. Aborted messages are introduced
again into the network after a random delay. In [25] three adaptive routing

strategies have been proposed and evaluated for a binary 8-cube.

Another approach is the use of multistage interconnection networks, in
which deadlocks are easier to avoid. In [17] an adaptive algorithm based on
interval routing has been proposed and evaluated. Although the results show
that multistage networks outperform grids and hypercubes, the comparison

does not take into account the implementation restrictions, in the way proposed

in [7].



Finally, in [11] we have proposed a very simple methodology to design
deadlock-free adaptive routing algorithms for wormhole networks. The routing
algorithms obtained from the application of that methodology to 2D and 3D-

meshes have been evaluated by simulation.

In summary, several adaptive routing algorithms have been proposed. In
general, they outperform static algorithms. In order to avoid deadlocks, routing
algorithms require either the absence of cycles in the channel dependency graph
or additional hardware support. The first approach is too restrictive, limiting
the number of alternative paths that can be used or requiring a lot of virtual
channels. The second approach introduces additional delays (backtracking,

message abortion, etc.).

This paper develops the theoretical background for the design of deadlock-
free adaptive routing algorithms for wormhole networks. Some basic definitions
and two theorems are proposed and proved, developing conditions to verify that
an adaptive algorithm is deadlock-free, even when there are cycles in the chan-
nel dependency graph. Also, two design methodologies based on the above
mentioned theorems are proposed. The first one supplies adaptive algorithms
with a high degree of freedom, without increasing the number of physical chan-
nels. The second methodology is intended for the design of fault-tolerant algo-
rithms. Some examples show the application of both methodologies, obtaining
new adaptive routing algorithms. Finally, one of those algorithms is evaluated

by simulation.

Section 2 develops the new theory for wormhole routing. Section 3 proposes
two design methodologies, giving some examples of their application. The
details concerning the simulation are described in section 4, showing the results

in section 5. Finally, some conclusions are drawn.



2 Definitions and theorems

This section develops the theoretical background for the design of deadlock-
free adaptive routing algorithms for networks using wormhole routing. This
theory is also valid when messages are split into packets. However, as typical
messages are short [7], we will consider that messages are not split. Otherwise,

the following assumptions and definitions should refer to packets.

The basic assumptions are very similar to the ones proposed by Dally [10],

except that adaptive routing is allowed. These assumptions are the following:

1. A node can generate messages destined for any other node at any rate.
2. A message arriving at its destination node is eventually consumed.

3. Wormhole routing is used. So, once a queue accepts the first flit of a
message, it must accept the remainder of the message before accepting

any flits from another message.

4. A node can generate messages of arbitrary length. Messages will generally

be longer than a single flit.

5. An available queue may arbitrate between messages that request that

queue, but may not choose among waiting messages.

6. A queue cannot contain flits belonging to different messages. After ac-
cepting a tail flit, a queue must be emptied before accepting another
header flit. Then, when a message is blocked, its header flit will always
occupy the head of a queue. This assumption is necessary to prove theo-
rem 2. If it is not satisfied, it is easy to define a deadlocked configuration
which invalidates that theorem, as will be seen in consideration 2 after

the theorem proof.



7. The route taken by a message depends on its destination and the status
of output channels (free or busy). At a given node, the routing function
supplies a set of output channels based on the current and destination
nodes. A selection from this set is made based on the status of output

channels at the current node. So, adaptive routing will be considered.

Before proposing the theorems, some definitions are needed:

Definition 1 An interconnection network I is a strongly connected directed
multigraph, I = G(N,C). The vertices of the multigraph N represent the
set of processing nodes. The arcs of the multigraph C' represent the set of
communication channels. More than a single channel is allowed to connect a
given pair of nodes. Each channel ¢; has an associated queue denoted queue(c;)
with capacity cap(c;). The source and destination nodes of channel ¢; are

denoted s; and d;, respectively.

Definition 2 Let F' be the set of valid channel status, F' = {free, busy}. Let
T :C — F be the status of the output channels in the network.

Definition 3 An adaptive routing function R : N x N — P(C), where
P(C) is the power set of C, supplies a set of alternative output channels
to send a message from the current node n. to the destination node ny,
R(n.,ng) = {c1,¢2,...,¢,}. In general, p will be less than the number of out-
put channels per node to restrict routing and obtain deadlock-free algorithms.
As a particular case, p =1 V(n.,nq) € N X N,n. # ng, defines a static routing
function. Also, R(n,n) = 0, Vn € N. The domain of R has been defined as
N x N instead of C' x N as in [10]. Otherwise, one of the theorems we propose
could not be proved. This point will be discussed in detail after proving theo-
rem 2 (see consideration 3). Also, defining the result of R as a set of channels
(an element of P(C)) allows us the use of the operations defined on sets. In

particular, the € operator will be extensively used throughout this paper.



Definition 4 A selection function S : P(C x F) — C selects a free output
channel (if any) from the set supplied by the routing function. From the
definition, S takes into account the status of all the channels belonging to the
set supplied by the routing function. The selection can be random or based
on static or dynamic priorities. Also, in the same way the result of a static
routing function may be a busy channel, if all the output channels are busy, any
of them may be selected. The decomposition of the adaptive routing into two
functions (routing and selection) will be critical while proving the theorems,
because only the routing function determines whether a routing algorithm is
deadlock-free or not. Then, the selection function will only affect performance.
Moreover, it is possible to extend the definition of the selection function by
taking into account additional information, either local to the node or remote.

