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Abstract

Severatache-cohentshared-memorgnultiprocessorbhavebeen
develogdthatarescalableandoffer averytight couplingbetween
the processingesources.They are thereforequite attractivefor
useascomputeserversfor multiprogrammingand parallel appli-
cationworkloads. Processchedulingand memorymanagement,
howeve, remain challengingdue to the distributedmain mem-
ory found on suchmachines.This paperexamineghe effects of
OS schaluling and pagemigration policies on the performance
of suchcomputeservers.Our experimentsare doneon the Stan-
ford DASH, a distributed-memorgache-cohentmultiprocessar
We showthat for our multiprogrammingworkloadsconsistingof
sequetial jobs, the traditional Unix schedulingpolicy doesvery
poorly. In contrasta policy incorporatingclusterandcacheaffin-
ity alongwith a simplepage-migratioralgorithmoffersupto two-
fold performancemprovement.For our workloadsconsistingof
multiple parallelapplicationswe comparespace-strng policies
that divide the processs amongthe applicationsto time-slicing
policies such as standardUnix or gang schedling. We show
that spae-staringpoliciescanachievebetterprocessoultilization
dueto the operatingpoint effect, but time-slicing policies benefit
stronglyfrom userlevel datadistribution. Our initial experience
with automaticpagemigration suggestshat policies basedonly
on TLB missinformation can be quite effective, and useful for
addresimg the datadistribution problemsof space-saring sched-
ulers.

1 Introduction

While small-scale shared-memorymultiprocessorshave been
availablefor alongtime [17, 18], large-scaleshared-memoryna-
chineshaveonly recentlybecomeavailable[15, 13]. To achieve
scalabilitythesemachineshavedistributedmain memoryanduse
a scalalte interconnectand directory techniquego provide low-
overhed cache-cheremn accesgo shareddata. The fine-grained
sharingallowed by cache-cberment non-uniform-memonaccess
(CC-NUMA) machinescan significantly broadenthe appealof
parallelcomputing,by enablingsuchmachinego performwell as
cost-efectivecompute-serverfor both general-purposmultipro-
grammingworkloadsaswell asfor moretraditional supercomput-
ing workloads.

Despitethe relatively low-overheaccommunicatiorsupported
by CC-NUMA machinesachievinghigh processoutilization for
realworkloadss nottrivial. Therearetwo mainproblems.Firstis
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the dynamicallyvarying and mixed natureof multiprogramming
workloads. For example,short jobs may be mixed with long-
running jobs, compute-intensivgobs requiring memory locality
may be mixed with 1/O intensivejobs, andwhile at one moment
theremay only be a singlejob in the system,a shorttime later
there might be a substantialoverload. Each of thesedifferent
jobs/situationgpotentially require the systemscheduleto make
complexchoicesto get high performance.

The secondmain problem is managemenof the complex
memoryhierarchypresenin CC-NUMA machines While cache-
hits take only a single clock cycle, a miss servicedfrom local
memory may take severaltens of cycles, while a remote miss
may take over a hundredcycles. The schedule facescomplex
choicesin decidingwhetherto migrate processgor datain or-
der to improve locality. Given thesecharacteristicsit is hardly
surprisingthat the schedulingpolicies of systemswith uniform
memory accesdimes perform poorly in scalablemultiprocessor
environmentd25], andthat new schedulingand pagemigration
policiesare needed.

Several schedulingand page migration policies for multi-
processorsystemshave beenexploredin the literature. Com-
mon schedulingapproachginclude cacheaffinity [12, 22|, gang
scheduling[6, 9, 10, 19], processorsets[3], and processcon-
trol [26] or schedulemctivations[1]. Thesepolicieshaveso far
beenevaluatedonly in the contextof small bus-basednultipro-
cessorsvith uniformmemoryaccessimes[1, 24, 25. Substantial
work on pagemigration policies hasalsobeendone[4, 14], but
the target of this work hasbeenNUMA machinesthat are not
cachecoherentjike the BBN Butterfly. Theseearlierresultsfrom
small-scalebus-basednachinesand non-cacke-coterentNUMA
machinesunfortunatelyaredifficult to extrapolatdo CC-NUMA
multiprocessors.

In this paper we evaluateschedulingand page migration
policies using a recent CC-NUMA multiprocessar the Stan-
ford DASH [15]. We target two different multiprogrammed
environments—thérst consistingprimarily of sequetial applica-
tions, andthe secondconsistingof parallelapplications.We have
modifiedthe kernelto implementseveralschedulingooliciesand
a simple pagemigration policy, andwe perform a detailedevalu-
ation of the effectivenes®f each.

Our resultsfor workloadsconsistingof sequentiahpplications
showthataffinity schedulingcombinedwith a simplepagemigra-
tion policy improvesthe performanceof individual applications
by asmuchasa factor of two over the standardJnix scheduler
While previousstudieson bus-basé machineshowedonly mod-
estgainswith affinity schedling, we observemuchlarger gains
becausef the higher costof cachemissesin a CC-NUMA ma-
chine. Our resultsfor parallel applicationsshow that while the
more specializedime-slicing and space-partitioningpolicies out-
performthe genericUNIX policy, thereis no clearwinneramong
them. The winning policy appeardo be applicationspecificand
dependson importanceof datadistribution. Finally, our initial
experiencavith pagemigrationfor parallelapplicationgndicates



that we may be ableto use TLB-missesinsteadof cache-misses
for implementingsuchpolicies on real multiprocessors.

The rest of the paperis organizedas follows. We presenta
brief overviewof variousschedling and pagemigrationpolicies
in Section2. Wethendescribeghearchitecturehatwe useandour
evaluationframeworkin Section3. We analyzesequentialvork-
loadsin Section4 and parallelworkloadsin Section5. Finally,
we concluce in Section6.

2 Background and Related Work

In this subsetion we briefly review pastproposaldor schedling
and pagemigration policies. Later sectionsof the paperdiscuss
our implementatiorof thesepolicies.

2.1 Scheduling Policies

Affinity Scheduling: In a traditional multiprocessomperat-
ing sydem, processemay frequentlymovebetweerprocessoras
partof load balancingcausinghemto continuallyneedto reload
their stateinto new caches.Furthermore multiple processesan
be time-sharedn the sameprocessn resultingin cacheinterfer-
ence.Cacheaffinity scheduling22, 12, 24] attemptgo reschedle
a procesn the processoit last used,therebyreducingprocess
migrationandcachenterference Theeffectivenessf cacheaffin-
ity hasbeenevaluatedhroughanalyticalstudies[22, 21], simu-
lation [12], andactualimplementationg24, 8, 27]. Experiments
on bus-baed multiprocessorg24], however show that realistic
applicationsachieveonly moderategains (less than 10%) from
affinity scheduling. We will show that the gains can be much
largeron CC-NUMA machines.

Gang Scheduling: For parallel applications Ousterhou{19]
propose the gangschedulingor coschedling approacthin which
all the processesf a parallelapplicationare scheduledo run at
the sametime. This improvesthe synchronizatiorand communi-
cationbehaviorof applicationsparticularlythoseusingbusy-wait
synchonization. However two-phasesynchronization—wire a
processpinsfor awhile trying to acquirethelock, andthenblocks
if thelock is still unavailable—ad#ers a much morerobustalter-
nativewithout any lossof performancemakingthis issuelargely
irrelevant(all of our applicationsusedtwo-phasdocking). Exper-
imental evaluationsof gangschedulinghavefound only limited
gains(rangingfrom -5 to 15% [25]) for multiprogrammedwvork-
loads. However thesestudieshavebeenperformedon bus-based
machineswe explorethe usefulnesof the gang-scheadling ap-
proachon CC-NUMA machines.