We will comment on this in section 3.

Definition 5 A routing function R for a given interconnection network [ is

connected iff

€ € R($, y)
v:c7y€N,x#y,EIC17C27...7CkEC/ Cm+1ER(dm,y), m:1,,]€—1
dk =Y
In other words, it is possible to establish a path between z and y using
channels belonging to the sets supplied by K. Notice that the interconnection

network is strongly connected, but it does not imply that the routing function

must be connected.

Definition 6 A routing subfunction Ry for a given routing function R and

channel subset C; C (| is a routing function

Ri:NxN —P(Cy)/Ri(z,y) = R(z,y)NCy Ya,ye N



Definition 7 Given an interconnection network 7, a routing function R and

a pair of channels ¢;,¢; € C, there is a direct dependency from ¢; to ¢; ift

¢; € R(s;,n) and ¢j € R(d;,n) for some n € N

that is, ¢; can be used immediately after ¢; by messages destined to some

node n.

Definition 8 Given an interconnection network I, a routing function R, a
channel subset €y C C which defines a routing subfunction R; and a pair of

channels ¢;, ¢; € Cy, there is an indirect dependency from c¢; to ¢; iff

¢ € Ri(si,n)
c1 € R(d;,n)
Cmt1 € R(dmyn), m=1,....k—1

EICl,CQ,...,Ck € C—Cl/

¢; € Ri(dy,n) for somen e N

that is, it is possible to establish a path from s; to d; for messages destined
to some node n. ¢; and ¢; are the first and last channels in that path and the
only ones belonging to ;. Then, ¢; can be used after ¢; by some messages.
As ¢; and ¢; are not adjacent, some other channels belonging to C' — Cy are
used between them. It must be noticed that, given three channels ¢;, ¢, € C}
and ¢; € C — (y, the existence of direct dependencies between ¢;, ¢; and ¢;, ¢,
respectively, does not imply the existence of an indirect dependency between

C;y Ck.

Definition 9 A channel dependency graph D for a given interconnection net-
work [ and routing function R, is a directed graph, D = G(C, E). The vertices
of D are the channels of I. The arcs of D are the pairs of channels (¢;,¢;)
such that there is a direct dependency from ¢; to ¢;. Notice that there are no

l-cycles in D, because channels are unidirectional.

10



Definition 10 An extended channel dependency graph Dp for a given inter-
connection network I and routing subfunction Ry of a routing function R, is
a directed graph, Dy = G(Cy, Eg). The vertices of Dy are the channels that
define the routing subfunction R;. The arcs of Dg are the pairs of channels
(¢i,c¢;) such that there is either a direct or an indirect dependency from ¢; to

C]'.

Definition 11 A sink channel for a given interconnection network I and rout-

ing function R is a channel ¢; such that

r € N,¢; € R(si,x) =z =d,

In other words, all the flits that enter a sink channel reach their destination
in a single hop. As a result, there are no outgoing arcs from a sink channel in

any channel dependency graph, as can be easily seen from the definitions.

Definition 12 A configuration is an assignment of a set of flits to each queue,
all of them belonging to the same message (assumption 6). The number of flits
in the queue for channel ¢; will be denoted size(e;). If the first flit in the queue
for channel ¢; is destined for node ng4, then head(c;) = ny. If the first flit is not
a header and the next channel reserved by its header is ¢;, then next(¢;) = ¢;.
Let C, C C be the set of channels containing a header flit at their queue head.
Let Cy C C be the set of channels containing a data or tail flit at their queue
head. A configuration is legal iff
Ve € O size(e;) < cap(c;)
size(e;) > 0= ¢; € R(s;, head(c;))

For each channel, the queue capacity is not exceeded and all the flits stored

in the queue (if any), which have the same destination, can reach the channel

from the previous node using the routing function.

11



Definition 13 A deadlocked configuration for a given interconnection network
I and routing function R is a nonempty legal configuration verifying the fol-

lowing conditions:

head(c;) # d;

1) Ve, € O,
size(e;) >0 VYe; € R(d;, head(c;))
head(c; d;

2) Ve, € Oy ca (C)?é

size(next(c;)) = cap(next(c;))

In a deadlocked configuration there is not any flit one hop from its desti-
nation. Header flits cannot advance because the queues for all the alternative
output channels supplied by the routing function are not empty (see assump-
tion 6). As a particular case (for disconnected routing functions), the routing
function may not supply any output channel. Data and tail flits cannot ad-
vance because the next channel reserved by their message header has a full
queue. No condition is imposed to empty channels. It must be noticed that
a data flit can be blocked at a node even if there are free output channels to
reach its destination. Also, in a deadlocked configuration, there is no message

whose header flit has already arrived to its destination.

Definition 14 A routing function R for an interconnection network [ is
deadlock-free iff there is not any deadlocked configuration for that routing func-

tion on that network.

Two theorems are proposed. The first one is a straightforward extension
of Dally’s theorem for adaptive routing functions. The second one allows the
design of adaptive routing functions with cyclic dependencies in their channel
dependency graph. For each theorem, a sketch of the proof as well as the full

proof are given.

12



Theorem 1 A connected and adaptive routing function R for an interconnec-
tion network I is deadlock-free if there are no cycles in its channel dependency

graph D.