Processor Sets: In contrastto the abovetime-multiplexing
approabes the processosetstechnique[3] spacepartitionsthe
machine.The machineis partitionedinto setsof processorsgach
of which executes single parallel application. This reduceghe
cacheinterferencebetweenmultiple applicationsrunning on the
sameprocessarUsingprocessosetscanalsoensurdhatdifferent
applicationsgget an equalportion of the machine.(In contrast,n
agangscheduleanachine anapplicationthathasmoreprocesses
getsalargerfractionof themachine.)Suchequi-partitioningof re-
sourcehasbeenshownto reduceaverageesponséime [16, 12].
In contrastto previoussimulation-basedtudies,we evaluatethe
performancef processpbsetsandits interactionwith the NUMA
memoryhierarchyon a real machine.

Proces Control/Schedder Activations: The speedup
achievel by a parallelapplicationtypically dropsoff with increas-
ing numbe of processorsreflecting the penaltiesof increased
communic#on, synchronizationand load imbalance. A paral-
lel apgication thereforeexecuteamore efficiently (i.e., achieves

better processbp utilization) with fewer processors.This is la-
beledthe operatingpoint effect. The processcontrol/scheduler
activationsapproache§26, 1] are an extensionof processpsets
in which a parallel application dynamically adjustsits number
of active processeso matchthe numberof physicalprocessts
assignedo its processorset. As a result the applicationexe-
cutesat a more efficient operatingpoint alongits speedugurve.
Processcontrol is most easily exploited by parallel applications
written usingthe task-queuenodelof parallelism[1, 5], in which
userlevel tasksare schedulednto a numberof kernelprocesse.
Adjustmentsto the numberof active processg canthereforebe
embeddedvithin the runtime systembecomingransparento the
applicationprogrammer Evaluationsof thesepolicies[11, 1] on
bus-basednachinesuchas SGI workstationsandthe DEC Fire-
fly report significantperformanceémprovementghat rangefrom
8-22%. We exploretheinteractionof this approactwith themem-
ory hierarchyof CC-NUMA machines.

2.2 Page Migration Policies

Pagemigration policies have previously beenstudied primarily
in the contextof non-cache-cadrentNUMA machinessuchas
the BBN Butterfly. Thesepolicies are basedon the pagefault
mechanismandmigrate a pageto the local memoryof the pro-
cessotthatreferencest. However pageshatare actively shared
betweerseveralprocessts may be repeatedlymigratedfrom one
processdis memoryto another To avoid this ping-pongingef-
fect, pagesare usually frozenin memoryafter a certainnumber
of migrations,and defrostedafter a timeout period so that they
are againeligible for migration. Severalvariationsof this basic
strategyhavebeenstudied[4, 14], and havereportedsignificant
gains.

In contrastwe focuson the usefulnes®f automaticpagemi-
gration on cache-conentNUMA machines.Furthermorewhile
pagemigrationis mostbeneficialfor pageswith high cachemiss
countsthisinformationis not availableto the operatingsystemon
currentmachines.We thereforealso explorethe effectivenesof
usingTLB misscountsasan approximatiorto cachemisscounts
for making pagemigrationdecisions.

3 Experimental Environment

Our experimentsare performedon a directory-basedCC-NUMA

multiprocessarthe StanfordDASH [15]. We usea machinewith

sixteen33MHz MIPS R3000processorsrganizednto four clus-

ters,with eachclustercontainingfour processorandsomephys-
ical memory (56 MB each). Each processothasa 64 KB first

level cacheand a 256 KB second-leviecache. Referenceshat

are satisfiedin the first-level cachetake a single processo cy-

cle, while hits in the second-levetachetake about 14 cycles.
Memory referencedo datain the local clustermemorytake ap-
proximately30 cycles,while referenceso the memoryof another
clustertake between100 and 170 cycles. The machineruns a

modifiedversionof SGI IRIX, anoperatingsystembasecn Sys-
temV Release3. We havemodifiedthe kernelto implementthe
schedulingpolicies describecearlier We havealsoimplemented
a simple page migration policy. Eachof theseis describedin

detailin later sections.

To obtaindetailedperformancéanformation, we instrumented
the kernelto dynamicallytrack a variety of information relating
to schedulingand pagedistribution. We augmentedhe context
switch routine to count (a) the numberof context switchesin-
curredby a process(b) the numberof timesa processs resched-
uled on anotherprocessn and(c) the numberof timesa process



is switchedto anothercluster We alsoaugmentedhe pageallo-
cationroutineto track the distributionacrossclustersof the pages
belongingto eachprocess. Since both contextswitch and page
allocationare sufficiently expengse operationsmaintainingthese
countersncursnegligibleoverhead Weraneachexperimenthree
times, andpresentresultsfrom the medianrun.

Finally, we used the hardware performance monitor on
DASH [15 to monitor the bus and network activity in a non-
intrusivemanner For example we trackedthe numberof cache
missedo local andremotememoriesfor eachof the processors.
To understad the effectivenessf usingTLB misscountsfor page
migration, we alsogatheredracescontainingall cacheand TLB
misses.

4 Evaluation of Sequential Workloads

In this sectionwe evaluatehe performancef OS schedulingand
pagemigration strategiedor multiprogrammedsequentialwork-
loads. We first describeour policies along with their implemen-
tation, andthenpresentperformanceesultsfor the workloads.

4.1 Implementation of the Policies

Of the various schedulersdescribedearlier, only the affinity

schediling policies make sensefor workloadsconsistingof se-
quential applications. We explore two variations of affinity,

namelycacheaffinity andclusteraffinity. Cacheaffinity improves
reusdn thecachedn two ways. First, agivenprocessotriesto run

thesameprocesshatit lastran, effectively increasinghe schedul-
ing time-slice. Seconda processeing schedied tries to return
to the processp whereit last ran therebyavoiding the penalty
of reloadingthe cacheon anotherprocessn Clusteraffinity im-

provesmemorylocality (servicingcachemissesfrom local rather
thanremotememory)on a clusterbasedmachinelike DASH by
trying to schedulea processn the sameclusterwhereit lastran.
Theseaffinity policies work togetherto improve both cacheand
memorylocality in a CC-NUMA machinelike DASH.

We baseour implementatiorof affinity schedulingon the tra-
ditional priority mechanismn Unix [24], in which the priority of
aprocesis decreasedsit accumulate€PU time (one point for
every20msof executiortime). We implementedaffinity schedul-
ing throughtemporaryboostdn thepriority of desirableprocesses
While searchingor the next procesgo executea processpfa-
vors (a) the processthat was just running on the processn (b)
processsthatlastranonthatprocessqgrand(c) processethatlast
ran within the samecluster as the processar We usea priority
boostof 6 points for eachof thesethree factors—thisprovides
a moderatedegreeof affinity while maintainingfair schedling
acrosamultiple applications.We verified that the performanceof
our affinity scheduleiis relatively insensitiveto small variations
in the valueof the priority boost.

Our pagemigration strategyis basedon TLB missesto the
datapages of a process We modifiedthe softwareTLB misshan-
dler invoked on missesin the hardwareTLB (64 entries,fully-
assoative) of the MIPS R3000processoto checkif the target
of the missis in local or remotememory If remote,the page
is markedfor migrationanda trap is generatedo the fault han-
dler which then performsthe actualmigrate. To avoid moving a
pagetoo often we freezea page(makingit ineligible for migra-
tion) immediatelyfollowing a migration; a defrost daemonruns
periodically (every secondl and defrostsall pagesin the system.
While onecanimaginemanymore complexandsophisticatedl-
gorithms, our resultsshow that this schemeis both simple and
effective.

Table 1: Applications usedin the sequentialworkloads,
their standalonexecutiontime, and datasetsize.

Appl. Description Time Size
(sec)| (KB)
Mp3d Simulationof rarefiedhypersorc flow. 21.7| 7,536
Input: 40000particles,200time steps.
Ocean Model eddycurrentsin anoceanbasin. 26.3 | 3,059

Input: 96x96grid.

Water N-body moleculardynamicsapplication. 50.3| 1,351
Input: 343 molecules.

Locus VLSI routerfor standarctell circuit. 29.1| 3,461
Input: circuit with 2040wires.

Panel Choleskyfactorizationof a sparsematrix. | 39.0 | 8,908
Input: Sparsematrix with 4K rows.

Radiosity | Computethe radiosityof a scene. 78.6 | 70,561
Input: aroom scene.

Pmake 4-procesgarallelcompilation. 55.0| 2,364

Input: 17 C files, averager70lines each.

Table2: Schedulingeffectivenes®f thedifferentstrategies
for the Mp3d applicationfrom the Engineeringworkload.

Scheduler Switchegper second
Context| Processor| Cluster
Unix 19.90 19.70 15.90
Cluster 9.03 8.08 0.03
Cache 0.71 0.15 0.15
Both 0.69 0.06 0.03

4.2 Workloads

Our sequentialworkloads contain a mix of both short and
long runningjobs that one might encounteiin a computeserver
environment.The first workload (Engineering consistsof scien-
tific/engineeringapplicationschoserto modelan engineeringle-
velopmentenvironment. The secondworkload (1/0O) is a diverse
mix thatincludesengineeringapplicationsa graphicsapplication,
a pmake,andtwo editor sessions This workloadis intendedto
modela moreinteractive,l/O intensiveenvironment.Eachof our
workloadscontainsabouttwenty-fiveactivejobson a sixteenpro-
cessomachine with the individual jobs startingand completing
in a staggeredashion. Table1 providessomeof the character-
istics of eachapplication,while Figurel givesa dynamicprofile
of the executionof eachworkload undera standardJnix sched-
uler. Note that the workloadscausethe machineto go from an
initial underloadeghasethroughan overloadedbhaseto a final
underloadeghasethusamplyexercisinghe schedulingandpage
migration algorithms.

4.3 Performance Results

We run eachworkloadunderfour differentschedulers—Unix,
cacheaffinity alone, cluster affinity alone, and cacheand clus-
ter affinity combined. Furthermore we run eachschedulemwith
and without automaticpage migration enabled. The exception
is Unix with pagemigration, which performs particularly badly
sinceprocessgare continually rescheduledn a differentcluster
causingexcesive pagemigrations. We first presentresultsfrom
theaffinity schedling policiesalone,followed by theresultsfrom
combiningpagemigrationwith affinity schedling.

4.3.1 Performancewith Affinity SchedulingAlone

To evaluatethe effectivenes®of the affinity schedulersye mon-
itor the schedulingof eachapplicationin the workload. Table 2
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andboth cacheandclusteraffinity (b).

presentghe schedling profile for the Mp3d applicationfrom the
Engineeringworkload (the schedulingbehaviorof the other ap-
plicationsin the two workloadsis similar). Thetablepresentshe
averageateat which this applicationincurredcontext,processar
andcluster switchesover the durationof its executionunderthe
different schedlers. The numbersindicate that the application
was frequently moved aroundunder Unix. In contrast,adding
cluster affinity almost eliminated cluster switches,while cache
affinity aswell as combinedcacheand cluster affinity dramati-
cally reducedthe frequencyof contextand processorswitches.
Theseimprovementsn schedling behaviorare directly reflected
in the performancef individual applicationgn theworkload. We
first discusghe engineeringvorkload,thenthe I/O workload.

Figure 2 showsthe performanceof three applicationsfrom
the Engineeringworkload: Mp3d, Ocean,andWater The height
of eachbar representghe CPU time for the completionof the
application,andis brokendown into userand systemtime. The
resultsshowsubstantiaperformanceagainswith eachof the affin-
ity schedulerscacheaffinity performsslightly betterthan cluster
affinity, and combinedcacheand cluster affinity usually outper-
forms the otherschedulers.

The performanceimprovementsof the Engineeringapplica-
tions are dueto the improved cachebehaviorthat occursunder
affinity scheduling.This is demonstratedby the barson the left
handsideof Figure3, which plot the total numberof cachemisses
incurred undereachscheduler We find that cluster affinity has
limited effect on the numberof cachemisses,sinceit aims at
memory locality ratherthan cachereuse. However the number
of cachemissesdecreasesubstantiallywith cacheor combined
cacheand cluster affinity. (Limitations of the DASH hardware
monitor preventus from analyzingperapplicationcachebehavior
in the workload.)

The cachemiss resultsfor the I/O workload are similar al-
thoughless pronounced This is becausehe natureof the ap-
plicationsin the I/O workload reducesthe effectivenessof the
affinity schedulers.For instance,the pmakeapplicationrepeat-
edly createsshort-lived processestherebydisturbing other jobs
that may haveacquiredaffinity for a processarFurthermoreall
1/0 on the configurationof DASH we usedis performedonly on
a single cluster forcing applicationsto competefor thosefour
processorso do I/O. Theseworkload characteristicpreventthe
affinity schedlersfrom achievingthe reductionsn cachemisses
that were possiblewith the Engineeringworkload. The overall
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improvementsn executiontime for the applicationswas about
10-20%aswe will showin Section4.4.

4.3.2 Performancewith Automatic PageMigration

When optimizationsfor cachereusealone are not sufficient
for goodperformancei.e., missesarestill high), pagemigration
canhelpreducememorystall time by automaticallymoving pages
from remoteto local memory Figure 4 showsthe performance
of the three applicationsfrom Figure 2 when pagemigration is
enabled Comparingresultsacrosghesetwo figures,we seesub-
stantialperformancegainswith pagemigrationfor Mp3d (25%)
and Ocean(45%) undercombinedcacheand clusteraffinity. In
contrastthe Waterapplicationhasa smallworking setandworks
well within its cache hencepagemigrationdoesnot helpit much.
FortheMp3d andOcearapplicationsn Figure4, the overheadf
pagemigrationis reflectedin the sizeableportionsof systemtime
for eachapplication. However the gainsfrom pagemigration
morethancompensatéor this additionaloverhead.

The impact of page migration is also demonstratedy the
compodtion of the cachemissesin the workload (Figure5). For
instancecomparingthe compositionof cachemissesundercom-
binedcacheand clusteraffinity with andwithout pagemigration
for the Engineeringworkload (Figures3 and 5), we canseethat
althoughthe total numberof cachemissesis not affected, many
more of thesemissesareservicedfrom local memorywhenpage
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Figure6: Schedulingbehaviorandpagedistributionfor the
Oceanapplicationwith cacheaffinity, without pagemigra-
tion (above)andwith pagemigration (below). The plots
showthe fraction of pagesn local memory with the small
barsalongthe x-axis identifying pointsof clusterswitch.

migrationis turnedon. The sameis true of the I/O workload.