Proof sketch:

< As the channel dependency graph for R is acyclic, it is possible to es-
tablish an order between the channels of C'. As R is connected, the minimals
of that order are also sinks. Suppose that there is a deadlocked configuration
for R. Let ¢; be a channel of ' with a nonempty queue such that there are
no channels less than ¢; with a nonempty queue. If ¢; is a minimal (that is, a
sink) then the flit at the queue head can reach its destination in a single hop
and there is no deadlock. Otherwise, using the channels less than ¢;, the flit at

the queue head of ¢; can advance and there is not a deadlock.O
Proof:

< Suppose that there are no cycles in D. Then, one can assign an order to
the channels of C so that if (¢;,¢;) € E then ¢; > ¢;. Consider the channel(s)
¢; such that

VC]‘ € C, (Ci,cj) Qé FE

Such a channel ¢; is a minimal of the order. Let us prove that it is a
sink. If it were not a sink, as the routing function is connected, for any legal

configuration with a header flit stored in the queue head of ¢;

d; # head(c;) = e € Cle € R(d;, head(c;))

As the configuration is legal then

¢ € R(s;, head(c;)) = (¢i,cx) € E

13



contrary to the assumption that ¢; is a minimal. So, d; = head(c;) and ¢;

is a sink of D.

Suppose that there is a deadlocked configuration for R. Let ¢; be a channel
of C' with a nonempty queue such that there is not any channel less than ¢;
with a nonempty queue. If ¢; is a minimal, it is also a sink and then, all the
flits stored in its queue will be destined to d; and the flit at the head of the

queue for ¢; is not blocked. If ¢; is not a minimal then

size(cj) =0 Ye; € Cle; > ¢

Thus, the flit at the head of the queue for ¢; is not blocked, regardless it is

a header or a data flit, and there is no deadlock.O

There are some interesting considerations:

1. The theorem gives a sufficient but not necessary condition for an adaptive
routing function to be deadlock-free. As will be seen later, the existence
of cycles in the channel dependency graph does not imply the existence

of a deadlocked configuration.

2. For most networks and routing functions, even for static ones, only a
partial order between channels can be defined, based on the set . In

general, there will be more than a single sink in D.

3. As indicated above, in a legal configuration all the flits stored in a given
queue have reached it using the routing function. Otherwise, the theorem
cannot be proved. Consider, for instance, a configuration in which the
queues of all the sink channels in D are full of flits destined to nodes not

directly connected to those channels.

Theorem 2 A connected and adaptive routing function R for an interconnec-

tion network I is deadlock-free if there exists a subset of channels C; C C that

14



defines a routing subfunction Ry which is connected and has no cycles in its

extended channel dependency graph Dg.

Proof sketch:

<« The case C; = C 1s trivial. Otherwise C; C C. As the extended channel
dependency graph for Ry is acyclic, it is possible to establish an order between
the channels of C7. As R; is connected, the minimals of that order are also
sinks. Suppose that there is a deadlocked configuration for R. There are two

possible cases:

a) The queues for channels belonging to C are empty. As Ry is connected
and the header flits are at queue heads, each header can be routed using chan-

nels belonging to €y and there is no deadlock.

b) The queues for channels belonging to Cy are not empty. Let ¢; be a
channel of Cy with a nonempty queue such that there are no channels less than

¢; with a nonempty queue. Again, there are two possible cases:

bl) If ¢; is a minimal (sink) then the flit at the queue head is not blocked

and there is no deadlock.

b2) If ¢; is not a minimal, all the channels of C; less than ¢; will have empty

queues, existing three possible cases:

b2.1) If ¢; has a header at the queue head, it can be routed because R; is

connected and there is no deadlock.

b2.2) If there is a data flit at the queue head of ¢; and next(¢;) belongs to

(1, that flit can also advance.

b2.3) If next(c;) belongs to C'— ', we have to use the indirect dependencies
in the extended channel dependency graph. Let ¢; be the channel containing
the header of the data flits contained in ¢;. Then, it is possible to find a channel

¢; belonging to C; to route that header, because R; is connected. In that case,

15



there is an indirect dependency from ¢; to ¢; (¢; > ¢;), implying that ¢; is

empty and there is no deadlock.O
Proof:

< Suppose that there exists a channel subset ¢y C ' which defines a
routing subfunction R; and that R; is connected and there are no cycles in
Dg. If C; = C then Dg = D, because C' — C; = (). Thus, there is not any
cycle in D and R is deadlock-free by theorem 1. Otherwise Cy C C'. As there
are no cycles in Dy, one can assign an order to the channels of Cy so that if
(ci,c;) € Eg then ¢; > ¢;. Similarly to theorem 1, it can be proved that the

minimals of that order are also sinks.

Suppose that there is a deadlocked configuration for R. There are two

possible cases:

a) The queues for channels belonging to Cy are empty. Then, there will be
channels belonging to €' — Cy with header flits at their queue heads. Let ¢; be

one of those channels. As R; is connected then

head(c;) # d; = 3c¢; € C1/c; € Ri(d;, head(c;)) =
de;j € Cle; € R(d;, head(c;))
Also size(¢;) = 0 and R does not have a deadlock.

b) The queues for channels belonging to Cy are not empty. Let ¢; be a
channel belonging to C'; with a nonempty queue such that there are no channels

less than ¢; with a nonempty queue. Again, there are two possible cases:

bl) ¢; is a minimal. As shown above, it is also a sink and then, all the flits
stored in its queue will be destined to d; and the flit at the head of the queue

for ¢; 1s not blocked.

b2) ¢; is not a minimal. Then

16



size(e;) =0 Ve; € Cifei > ¢

existing three possible cases:

b2.1) ¢; has a header at the queue head. Taking into account that Ry is

connected

head(c;) # d; = 3c¢; € C1/cj € Ri(d;, head(c;)) =
de; € Cle; € R(d;, head(c;))

Also
¢ > ¢; = size(e;) =0

and R does not have a deadlock.

b2.2) ¢; has a data flit at the queue head, not destined to d;, and next(c;)
belongs to ;. Then

¢; > next(c;) = size(next(c;)) =0

and R does not have a deadlock.

b2.3) ¢; has a data flit at the queue head, not destined to d;, and next(c;)
belongs to C' — . Let ¢1,¢3,...,¢cr € C — Cy be the set of channels reserved
by the message after reserving ¢;, ¢, containing the message header. Those
channels belong to C' — 'y, because in C there are no channels less than ¢;

with a nonempty queue.

¢ € Ri(si, head(cy))
der,eayiie0 €C —Cif % ¢ € R(d;, head(cy))
Cm+1 € R(dy,, head(cr)), m=1,...

17



As R; 1s connected

head(cy) # dp = 3c¢; € C1/¢; € Ri(dy, head(cy)) =
dej € Clej € R(dg, head(cy))

Thus, there is an indirect dependency from ¢; to ¢; (¢; > ¢;), implying that
size(e;) = 0. Then, the header at the queue head for ¢ is not blocked and R

does not have a deadlock.O

Again, there are some interesting considerations:

1. The basic idea behind theorem 2 is that one can have an adaptive routing
function with cyclic dependencies between channels, provided that there
are alternative paths without cyclic dependencies to send a given flit
towards its destination. As messages are several flits long, the extended
channel dependency graph must be used to take into account the indirect

dependencies.

2. If it were not necessary to empty a queue before accepting the header
of another message, then there would be no guarantee that header flits
occupy the queue heads and the theorem would not be valid. Consider,
for instance, a set of four or more channels with cyclic dependencies
between them and a configuration in which the queues of those channels
are full, each one containing the tail of a message followed by a fragment
of another message destined two nodes away. The rest of that message
occupies part of the next channel queue and so on. That configuration
is deadlocked because the header flits do not occupy the queue heads
and cannot be routed using the alternative paths offered by the routing

function.

3. If the routing function were defined as R : C' x N — P(C'), then the theo-

rem would not be valid. Consider, for instance, two subsets of ', namely,
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Cy and C' — (', and a routing function defined in such a way that all the
messages arriving to a given node through a channel belonging to C' — C}
are routed through a channel belonging to the same subset. Suppose that
there are cyclic dependencies between the channels belonging to C' — €
and that C'; defines a routing subfunction which is connected and has no
cycles in its extended channel dependency graph. That routing function

is not guaranteed to be deadlock-free.

4. The routing subfunction R; is not necessarily static. It can be adaptive.

3 Design methodologies

In this section we propose two methodologies for the design of deadlock-free
adaptive routing algorithms. The generation of static deadlock-free routing
algorithms requires restricting routing by removing arcs from the channel de-
pendency graph D to make it acyclic. If it is not possible to make D acyclic
without disconnecting the routing function, arcs can be added to D by split-
ting physical channels into a set of virtual channels, each one requiring its own
buffer. This technique was introduced by Dally [10] to remove cycles from the
channel dependency graph.

However, a physical channel can be split into more virtual channels than the
ones strictly necessary to avoid deadlock [6, 11]. In such a case, the router can
choose among several channels to send a message, reducing channel contention
and message delay. Alternatively, more physical channels can be added to
each node, increasing the network bandwidth and allowing the design of fault-

tolerant adaptive routing algorithms.

A design methodology must supply a way to add channels following a regu-

lar pattern, also deriving the new routing function from the old one. A design
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methodology based on theorem 1 has been presented in [11]. Although the
algorithms designed with it behave better than the static ones, a higher de-
gree of freedom can be obtained basing the design on theorem 2. Here we
will present some more general methodologies for the design of deadlock-free

adaptive routing algorithms.

Methodology 1 This methodology is intended to increase the number of valid
alternative paths to send a message towards its destination without increasing
the number of physical channels. In general, it will reduce channel contention

and message delay. The steps are the following:

1. Given an interconnection network [y, define a minimal path connected
static routing function R, for it, following Dally’s methodology and split-
ting physical channels into virtual ones, if necessary, to guarantee that R;
is deadlock-free. Alternatively, define a minimal path connected adap-
tive routing function R; and selection function Si, verifying that Ry is

deadlock-free using theorem 2. Let 'y be the set of channels at this point.

2. Split each physical channel into a set of additional virtual channels. Let
C be the set of all the (virtual) channels in the network. Let C,, be the
set of output channels from node x belonging to a minimal path from x

to y. Define the new routing function R as follows:
R(z,y) = Ri(z,y) U (Cpy N (C = C1)) Y,y e N

that is, the new routing function can use any of the new channels be-
longing to a minimal path or, alternatively, the channels supplied by R;.

The selection function can be defined in any way.

3. Verify that the extended channel dependency graph for R; is acyclic. If
it is, the routing algorithm is valid. Otherwise, it must be discarded,

returning to step 1.
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Step 1 establishes the starting point. We can use either a static or adaptive
routing function as the basic one. Dally’s theorem and theorem 2 can be used
to verify that the basic function is deadlock-free. Step 2 indicates how to
add more (virtual) channels to the network and how to define a new adaptive
routing function from the basic one. Step 3 verifies whether the new routing
function is deadlock-free or not. If the verification fails, the above proposed
methodology may lead to an endless cycle. Then, it does not supply a totally
mechanical way to design adaptive routing algorithms. Fortunately, all the
algorithms we have designed up to now have passed the verification step. So,

we wonder whether the step 3 is really necessary. This is still an open question.