To help build intuition for theseeffects, Figure 6 presents
the correlationbetweenschedling behaviorand pagemigration
for the Oceanapplicationfrom the engineeringworkload under
the cacheaffinity scheduler The figure showsthe resultswith
and without pagemigration. The small vertical bars along the
x-axis indicate points where the applicationwas switchedfrom
one clusterto another while the curve plots the percentageof
pagesof the applicationthat arelocal to the applications current
cluster As shownin the figure, affinity schedulingwithout page
migrationprovideshighly variableperformanceForinstancethe
processoften acquiresaffinity for a processor/clustewith most
of its datain remotememory while sometimeghe procesgets
lucky andfindsmostof its datain local memory With migration,
however the performances muchmorerobust. A clusterswitch
cancauseamnostof the datato be remote,but pagemigrationsoon
movesthe applications working setto the new cluster asshown
by the initial dip followed by improvementsn the percentagef
local pages.Note that the horizontalline at 60% of pageslocal
actually indicatesexcellentlocality, sincethe remaining40% of
the pagesare no longer referencedy the applicationduring this
part of its execution.

44 Summary

Having lookedat the resultsfrom individual applicationswe



Table3: Performancef the different schedulersvith and
without pagemigration. Numbersshow the averageand
standarddeviationof the overall responseime normalized
to Unix without migration.

EngineeringWbrkload 1/0 Workload
Sched | No Migration Migration No Migration Migration
Avg StDv | Avg | StDv | Avg StDv | Avg | StDv
Unix 1.00 1.00

Cluster| 0.76 0.17] 059 | 0.12| 0.90 0.06 | 0.69 | 0.14
Cache | 0.71 0.15| 0.55| 0.12 | 0.80 0.09| 0.69 | 0.14
Both 0.72 0.15| 0.54| 0.13| 0.84 011 | 0.71| 0.17
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Figure7: The load profile (numberof activejobs) over time for
the engineringworkloadunderUnix andthe schedier with both
cacheand clusteraffinity with and without pagemigration. The
curveswith affinity schedulingand pagemigration indicatethat
individual applicationsand the workload as a whole complete
faster

nowlook attheoverallperformancef theworkloads.We monitor
the wall-clock completiontime (responsdime) of eachapplica-
tion, sincethat is the bottom-line metric for a personusing the
machine.Next, we normalizethe responsdime of eachapplica-
tion in the workloadto its time whenrun underUnix. We then
simply take the averageof this normalizedtime over all appli-
cationsin the workload. As shownby the numbersin Table 3,
affinity schedulingsubstantiallyimprovesthe averageresponse
time for both workloads: acrossthe different affinity schedulers,
the gainsrangebetween25-30% for the engineeringworkload,
andbetweenl0-20%for the I/O workload. With pagemigration
the performanceainsareevenmoredramatic,almostashigh asa
factor of two (on the averagefor applicationdrom the engineer-
ing workload. Table 3 also showsthe standarddeviationin the
normalizedresponsdime acrossthe applicationsin a workload.
This numberis uniformly small acrossall schediers and both
workloads.This indicatesthat nearly everyapplicationimproved
in performancewith affinity scheduling,and no applicationwas
starvedunfairly. Figure 7 showsgraphically that the workload
asa whole completesoonemwith affinity schedulingandaffinity
with pagemigrationthanunderUnix scheduling.

To summarize,in contrastto previousstudiesthat havere-
portedmodesigainsof upto 10%with affinity schedling onbus-
basedmachinespur experiencesuggestghat affinity schediing
offerssignificantperformanceéenefitoon large-scalenultiproces-
sorswith NUMA memory hierarchies. The latency of memory
referencesparticularly to remotedata, is much larger in these
machinesandoptimizationsto improvelocality in the cacheand
in local memory are correspondinglymore important. Affinity
schedling helpsimprove cachereuse,and can be succesfully
combinedwith OS pagemigration strategiego bring the remote

pagesinto local memory (providing COMA [23] style benefits).
We havefoundthat for sequentialvorkloads,simple pagemigra-
tion schemeswffer substantiabainsevenon NUMA architectures
with hardwarecaching,andare quite robustin practice.

5 Evaluation of Parallel Workloads

In this sectionwe evaluateéDSschedulingandpagemigrationpoli-
ciesin the contextof parallelapplications.We first discusgrade-
offs betweendifferent schedulingpoliciesand describetheir im-
plementation We thenevaluateperformancef differentschedi
ing policies(without consideringpagemigration) usingcontrolled
experimentandmultiprogrammedvorkloads.Finally, we discuss
implementatiorissuesandthe performancepotentialof automatic
pagemigration by the operatingsystem.

5.1 Tradeoffs Amongst Scheduling Policies

In Section2 we describedhe parallel-applicatiorschedulingooli-
ciesof gangschedulingprocessosets,andprocessontrol. Un-
like theaffinity schedulingpolicy usedfor sequentiabpplications,
schedulingoliciesfor parallelapplicationshavea large effect not
only on performanceput they also determinethe programming
modelseenby the programmerruntime system,and/orthe com-
piler. We discussbelow effects of the schedler on potentialto
exploit datalocality, efficiency dueto the operatingpoint effect,
andon the synchronizatiorbehaviorof parallelapplications.

5.1.1 Data Locality

The primary mechanisnto improvedatalocality in a parallelap-
plicationis to distributetasksand dataso that tasksexecuteclose
to the datathey referencq5]. However it is commonto assume
exclusiveuseof the machinein performingtheseoptimizations,
anassumptiorthatis no longervalid in a multiprogrammedenvi-
ronment. Becauseof its coschedulingoroperty gangscheduling
providesthe illusion of an exclusivemachine with eachapplica-
tion processassignedo a particular processar This allows the
programmer/compileto succesiilly performtheseoptimizations
without regardfor otherapplications.However dependingn the
systemload, the processe®f an applicationmay be movedto
a differentsetof processorsiuring execution affecting any data
distributionoptimizations.The space-saringapproachemaydy-
namically vary both the numberof processrs aswell asthe ac-
tual processorsassignd to an application, again making these
optimizationsdifficult.

The different schedulersalso affect the cachebehaviorof a
parallel application. For instance,gang schedulingmay cause
cacheinterferencebetweenprocessethat belongto differentap-
plications but are time multiplexed onto the samephysical pro-
cessor The space-shing approache avoid this problemsince
eachprocesspsetis assigneexclusivelyto a singleapplication.
However in processosets,multiple processgof the sameappli-
cation may be time-sharedn the sameprocessn causingcache
interferencdf their working setsdo not overlap.

5.1.2 Operating Point

As discussd earlierin Section2, anapplicationusuallyexecutes
at a moreefficient operatingpoint alongits speedugurve(i.e., at
a point wherethe maminal efficiency of eachprocessoallocated
to the applicationis higher)whenthe numberof processts used
by it is smaller Consequetty, in a multiprogrammedenviron-
ment, wherethe effective numberof processoravailableto any
given applicationis smallerthanthe total numberof processors,



it is desirablefor applicationsto reducetheir active processeto

matchthe numberof availableprocessts. The processcontrol

schediler exploitsthis effect by keepingeachparallelapplication
informedof thenumberof processorallocatedo it (in its proces-
sor set),therebyenablingthe applicationto dynamicallyadaptto

the procesorresourcesdt is allocated. The gangschedulingpol-

icy, in contrastprovidesa machineabstractiorasif all processts

arestill availableto eachof the applications.The processpsds

schediler alsodivides up the processoramongthe applications,
but it doesnot inform the userapplicationaboutthe changein

resourcesthusthe operatingpoint cannot be exploited.