The implementation of adaptive routing algorithms based on this method-
ology requires that physical channels are split into virtual ones. Dally [8] has
described the implementation of virtual channels. That description is not re-
stricted to the case of static routing algorithms. Then, all the implementation

details described in [8] are applicable to this case.

It must be noticed that the methodology can also be applied by adding
physical channels instead of virtual ones. The resulting network will be faster
and more expensive, but the effective fault-tolerance will not increase. The
reason is that the new routing function relies on the set of channels C; to

guarantee that it is deadlock-free.

Methodology 2 This methodology is intended to increase fault-tolerance in a
network. It will add physical channels, instead of splitting channels into virtual
ones. Of course, it will also reduce channel contention and message delay. The

steps are the following:

1. Given an interconnection network [y, define a static or adaptive con-

nected routing function Ry for it, following Dally’s methodology, the
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above proposed methodology or verifying that R is deadlock-free using
theorem 2. Let (] be the set of channels at this point.

2. Duplicate each physical channel. If the original channel was split into
several virtual channels, the duplicated channel will also be split into the
same number of virtual channels. Let C5 be the set of duplicated channels
and C' the set of all the channels. Let Ry be a routing function identical to
Ry, but defined using C5 instead of . Define the new routing function

R as follows:
R(z,y) = Ri(x,y)U Ry(x,y) Va,y e N

that is, the new routing function can use any of the channels supplied
by both, Ry and R;. Define the selection function giving to the channels
belonging to C'; and € the same probability of use.

Again, step 1 supplies the basic routing function and step 2 adds alternative
paths. As can be easily seen, Ry does not add any cycle to the extended channel

dependency graph for Ry. Then, R is deadlock-free.

The duplication of channels defines an interconnection network [, =
G/(N, Cy), which is identical to I3 and shares the same set of nodes N. However,

Cy and C; are disjointed sets. R, has the same properties as R;. Also,

Ri(z,y)
Ry(z,y)

R(z,y)NnCy; Va,ye N
R(z,y)NCy Yo,y e N

So, one can find, at least, two subfunctions of R, which allow us the appli-
cation of theorem 2 to guarantee that R is deadlock-free. Then, the theorem

can be applied even if we remove some channels either from C; or from Cs.

However, the set of nodes is the same for I; and I,. It seems that the

proposed methodology is not tolerant to node faults. But, provided that R;
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and R, are adaptive routing functions, in general there will be alternative
paths to reach the destination node (assuming that it is not the faulty one).
Of course, some mechanism is needed to identify faulty channels, marking them
as busy, and faulty nodes, marking all the channels connected to them as busy
and avoiding to send messages to them. It must be noticed that if there is not

any faulty node, the information about faulty channels can be recorded locally.

Finally, step 2 can be applied several times, duplicating each channel as

many times as desired.

The proposed methodologies are very simple to apply. They illustrate the
power of the theorems. More complex design methodologies can be defined

based on the same theoretical background.

As an example, we will present a design based on the above proposed
methodologies. Consider a binary n-cube. We will study three cases: a) apply-
ing methodology 1; b) applying methodology 2; c) applying methodologies 1
and 2.

a) For the step 1 we can use the conventional static routing algorithm for
the binary n-cube. It forwards messages crossing the channels in order of

decreasing dimensions. It is well known that this routing function is connected

and deadlock-free.

For the step 2, consider that each physical channel ¢; has been split into &
virtual channels, namely, a;1,a;2,...,a;%-1,b;. Let C; be the set of b channels.
The algorithm obtained applying the step 2 can be stated as follows: Route
over any useful dimension using any of the a channels. If all of them are busy,
route over the highest useful dimension using the corresponding b channel. A

useful dimension is one that forwards a message nearer to its destination.

Fig. 1 shows the extended channel dependency graph for R; on a 3-cube.
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Figure 1: Extended channel dependency graph for R
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Black circles represent the unidirectional channels belonging to €y and are
labeled as 627, where 7 and j are the source and destination nodes, respectively.
As a reference, channels are also represented by thin lines, horizontal and
vertical ones corresponding to dimensions 0 and 1, respectively. Also, the
nodes of the 3-cube have been labeled as nk, where k is the node number.
Thick lines represent channel dependencies, dashed arrows corresponding to
indirect dependencies. It can be seen that the graph is acyclic. Then, R is
deadlock-free. It must be noticed that the channel dependency graph for R

(not shown) has cycles.

As virtual channels share a single physical channel, the former algorithm
effectively allows messages to cross the physical channels corresponding to the
n-cube dimensions in any order, increasing the number of alternative paths and
decreasing network contention. The performance of that algorithm has been

evaluated by simulation. The results are presented in the next sections.

b) Assume that step 1 is applied as in case a), obtaining the conventional

static routing algorithm.

For the step 2, consider that each physical channel ¢; has been duplicated,
obtaining a new channel g;. The algorithm obtained applying the step 2 can
be stated as follows: Route over the highest useful dimension using the corre-

sponding ¢ or g channels.