5.1.3 Synchronization

The scheluling policies of the operatingsystemcan significantly
affect the synchronizdon behaviorof parallel applications,par-
ticularly thoseusing busy-wait synchronizéion. For instancea
processnay getdeschedied by the OSin the middle of a critical
section,causingotherprocessewaiting for the critical sectionto
spin. However this is largely a non-issuefor applicationsusing
two-phasesynchronizatior(spin for a while andthen block); all
our applicationsusetwo-phasdocks.

5.2 Implementation of Scheduling Policies

Weimplementgangschedulingisingthematrix method6, 7, 25|,
in which rows representime slicesand columnsrepresenpro-
cessos. When a parallel applicationstartsup, its processgare
placedwithin a singlerow. The schedulerconcepually executes
the rows in a round-robinfashion—all processesn a row are
schedledfor the durationof a timeslice(default100 ms), before
moving on to the next row. We schedulea row for execution
througha simple extensiorto the Unix schedlter, by temporarily
boostingthe priority of all processgin thatrow for thattimeslice.
If the processesf a new applicationdo not fit within anexisting
row thenanewrow is created.As applicationsstartandcomplete
the matrix is likely to getfragmentedwe thereforecompactthe
matrix periodically (every 10 secondsn our currentimplementa-
tion). Finally, the processesf a parallelapplicationare placedin
a contiguows setof columnswithin a row; they thereforeexecute
on a contiguousset of physicalprocessor®n the machine,and
exploit clusterlevel locality in anarchitecturesuchas DASH.

In our processorsets implementation,an application can
choo® to executein its own processoiset by making a special
systemcall. This createsa new processosset with its own run
gueueonwhichthe processgof the correspondingpplicationare
enqueled The partitioning of processoramongapplicationsis
recomputedtachtime a parallelapplicationarrivesor completes.
Procesarsare distributedequallyacrossprocessosetsunlessan
applicationrequestdewer processrts. Thereis a separatepro-
cesso setthat executesll sequetial jobs andthoseparallel ap-
plicationsthat did not requesta processorset. The size of this
defaultprocesspsetis varied dynamicallybasedon the system
load. Finally, we allocatephysicalprocessorto a setin multiples
of anentire DASH clusterasfar aspossible,andtherebyexploit
clusterlocality in DASH.

For processcontrol we extendour processossetsimplemen-
tation with a mechanismto keep applicationsinformed of the
numberof processorsllocatedto their processoset. Eachpro-
cesso sethasa variable,maintainedwithin the operatingsystem,
for the numberof processorsn the setat any time. In a task-
gueuemodel,the runtime systemof the applicationexamineghis
variableat safesuspensiomoints(i.e. at the endof a task),and
suspadsor resumes processasnecesary to matchthe number
of procesorsassignedDetailsof theimplementatiorcorrespond
closelyto thosein Tucker' s thesis[25].

Table 4: The parallel applicationsusedin the controlled
experimentandtheir standaloneunningtimes.

Appl. Description Time
(16 procs)

Ocean| Eddyandboundarycurrentsin anoceanbasin. 40.9s
Input: 192x192grid.

Water | N-body moleculardynamicsapplication. 29.4s
Input: 512molecules.

Locus | VLSI routerfor standarctell circuit. 39.4s
Input: circuit with 3029wires.

Panel | Choleskyfactorizationof a sparsematrix. 58.3s
Input: tk29.0, matrix with 11K rows.

5.3 Performance Results

We evaluatehethreeschedulingpoliciespresentedbove(affinity
schedulingperformedsimilar to Unix andis not reportedhere),
usingseveraparallelapplications.Our evaluatiorconsistof both
controlled experimentsand multiprogrammedworkloads. The
controlledexperimentsconsistof a single applicationrunning by
itself in an emulatedmultiprogrammedenvironmenttherebyen-
abling us to isolate the different factors affecting performance.
Themultiprogrammedvorkloadsconsistof a mix of differentap-
plicationsthroughwhich we cancomparehe overallperformance
of the differentschedulersbut cannotstudyindividual effects.

5.3.1 Parallel Applications and Results

For both our controlled experimentsand workloadswe usefour
parallel applications: Ocean,Water, Locus, and Panel. All four
applicationsrewritten in the CooL [5] parallelprogrammindan-
guage an extensiorof C++ that supportsdynamictask-levelpar-
allelism. (The applicationsare originally from the SPLASH[20]
suite.) The useof task-levelparallelismis animportantprerequi-
site for benefitingfrom processcontrol scheduling.

The Oceanprogrammodelseddy currentsin an oceanbasin.
The main datastructuresin Oceanare severalmatrices,and the
basic operationsare very regular suchas addingtwo matrices.
Both dataandcomputatiorare partitionedacrosgprocessorsuch
that eachprocessocomputegrimarily within its local data. The
Waterapplicationmodelsa systemof watermoleculesnteracting
with eachother Moleculesare partitionedacrossprocessorso
thateachprocessoworkson its assignedetof moleculesgexcept
for one phasethat requiresall-to-all communication. The cache
hit ratesare high due to low communicatiorand small working
sets;datadistributionis thereforerelatively unimportant.Locusis
aVLSI routing programwherethe maindatastructureis a shared
costmatrix thatis bothreadandmodifiedby all processorsThere
is ahighdegreeof communicatiorsodatadistributionis againnot
helpful. Panelis a sparsematrix factorizationprogramin which
the matrix is partitionedinto setsof columns(or panels)that are
distributed acrossprocessors.Tasksfor the basic operation,an
updateof a panelby anotherpanel,are distributedbasedon the
panelthey updatefor betterlocality.

Table 4 lists the applications,the input used, and the total
executiontime (i.e. including both serial and parallel portions)
runningstandalonen 16 processors(The applicationis run with
16 processeandeachprocesss attachedo a specificprocessor
for the durationof thewholerun.) Figure8 reportsonthe parallel
portion of eachapplication,showingthe executiontime andthe
numberof cachemisses(brokeninto local/remotemisses)when
running standaloneon 4, 8, and 16 processors.A high fraction
of local missesindicatesthat locality is quite importantfor the
application.
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Figure 8: Wall-clock executiontime (in seconds)and number
of cachemisses(in millions) partitionedinto local and remote
referencesin the parallel portion of eachapplicationstandalone
on 4, 8, and16 processorglabeleds4, s8,s16).

5.3.2 Controlled Experiments

In our controlledexperimentsve focuson the time spentin the
parallelpartof eachapplicationandignorethe serialportions,dur-
ing which the applicationusesa single processoandthe parallel
schedilersare thereforeequivalentin performance.To compare
schedlerswe usethe metric “normalizedCPU time”, computed
by addingup thetime spenton all the processorsvithin the paral-
lel portionandnormalizingit to its valuein the ideal case(which
is the applicationrunning standalonevith as many processorsis
it requested).This metric can be viewed asthe inverseof ma-
chine efficiency—the larger the value the more inefficiently the
procesers are being usedas comparedto the standalonecase.
The normalizedmetric also allows us to compareresultsfrom
differentapplicationsn the samechartwithout scalingproblems.

In addition to the normalizedCPU time metric, we usethe
performancemonitor on DASH to countthe numberof local and
remotecachemisses.Again to allow comparisonswe normalize
the numberof missedo the valuefor the standalonease.(Note
that the absolutenumberscan be computedfrom both normal-
ized metricsusing the basenumbersprovidedin Figure8). The
normalizationvalueis 100in all figures.