That algorithm increases the tolerance to faulty channels, but it does not

take advantage of alternative minimal paths.

c¢) Assume that we apply the methodology 1, obtaining the algorithm pro-
posed in case a). That algorithm constitutes the step 1.

For the step 2, consider that each physical channel ¢; has been duplicated,

obtaining a new channel g;, which is also split into k virtual channels, namely,
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€i1,€i2,---5€i k-1, Ji- The algorithm obtained applying the step 2 can be stated
as follows: Route over any useful dimension using any of the a or e channels.
Alternatively, route over the highest useful dimension using the corresponding

b or f channels.

That algorithm has the advantages of the previous ones at the cost of a

slightly more complicated circuitry.

The number of virtual channels per physical channel only affects the per-
formance. We will comment on this in the next sections. Also, as stated
in section 2, the selection function only affects the performance. It is not
necessary to give a higher priority to the channels in the acyclic dependency
subgraph, because when the remaining channels are busy, those ones will be
used. In general, a higher performance is achieved when the channels in the
cyclic dependency subgraph are given a higher priority, because they usually
offer a larger number of alternative paths. Moreover, when several routing
options are available, selecting a virtual channel in such a way that channel

multiplexing is minimized usually reduces the average message delay.

Finally, the selection function can be extended by including additional in-
formation in its domain. For instance, for the algorithm obtained in case a),
it is possible to favor the a channels connecting to the neighbor with a higher
number of free channels in useful dimensions. This selection function is in-
spired in an algorithm proposed in [25], the main difference being that our

algorithm does not require a complex mechanism to abort messages because it

is deadlock-free.

26



4 Evaluation methodology

The routing algorithm obtained in case a) supplies a large number of routing
options to forward a message toward its destination. Also, the multiplexing
of physical channels reduces channel contention by allowing several messages
to share a channel. However, each virtual channel only has a fraction of the
total bandwidth, increasing the term L/B. So, there are opposite effects and
the behavior of the new routing algorithm is not intuitive, being necessary
to evaluate its performance under different load conditions. In what follows,
this algorithm will be referred to as adaptive algorithm. The static routing
algorithm for the binary n-cube (e-cube) has been evaluated under the same
conditions for comparison purposes. For this algorithm we have also analyzed
the effect of the virtual channel flow control mechanism proposed in [6], showing

the effect of channel multiplexing.

Once the topology has been selected, the algorithm performance depends on
several parameters, including channel bandwidth, network size, message traffic,
message length and the number of virtual channels per physical channel. Let

us analyze that dependency in order to select the conditions for the evaluation.

Firstly, we are interested in comparing different routing algorithms rather
than obtaining absolute performance measures. Then, channel bandwidth is
not important, provided a uniform criterion is used. The criterion we have
used consists of using a constant channel bandwidth equal to one flit per clock

cycle.

In general, network size has a considerable influence on network perfor-
mance. Then, taking into account the maximum sizes of current multicomput-
ers, we have mainly evaluated networks with 4096 nodes, also obtaining some

results for networks ranging from 64 to 4096 nodes. It is especially important
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to see whether the routing algorithms scale well with network size.

Message traffic and message length are application and operating system
dependent. As these parameters are very difficult to model, we have used a
uniform distribution for message destination, trying to model the worst case.
For each routing algorithm, the flit generation rate ranges from a small value
to saturation. For message length, a constant value equal to 16 flits has been

used.

The number of virtual channels per physical channel is a design parameter.
We have analyzed the effect of this parameter, holding the total queue size per

physical channel constant, as proposed in [6].

Instead of analytic modeling, simulation has been used to evaluate the
routing algorithms, because the model can more faithfully represent a hardware
implementation, taking into account details like channel multiplexing, partial
buffering and delays in blocked messages. The simulation methodology we have

used is summarized in the following sections.

4.1 Multicomputer model

Our simulator models different topologies and network sizes up to 16K nodes.
Each node consists of a processor, a crossbar, a router and several channels.
Processors can generate messages at any rate. Message format will be described
below. Message reception is buffered, allowing the storage of messages inde-
pendently of the processes which have to receive them. The simulator takes
into account memory contention, limiting the number of messages that can be
sent or received simultaneously. Binary n-cubes have a large number of chan-
nels in the network bisection, limiting channel bandwidth. Because of that, we

have assumed that up to four messages can be sent or received simultaneously.
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The crossbar allows multiple messages to traverse a node simultaneously
without interference. It takes one clock cycle to transfer a flit from an input

queue to an output queue.

The router decides when to transfer a message, determining the output
channel as a function of the destination node, the current node and the output
channel status. Wormhole routing is used. The router can only process a
message header at a time. If there is no contention for the router, it takes
one clock cycle to compute the output channel. Otherwise, access is round
robin. When a message gets the router, but cannot be routed because all the

alternative output channels are busy, it must wait until its next turn.

Physical channels are split into up to four virtual channels. Each virtual
channel has queues of equal size at both ends. The total queue size associated
to each physical channel is held constant. Virtual channels are assigned the
physical channel cyclically, only if they can transfer a flit. So, channel band-
width is shared among the virtual channels requesting it. It must be noticed
that blocked messages and messages waiting for the router do not consume any

channel bandwidth.

4.2 Message generation

A message consists of a header, some data and a tail. For the sake of simplicity,
we have assumed that the header occupies a single flit, thus a message may be

routed as soon as the first flit arrives to a node.

The message generation rate is constant and the same for all the nodes.
After generating a message, each node waits a random number of clock cycles
before generating the next message. The number of cycles is uniformly dis-

tributed between two simulation parameters. The inverse of the mean value of
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these parameters will be referred to as message generation rate. The product
of the message generation rate by the message length is the flit generation rate
and can be measured in flits per node and clock cycle. As indicated above, up
to four messages are allowed to leave each node simultaneously. If there are

four outgoing messages and a new message is generated, it is queued.

Once the network has reached a steady state, the flit generation rate is
equal to the flit reception rate, unless the network is saturated. In this case,
both rates differ and source queues grow. We will refer to the flit reception
rate as traffic, because it is the actual traffic through the network. It must be

noticed that traffic is not an independent variable.

4.3 Performance measures

The most important performance measures are delay and throughput. Delay
is the additional latency required to transfer a message with respect to an
idle network. It is measured in clock cycles. The message latency lasts since
the message is introduced in the network until the last flit is received at the
destination node. An idle network means a network without message traffic

and, thus, without channel multiplexing.

Throughput is usually defined as the maximum amount of information de-
livered per time unit. However, the network may be unstable when traffic
reaches the maximum value. In this case, increasing the flit generation rate
may reduce the traffic, as will be seen in the next section. Then, throughput
is defined as the saturation traffic. As we have normalized channel bandwidth,
throughput is measured in flits per node and clock cycle, making it independent

of network size.
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4.4 Validation

Each simulation has collected data from 100000 messages, discarding the mes-
sages corresponding to a transient period required to reach a steady state. The
number of discarded messages ranged from 50000 to 240000, depending on the
traffic. After the transient period, the fluctuation of the performance measures
for 4096-node networks was lower than 2.4%. Several simulations were rerun

to test the reproducibility. The performance measures did not change by more

than 1%.

5 Simulation results

The first simulation results for the adaptive algorithm proposed in section 3
(case a) were presented in [12], showing an important improvement over the
static algorithm for 16-flit and 256-flit messages. However, those results did
not consider partial buffering nor memory contention. Also, a single message
was allowed to leave a node at a time, preventing network saturation. Then,
the throughput gain achieved by the adaptive algorithm was not properly dis-
played. The simulation results presented in this paper overcome the former
limitations, also analyzing the effect of the number of virtual channels per

physical channel.

Firstly, we will compare the static and adaptive routing algorithms on a
binary 12-cube under the same conditions. The adaptive algorithm has been
simulated with three virtual channels per physical channel, while the static
one has been simulated with one and three virtual channels. Fig. 2 shows the
average message delay versus traffic for 4096 nodes. The independent variable

is the flit generation rate, traffic and average message delay being measures.
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The use of virtual channels drastically increases the throughput achieved
by the static algorithm. This result was already pointed out by Dally [6].
Nevertheless, the adaptive algorithm still improves the throughput by 35%,
using the same number of virtual channels. Moreover, the adaptive algorithm
achieves an important reduction in message delay with respect to the static
algorithm. For the same number of virtual channels, the average delay for
the adaptive algorithm is as much as 35% of the delay obtained for the static
algorithm. Also, the standard deviation of message delay (not shown) is smaller

for the adaptive algorithm.

It is interesting to see the effect of the number of virtual channels per phys-
ical channel. Fig. 3 also shows the average message delay versus traffic for 4096
nodes. The curves correspond to the static and adaptive algorithms, both with
two, three and four virtual channels per physical channel. Again, traffic and
average message delay are measures. Then, the curves do not represent func-
tions. As can be seen, there are two distinct average delay values corresponding

to a range of traffic values for one of the curves.

For the static algorithm, increasing the number of virtual channels also
increases throughput. However, this increment is small (less than 4%) when
the fourth virtual channel is added. This addition also increases the average
message delay by as much as 22%. So, it seems that three virtual channels per
physical channel is the best choice. This behavior agrees with the one presented
by Dally in [8] for a 16-ary 2-cube network. This similarity is interesting, taking

into account the very different number of dimensions of both networks.

For the adaptive algorithm, the influence of the number of virtual chan-
nels is similar. The average message delay also increases by as much as 22%
when the fourth virtual channel is added. However, there are two important

differences. The most noticeable one consists of a drastic increase in message
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delay and a reduction in traffic when the adaptive algorithm with two virtual
channels reaches saturation. The second difference refers to throughput. It
does not increase when the fourth virtual channel is added. Again, three vir-
tual channels per physical channel seems the best choice. These results will be

explained later.

It is also interesting to know whether the routing algorithms scale well
with network size. Fig. 4 shows the throughput as a function of network size.
For the range of sizes we have analyzed, throughput decreases by 32% for the
static algorithm. When virtual channels are used, throughput only decreases
by 14%. The adaptive algorithm scales even better, throughput decreasing by
as much as 6%. Additionally, the use of virtual channels in the static algorithm
increases throughput by a factor ranging from 1.8 to 2.2. Also, the adaptive
algorithm increases throughput over the static algorithm with a single virtual

channel by a factor ranging from 2.2 to 3.

Finally, Fig. 5 shows the average message delay as a function of network
size, holding traffic constant. This figure clearly shows that the static algorithm
with a single virtual channel does not scale well with network size. However,
when virtual channels are used, message delay increases almost linearly with
the logarithm of the network size. Message delay increases by 14% each time
the network size is doubled. This result is improved by the adaptive algorithm,
delay increasing linearly by 3.3% each time the network size is doubled. It must
be noticed that these results have been obtained holding channel bandwidth

constant while network size increases.