5.3.2.1 Gang Scheduling: In a multiprogrammingenviron-
mentusinggangschedulingthe major factorsdegradingapplica-
tion performancearecachenterferenceandthe possibledifficulty
of doingdatadistribution optimizations.To examinethe effect of
cachenterferencave modifiedthekernelto flushthe cachesén the
systemat eachgangreschedling interval. This effectively mod-
elsworst-caseachdnterferencawvith otherapplicationsvherean
applicationmustreloadits working seteverytime it is resched-
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Figure 9: GangScheduling:Normalizedparallel executiontime
and normalizedcachemiss count (w.r.t. standalonel6). With
cacheflush andtimeslice of 100ms(g1), turning off datadistri-
bution (gnd1),timeslice of 300ms(g3), timesliceof 600ms(g6).

uled. Sincethe performancémpactof thesereloadcachemisses
aredependat on the lengthof the timeslice,we alsoexaminethe
performancevith 300msand 600mstimeslicesin additionto the
default 100mstimeslice.

Undera multiprogrammedvorkload,a gangschedulemight
haveto move applicationsbetweenCPUsin orderto keepthe
load balancedacrossthe machine. However this movementcan
breakthe datadistribution donefor the application. To examine
this effect we simply turn off the explicit datadistribution opti-
mizations,andallocatedatabasedn the defaultfirst-touchpolicy
(datais allocatedfrom the local memoryof the processothatfirst
touchest).

Figure9 showsthe normalizedCPU time andthe normalized
cachemissesfor the parallel part of eachapplication. All the
barscorrespondo runswherethe cacheis explicitly flushedat
everytimeslice. Bar g1 showsresultswith datadistribution opti-
mizationsanda schedulingnterval of 100ms.Datadistributionis
turnedoff in gnd1. Barsg3 andg6 represengangschediing with
datadistributionandtimeslicesof 300msand600msrespectively

The resultsshowthat with a 100mstimeslice,cacheinterfer-
encein gang-scheuling cansubstantiallyincreasethe numberof
cachemissessuffered by an application. In our runsthe number
of missesincreasedetween50% and 100% over the ideal case.
The overall effect of thesemisseson applicationperformancele-
pendedon the application. For memory intensive applications
such as Ocean, performancedrops by as much as 22%. The
restof the applicationsencouter relatively small (lessthan10%)
slowdowns.

The g3 and g6 barsshowthat with longertimeslicesalmost
all effectsof cacheinterferencecanbe mitigated. In fact, with a
timesliceof 600ms(g6), both cachemissesand performanceare
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Figure 10: Processosets: Normalized parallel executiontimes
(w.r.t. standalonel6). 16-processapplicationon a 8-processor
set(p8), on a 4-processoset (p4).

closeto ideal. The timeslice period, however must be chosen
carefully—lage timeslicesmitigate cacheinterferencebut may
leadto unfair schedulingof multiple applications.

Finally, theresultsalsoshowthatthe impactof not doingdata
distributionvariesdependingon the application(asshownby the
gndlbarsin Figure 9). Applicationswhere memorylocality is
importantperform quite poorly when datadistribution optimiza-
tionsaredisablede.g. Oceans 56%worse,Panelis 21%worse).
The otherapplicationgperformonly 10% worsewithout datadis-
tribution.

5.3.2.2 Procesor Sets: In processorsets, the schedulerre-

spond to anincreasednultiprogrammedvorkload by squeezing
the applicationon to fewer processors.To model this we ran a

16-proces invocationof eachapplicationwith only 8 or 4 pro-

cessos. Figure 10 showsthe cumulativeexecutiontime for the

parallel part of eachapplicationwhen runningon 8 and 4 pro-

cessos, normalizedto the ideal casewherethe applicationruns

standaloa on 16 processors.

The results show that Oceanreacts very badly to being
squeeed onto a smaller number of processorsPanel suffered
a 25% slowdown,while the other applicationsare affectedonly
mildly. The 300% slowdownfor Oceanis a direct consegerce
of multiplexing severalprocessesnto fewer processcs within a
proceser set. In Oceaneachprocesscomputesprimarily within
its assiged portion of datawith little inter-processcommunica-
tion. Theindividual dataportionsarelarge, thereforemultiplexing
multiple processgontothe sameprocessoactsasif a cacheflush
wasbeingdoneeverytime slice.

In contrast,the small working set in Water, and the shar-
ing betweemprocessgin LocusandPanel keepthe performance
degradtion small for theseapplications.Locusbenefitedenough
from the sharingto run 10%more efficiently on 4 processorthan
on the 16 CPU standaloneaseto which we normalized.

5.3.2.3 Proces Control: Our experimentswith processcon-

trol aresimilar to the processosetexperimentswith processon-

trol havingthe samedisadvantagthat no datalocality optimiza-

tions (suchaspagemigration) are usedfor the results. However

comparingthe performanceof processcontrol to the 16-process
standalor executionin Figure1l, we seethat evenwithout data

distributionoptimizations the processontrol scheduleperforms
quitewell dueto theoperatingpoint effect. Performancémprove-

mentover the standaloneaseis ashigh as26% for Panel.

The one major exceptionto the generalimprovementsdue
to processcontrol is Oceanon 8 processorswherethe machine
efficieng is abouttwo timesworsethan standalonevith 16 pro-
cessos and processcontrol with 4 processorsThe performance
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Figure 11: ProcessControl: Normalizedparallel executiontime
w.r.t. standalondl6. 16-processpplicationon a 8-processoset
(p8), on a 4-processoset(p4).
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Figure 12: ComparingdifferentschedulersNormalizedparallel
executiontime w.r.t. standalonel6 experiment. Gang(g), pro-
cessorsets(ps), and processcontrol (pc).

is worsethanthe standaloneasebecauset usesoptimizedtask
assignmento processts and datadistribution in main memory
sothattherearefewertotal missesanda largerfraction arelocal.
Looking closelyat the performanceof processontrolwith 4 and
8 processorsye foundthat while the total numberof missesvas
approximatelythe same the 8 processocasehad a muchlarger
fraction of remotemisses.An explanatioris thatgiventhe sizeof
datagrids usedin Oceanandthe somewhatrandomtaskassign-
mentthatis happeninglueto processontrol, Oceangenerates
lot of interferencemisses.Thesemissesarelikely servicedby the
cacheof one of the other processorgratherthan main memory)
executingthe application. Sincein the 4 processorcaseall pro-
cessorare on the samecluster all thesemissesappearas local
misseswhile in the 8 processocasethereis a 50% chancethat
a misswill needto go to the remotecacheto be serviced.

5.3.2.4 Comparing the Schedulers: Havinglookedat thein-
dividual effectsof the variousschediers, we how comparetheir
relative performancen Figure 12. For eachapplicationwe show
the executiontime in the parallel portion undereachscheduler
normalizedto ideal standaloneexecution. The gang scheduled
versionis modeledwith cacheinterference,a 300mstimeslice,
andwith datadistribution. For both processosetsand process
control no datadistribution optimizationsare performed,andthe
executionconsistf 16-processesultiplexedonto8 processors.
The performanceof the different schedlersis a tradeof be-
tweenthe relative importanceof data distribution optimizations
for betterlocality, cacheinterferenceandthe operatingpoint ef-
fect. As shownby theresultsin Figure 12, Oceanperformsbet-
ter undergang-scheuling dueto the datalocality optimizations,
while Paneland Water perform best under processcontrol due



Table5: Applicationswithin the two parallelworkloads.

Application Workload 1 Workload 2
Procs | Input Procs | Input

Ocean 16 | 146x146grid 12 | 146x14 grid

Oceanl - - 8 | 130x1® grid

Panel 16 | tk29.0 8 | tk17.0

Locus 16 | 3029wires 8 | 3029wires

Locusl 16 | 3029wires - -

Water 16 | 512molecules 4 | 512molecules

Waterl 16 | 512molecules 16 | 343molecules
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Figure13: WorkloadperformanceinderdifferentschedulersAv-
eragenormalizedparallelandtotal time (w.r.t. Unix). Gang(Ga),
proceser sets(Ps),and ProcessControl (Pc).

primarily to the operatingpoint effect. The performancediffer-
encedor Locusaresmall, with gang-schdding doingmarginally
better Overall,therefore gang-schedling offersmorerobustper-
formancein thesecontrolledenvironments.The next subsetion
examinesnultiprogrammedvorkloads ,wherethe schedulingsit-
uationis more chaotic.

5.3.3 Performance of Workloads

The controlled experimentsshowedus that the relative perfor-
manceof differentschedulerss affectedby the applicationchar-
acteristics. We thereforechoosea mix of the different applica-
tionsstudiedearlier (Table5) to constructwo differentworkloads
representingnultiprogrammedenvironments.The first workload
representarelatively staticenvironmenin which applicationsare
long-runningand arrive/completeinfrequently The applications
are sizedto run on the entire machine. This favors the gang-
schedling approactsinceit avoidsfragmentatiorin the schedul-
ing matrix, andprocessedo not movefrom oneprocessoto an-
other during execution,enablingdatadistribution optimizations.
The seondworkloadis intendedto modela more dynamicmul-
tiprogrammedenvironmentwith applicationsfrequently starting
and completing. Applicationsare sizedfor different numbersof
procesers; they are thereforelikely to move aroundwithin the
matrix in gang-schedling, making it difficult to distribute data
effectively.

Theperformancef theworkloadsis shownin Figure13. We
normalizeboth the time spentin the parallelportion andthe total
time for eachapplicationto the correspondingzaluesunderthe
Unix schedler. Figure 13 presentsan averageof eachof these
normalizednumbersacrossall the applicationsn the workload.

Theresultsshowthatall of the parallelschedulergonsidered
hereoutperformthe standardJnix schedier. In workloadlgang-
schedling enjoys the benefitsof data distribution and is 40%
betterthan Unix in paralleltime, 12% betterin total time. Pro-

10

cessorsetsshowsgainsof only 5%, but processcontrol benefits
from the operatingpoint effect and is 30% betterthan Unix in

the parallel portion. Gangthereforeoutperformsthe two space
multiplexing schedulersn the parallel portion.

In workload2gangno longerenjoysthe datadistribution ad-
vantagesand showsonly modestgainsof 6% in parallel time,
comparedio 16% for processcontrol. Thesegainsare also re-
flectedin (smaller)improvementsn the total executiontime of
the applications.

Overall,ourexperimentsvith theseworkloadsbearoutour ex-
periencewith the controlledexperiments Gang-scheding offers
the compiler/programmethe opportunityto effectively do data
locality optimizations,thus offering potential for increasedper-
formanceby reducingremotemisses.In contrastprocess-camol
schedulingallows applicationsto exploit information about re-
sourceallocation changes thus offering potential for increased
performancehroughthe operatingpoint effect. The overall suit-
ability of the schedlersthusdepend®n the characteristicef the
applicationsn the workload.

5.4 Page Migration

As we haveseenin the previoussection,spacemultiplexing has
the disadvantagef preventingeffective data distribution opti-
mizations. However after everyreallocationof processts in the
space-partitioningchemeshe operatingsystencouldpotentially
move eachapplications datato memorythat is local to it. Sev-
eral pagemigration scheme®f varying sophisticatiorhavebeen
proposedn the literature[4, 14]. We performedsomeinitial ex-
perimentswith a simple extensiorof our pagemigration strategy
presenteckarlier for uniprocessoapplications(we havenot yet
attemptedpagereplicationin our experiments). Our policy at-
temptsto capturethe sharingbehaviorof a parallelapplicationby
migrating a pageonly after a certainnumber(4) of consective
remotemissedo the page(in the TLB handler).To preventapage
from unnecesaily migratingbetweenprocessorsi is frozenfor
onesecondafterit is migratedandon a TLB missby a processor
local to the page.

Unfortunately however our pagemigration schemedid not
improvetheresponsgime for theworkloads. The primary reason
for this wasthat the synchronizton structureof the IRIX virtual
memory systemrequiredexcessivdocking to perform pagemi-
gration. Without major modificationsto the VM system,it was
necessy to lock the pagetable of the applicationwhenmoving
apage.This coarseggrainlocking led to high lock contentionand
the time spentwaiting on locks more than canceledhe benefits
from migratingthe page.

Since we were limited by the currentdesignof the virtual
memorydatastructuresye insteadperformeda trace-driverstudy
to explorethe performancéenefitsof pagemigration. We instru-
mentedthe kernelto traceTLB missesand usedthe DASH non-
intrusive performancemonitor to record cacheand TLB misses
while running the Paneland Oceanapplications. Theseappli-
cation were chosenbecausedhey havethe greatestpotential for
improvementfrom datadistribution. In the trace we only con-
sidercacheandTLB missesncurredto datapageswhile running
in usermode. Tracingwasstartedat the beginningof the parallel
sectionof eachapplication. In analyzingthe trace, we do not
assumehat memoryis connetedto a clusterasin DASH, but
that eachprocessp hasits own memory which is remoteto all
the others.

Theapplicationsvererun ona 16 processomachineutilizing
8 processesThe datafor the applicationswvasdistributedamong
the 16 processdis memoryin a round robin fashion. This data
and processorallocation corresponddo an applicationrunning
underprocesscontrol whereits processpallocationwasrecently
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reducedrom 16to 8 processorsilt is in this type of scenariadhat
pagemigrationis neededo restorean applications datalocality.

5.4.1 Trace-ba®d Evaluation of PageMigration

A pagemigration policy mustaddresghreeissues.First, it must
identify candidatepagesfor migration. Secondjt mustselectan
appropriatenew location for suchpages. Third, it must decide
whena pageshouldbe migrated. We usethe tracesto analyze
theseissuesn detail.

Given that thereis a cost associatedvith migrating a page,
only thosepageswith a large numberof cachemissesshouldbe
consideed for migration. Unfortunately information aboutthe
numberof cachemissego a pageis notavailableto the operating
systemon mostcomputers.We thereforeexplorethe usefulness
of an alternatestrategyin which the TLB missesto a pageare
usedto predictpageswith large numberof cachemisses.

To evaluatethe correlation betweencachemissesand TLB
misseswe plot the overlapbetweerthe pageswith the mostTLB
misses(i.e. mosthot) andthosewith the most cachemissesin
Figure14. The x-axis showsincreasingoercentagesf the hottest
TLB pages.andthe y-axis plots the percentag®verlapwith the
correspoding setof hot cachemiss pages.For example,a point
on a curve at an x-value of 20% and a y-value of 30% means
that, of the top 20% of the pagesorderedby TLB misses,30%
arealsoin the top 20% orderedby cachemisses.

An exactcorrelationbetweerthe TLB andcachemissesvould
be a horizontalline closeto 100%,indicatingthatthe setof pages
selectedby TLB missesoverlapsvery closely with the set se-
lectedusing cachemisses.Figure 14 showsthat, while nowhere
nearperfect,thereis reasonale correlationbetweenTLB misses
andcacte misses.Consideringthe hottest30% of the total pages
thereis significantoverlap(50%) betweerpagesakingmanyTLB
missesandthosewith high cachemisses.As we shall see,page
migration policies can potentially gain with this level of correla-
tion.