Let us analyze the former results. The static algorithm with a single virtual
channel has no choice, because the routing function supplies a single channel.
As network traffic increases, the probability for a message header of finding

a free output channel decreases, increasing channel contention and message
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delay. Moreover, when a message is blocked, the bandwidth of all the channels
it has reserved is wasted. This is the main reason why throughput is relatively
small. Also, as network size increases, there are more messages flowing through

the network, increasing channel contention and message delay.

As stated above, the use of virtual channels has two opposite effects: it re-
duces channel contention by supplying more routing options, but it can increase
message delay because channel bandwidth is shared among the requesting mes-
sages. When traffic is intense, the reduction in channel contention has a larger
effect than bandwidth sharing. Moreover, the virtual channel mechanism has
an important advantage. When a message is blocked, the virtual channels re-
served by it do not consume any channel bandwidth. As a consequence, the use
of virtual channels increases throughput considerably and message delay scales
well with network size. However, adding more virtual channels yields diminish-
ing returns. As pointed out by Dally [8], adding virtual channels while holding
storage constant increases the usage of virtual channels. For instance, when
the static algorithm with four virtual channels reaches saturation, messages in
transit occupy 100000 virtual channels. The same algorithm with three virtual

channels only has 78000 busy channels.

On the other hand, as soon as a single channel occupied by a message is
multiplexed, the whole message is slowed-down. An uneven distribution for
channel multiplexing produces bottlenecks. As a consequence, the bandwidth
of the less multiplexed channels is partly wasted. Then, for low flit generation
rates, adding virtual channels increases message delay. This increment is small
because messages are short and only a few flits are affected by bottlenecks.
Also, message headers must be routed, introducing another bottleneck. Rout-
ing operations, together with partial buffering, partly hide the effect of uneven

channel multiplexing until the message header reaches its destination. For long
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messages, the negative effects of channel multiplexing are more noticeable, as

shown in [12].

The adaptive algorithm also uses virtual channels. Thus, it inherits the
basic properties of this flow control mechanism. However, it permits a message
to cross the n-cube dimensions in any order. Then, the routing function of-
fers more choices, reducing channel contention and message delay accordingly.
Also, the adaptive algorithm is able to use any minimal path, increasing chan-
nel utilization from 70% (static algorithm with four virtual channels) to 90%
(adaptive algorithm with three virtual channels). As a consequence, through-
put also increases. Moreover, the selection function helps in reducing channel
multiplexing. First, it looks for a virtual channel belonging to a free physi-
cal channel. Also, it assigns the a channels a higher priority. Then, channels
are only multiplexed when network traffic is intense, considerably reducing the

negative effects of virtual channels.

As pointed out before, there is an important performance degradation when
the adaptive algorithm with two virtual channels reaches saturation. We have
carefully analyzed this case. It must be noticed that theorem 2 allows the
existence of cyclic dependencies between channels. Deadlocks are avoided by
relying on a channel subset to drain messages involved in cyclic dependencies.
If the number of virtual channels per physical channel is insufficient, channel
contention increases the number of blocked messages when traffic is intense. It
is possible to reach a situation such that messages block cyclically faster than
they are drained. In this situation, some messages remain blocked for long
periods, increasing message delay drastically. Also, most channels are occupied
by blocked messages, reducing the effective network bandwidth. Throughput
is reduced accordingly. This is the price to pay for allowing the existence of

cyclic dependencies between channels. Fortunately, this problem disappears
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when more virtual channels are added.

We also pointed out before that adding a fourth virtual channel to the adap-
tive algorithm does not increase throughput, as opposed to the static algorithm.
The adaptive routing function supplies several routing options, reducing chan-
nel contention with respect to the static algorithm. Then, adding more options
does not reduce contention significantly. It seems that three virtual channels
per physical channel is the best option. The existence of an optimal number
of virtual channels per physical channel has already been suggested in [11].
However, that optimal value may change for another distribution of message

destination. Currently, we are working on this subject.

Finally, the number of choices at each routing step increases with net-
work size, almost nullifying the negative effect produced by a higher traffic.
Because of that, the adaptive algorithm scales very well with network size.
Unfortunately, it is not feasible to implement binary n-cubes holding channel

bandwidth constant as network size increases.

6 Conclusions

The theoretical background for the development of deadlock-free adaptive rout-
ing algorithms has been proposed for wormhole networks. Firstly, a straight-
forward extension of Dally’s theorem has been presented, allowing the design of
adaptive algorithms. However, the absence of cycles in the channel dependency

graph is too restrictive.

Theorem 2 gives a more flexible condition for the development of adap-
tive algorithms, by allowing the existence of cycles in the channel dependency
graph. The only requirement is the existence of a channel subset which de-

fines a connected routing subfunction with no cycles in its extended channel
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dependency graph.

To simplify the application of the theorems, two design methodologies have
been proposed. The first one supplies adaptive algorithms with a high degree
of freedom. The second one gives a way to design fault-tolerant routing algo-
rithms. Both methodologies can be easily combined. Also, an example showing
three alternative ways to apply the proposed design methodologies is presented.

This example derives new adaptive routing algorithms for the binary n-cube.

Finally, one of those routing algorithms has been evaluated by simulation,
showing an important reduction in message delay with respect to the static
algorithm, even with the same number of virtual channels. Throughput also
increases considerably. Moreover, the new algorithm scales very well with net-
work size, showing an almost null increment in message delay as size increases.

Finally, the effect of the number of virtual channels has been analyzed.
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