The secondrequirements to migratea pageto the particular
CPUrthatis incurringthe mostcachemisses.Onceagainthe TLB
missinformation can potentially be usedto track the distribution
of missesacrossprocessors. Using the traces,we look at the
correlationbetweerthe TLB andthecachemissdistributionacross
procesers for eachpage. Intuitively, we want to know if the
proceser that suffered the mostcachemissesalso had the most
TLB misses.Therefore,for eachpagewe identify the processor
with the most cachemisses,andrank this processoiin a list of
procesersorderedn decreasing LB missedo thatpage.A rank
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Figure 15: TLB missrank distribution of the processomvith the
mostcachemisses.
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of 2 indicatesthatthe processomcurredthe seconemostnumber
of TLB missedo that page.A rankof 1, therefore,is ideal since
that indicatesthat the sameprocessoincurs the most cacheand
TLB misses.

Figure 15 showsthe distributionof this rankfor the hot pages
(definedas pageswith more than 500 cachemisses)over one
secondntervalsaveragedver the entire trace. This correlation
is very good: thereis a sharppeakat 1 implying that a large
numberof pageshavea single processoincur the mostTLB and
cachamisses.Themeanvalueis 1.1for Ocearand1.47for Panel.

Besideghe correlationin rank, we alsolook at the difference
betweenusing TLB missesand cachemissesto determinepage
placement.Figure 16 plots the cumulativepercentagef misses
that would be local if the pageswere placedbasedon the pro-
cessorincurring the most cachemisses,aswell asbasedon the
processoincuringthe mostTLB misses.(As we movefrom left
to right onthe X-axis, we increasehefraction of theapplications’
pagesconsidered.)The appropriatedestinatiorprocesspfor each
pageis determinedostfactofrom the trace;the pagedistribution
thereforecorrespondso the bestpossiblestaticallocationof data
basedon either cacheor TLB misses.

For both applicationsthe TLB basedlot closelyfollows the
cachemiss basedplot, with only a small absolutedifferencebe-
tweenthem. Thedifferencein the numberof local misseds fairly
low—4% for Paneland2.2%for Ocean.Thesetwo metrics,rank
distribution and the local miss percentagedemonstratehat us-
ing TLB missesto placea pageis quite promisingand closely



Table6: Performanceof pagemigration policieswith Paneland
Oceanshowingnumberof local andremotecachemissespages
migrated,andtime spentin the memorysystem.

Cachemisses Pages | Memory
Migration policy (millions) migrated time
Local [ Remote (sec)
PANEL
a. No migration 1.2 18.9 - 86.2
b. Static postfacto 8.1 121 - -
c. Competitive(cache) 5.5 14.6 1577 73.9
d. Singlemove(cache) 5.7 14.4 2891 75.9
e. Singlemove (TLB) 3.3 16.9 3052 85.0
f. Freezel sec(TLB) 6.5 13.7 6498 80.4
g. Freezel sec(hybrid) 6.2 14.0 3800 76.1
OCEAN
a. No migration 1.6 22.6 - 103.2
b. Static postfacto 20.9 3.3 - -
c. Competitive(cache) 19.4 4.8 1453 42.1
d. Singlemove(cache) 20.2 4.1 1487 39.4
e. Singlemove (TLB) 9.4 14.9 1525 78.3
f. Freezel sec(TLB) 19.4 4.9 1709 42.7
g. Freezel sec(hybrid) 18.7 5.5 1627 44.8

approximateplacemenbasedon cache-misses

Finally, we addresshelastquestiorof whento migratea page
by simulatingsomesimple pagemigration policies basedon the
tracedata. For eachpolicy we track the numberof cachemisses
andthetotal time spentin the memorysystem.Our costmodelfor
computingthe memory systemtime is loosely basedon DASH.
We assumehata local misstakes30 clock cycles,a remotemiss
takesl50cycles,andmigratingapagetakes2 millisecondgabout
66000cycles).

We evaluatedhe following policies: (a) a basewith no page
migration, (b) static post-factodistribution of pagesbasedon
cachemisseqthereforeperfectstatic placement)(c) competitive
pagemigration basedon cachemisses[2] with a missthreshold
of 1000misses(d) singlepagemigrateuponthefirst cachemiss,
(e) singlemigrateuponthefirst TLB miss, (f) the policy that we
actuallytried on DASH (describeckarlierin this section): migrate
after 4 conseative remotemissesandfreezea pagefor onesec-
ond after a migrateor alocal TLB miss,and(g) a hybrid policy
where pagesare selectedfor migration basedon the numberof
cacha misseq500) and placedusingpolicy (e). This last policy
is basedn our observatiorthat the correlationfor total missego

apages notasgoodasthatfor thedistributionacrosgprocessors.

The resultsare shownin Table 6. For thesetwo applica-
tions, all the policies show an advantageover the no migration
case(including the overheador pagemigration). The bestpoli-
ciesachievelocal missratescloseto the postfacto static alloca-
tion. The cache-misdasedpolicesin generaldo betterthanthe
TLB-basedpolicies. The hybrid policy, althoughrequiring less
information, still performsnearlyaswell asthe cache-misd®ased
policies.

In the analysisof processschedulingschemesn Section5.3
we hadseenthe performanceof Oceandrop significantlyin the
caseof spacepartitioning due to the increasechumberof cache
missesthat had to be servicedremotely Our trace basedanal-
ysis shows that using simple page migration policies we can
get a substantiakreductionin the time spentin the memorysys-
tem for Ocean(from over 100 second to lessthan50 seconds).
Pagemigration canthereforepotentially benefitspacemultiplex-
ing scheneslike processontrol wherestatic datadistributionis
difficult. Furthermorepasecn our experiencevith the SPLASH

12

applicationswe believethat applicationsvheredataplacements
succesl shouldalsoshowgoodresultswith pagemigration.

6 Conclusions

While shared-memorynultiprocessorsffer the potentialfor cost-
effective computingin multiprogrammecdenvironmentsrealizing
this potentialposesa significantchallengeor schedulingandpage
migration policies. In this paperwe havestudiedthe effect of
thesepoliciesin the contextof the StanfordDASH, a CC-NUMA
multiprocessarfor both sequentiabnd parallel applications.For
sequentiabpplicationsworkloads,we demonstratéhat a combi-
nationof cacheandclusteraffinity alongwith pagemigrationcan
behighly effective: ourworkloadsshowa 2-fold performancem-
provemenbverthe standardJnix scheduler The techniqueghat
we useare simple, and can easily be incorporatedinto existing
operatingsystems.

For parallel applications we found that both spacepartition-
ing andtime-slicingapproachesffer modestgainsover the stan-
dardUnix schedler. Therelativeperformancef thesestrategies,
however depend®n two key applicationcharacteristicsthe im-
portanceof datadistributionin main memory and the shapeof
the speedp curve. The workloadswe evaluatedshowedno clear
winnerwith pagemigrationdisabledgang-scheding wasa more
effective approachwhen data distribution was important, while
processcontrol exploited the operatingpoint effect. Our initial
experimentswith automaticpagemigration suggestthat simple
migration policies may be able to addresghe datadistribution
problemswe observedor space-partitioningchedulers.

To addresgpage migration in real multiprocessorswe also
studiedthe correlation betweenTLB missesand cachemisses
per page,and showedthat policies basedon TLB missescanbe
almost as effective as thosebasedon perfect cachemiss infor-
mation. However we haveonly begunto addressheseissuesn
the executionof parallelapplicationswe planto studythe inter-
action betweenschedulingand pagemigration policies for such
workloadsin greaterdetail.
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