
Scheduling and Page Migration for Multiprocessor Compute Servers

Rohit Chandra, Scott Devine, Ben Verghese,
Anoop Gupta, and Mendel Rosenblum

Computer Systems Laboratory
Stanford University, Stanford CA 94305

Abstract

Severalcache-coherentshared-memorymultiprocessorshavebeen
developedthatarescalableandoffer averytight couplingbetween
the processingresources.They are thereforequite attractivefor
useascomputeserversfor multiprogrammingandparallelappli-
cationworkloads.Processschedulingandmemorymanagement,
however, remain challengingdue to the distributedmain mem-
ory foundon suchmachines.This paperexaminesthe effectsof
OS scheduling and pagemigration policies on the performance
of suchcomputeservers.Our experimentsaredoneon the Stan-
ford DASH, a distributed-memorycache-coherentmultiprocessor.
We showthat for our multiprogrammingworkloadsconsistingof
sequential jobs, the traditional Unix schedulingpolicy doesvery
poorly. In contrast,a policy incorporatingclusterandcacheaffin-
ity alongwith asimplepage-migrationalgorithmoffersup to two-
fold performanceimprovement.For our workloadsconsistingof
multiple parallelapplications,we comparespace-sharing policies
that divide the processors amongthe applicationsto time-slicing
policies such as standardUnix or gang scheduling. We show
thatspace-sharingpoliciescanachievebetterprocessorutilization
dueto the operatingpoint effect, but time-slicingpoliciesbenefit
stronglyfrom user-level datadistribution. Our initial experience
with automaticpagemigration suggeststhat policiesbasedonly
on TLB miss information can be quite effective, and useful for
addressing thedatadistributionproblemsof space-sharingsched-
ulers.

1 Introduction

While small-scale shared-memorymultiprocessorshave been
availablefor a long time [17, 18], large-scaleshared-memoryma-
chineshaveonly recentlybecomeavailable[15, 13]. To achieve
scalabilitythesemachineshavedistributedmainmemoryanduse
a scalable interconnectanddirectory techniquesto provide low-
overhead cache-coherent accessto shareddata. The fine-grained
sharingallowed by cache-coherent non-uniform-memoryaccess
(CC-NUMA) machinescan significantly broadenthe appealof
parallelcomputing,by enablingsuchmachinesto performwell as
cost-effectivecompute-serversfor bothgeneral-purposemultipro-
grammingworkloadsaswell asfor moretraditionalsupercomput-
ing workloads.

Despitethe relatively low-overheadcommunicationsupported
by CC-NUMA machines,achievinghigh processor utilization for
realworkloadsis not trivial. Therearetwo mainproblems.First is

To appear in the Sixth International Conference on Archi-
tectural Supportfor ProgrammingLanguageand Operating
Sytems(ASPLOS-VI),SanJose,CA, October5-7, 1994.

the dynamicallyvarying andmixed natureof multiprogramming
workloads. For example,short jobs may be mixed with long-
running jobs, compute-intensivejobs requiring memory locality
may be mixed with I/O intensivejobs,andwhile at onemoment
theremay only be a single job in the system,a short time later
there might be a substantialoverload. Each of thesedifferent
jobs/situationspotentially require the systemschedulerto make
complexchoicesto get high performance.

The secondmain problem is management of the complex
memoryhierarchypresentin CC-NUMA machines.While cache-
hits take only a single clock cycle, a miss servicedfrom local
memory may take severaltens of cycles, while a remotemiss
may take over a hundredcycles. The scheduler facescomplex
choicesin decidingwhetherto migrate processes or datain or-
der to improve locality. Given thesecharacteristics,it is hardly
surprisingthat the schedulingpolicies of systemswith uniform
memoryaccesstimes perform poorly in scalablemultiprocessor
environments[25], and that new schedulingand pagemigration
policiesareneeded.

Several schedulingand page migration policies for multi-
processorsystemshave beenexplored in the literature. Com-
mon schedulingapproaches includecacheaffinity [12, 22], gang
scheduling[6, 9, 10, 19], processorsets [3], and processcon-
trol [26] or scheduleractivations[1]. Thesepolicieshaveso far
beenevaluatedonly in the contextof small bus-basedmultipro-
cessorswith uniformmemoryaccesstimes[1, 24, 25]. Substantial
work on pagemigration policieshasalsobeendone[4, 14], but
the target of this work has beenNUMA machinesthat are not
cachecoherent,like theBBN Butterfly. Theseearlierresultsfrom
small-scalebus-basedmachinesand non-cache-coherentNUMA
machines,unfortunately, aredifficult to extrapolateto CC-NUMA
multiprocessors.

In this paper we evaluateschedulingand page migration
policies using a recent CC-NUMA multiprocessor, the Stan-
ford DASH [15]. We target two different multiprogrammed
environments—thefirst consistingprimarily of sequential applica-
tions,andthesecondconsistingof parallelapplications.We have
modifiedthe kernelto implementseveralschedulingpoliciesand
a simplepagemigrationpolicy, andwe performa detailedevalu-
ation of the effectivenessof each.

Our resultsfor workloadsconsistingof sequentialapplications
showthataffinity schedulingcombinedwith a simplepagemigra-
tion policy improvesthe performanceof individual applications
by asmuchasa factor of two over the standardUnix scheduler.
While previousstudieson bus-based machinesshowedonly mod-
estgainswith affinity scheduling, we observemuchlarger gains
becauseof the highercostof cachemissesin a CC-NUMA ma-
chine. Our resultsfor parallel applicationsshow that while the
morespecializedtime-slicingandspace-partitioningpoliciesout-
performthegenericUNIX policy, thereis no clearwinneramong
them. The winning policy appearsto be applicationspecificand
dependson importanceof data distribution. Finally, our initial
experiencewith pagemigration for parallelapplicationsindicates

1



that we may be able to useTLB-missesinsteadof cache-misses
for implementingsuchpolicieson real multiprocessors.

The rest of the paperis organizedas follows. We presenta
brief overviewof variousscheduling andpagemigrationpolicies
in Section2. Wethendescribethearchitecturethatweuseandour
evaluationframeworkin Section3. We analyzesequentialwork-
loadsin Section4 and parallel workloadsin Section5. Finally,
we conclude in Section6.

2 Background and Related Work

In this subsection we briefly reviewpastproposalsfor scheduling
andpagemigration policies. Later sectionsof the paperdiscuss
our implementationof thesepolicies.

2.1 Scheduling Policies

Affinity Scheduling: In a traditional multiprocessoroperat-
ing system,processesmayfrequentlymovebetweenprocessorsas
partof loadbalancing,causingthemto continuallyneedto reload
their stateinto new caches.Furthermore,multiple processescan
be time-sharedon thesameprocessor, resultingin cacheinterfer-
ence.Cacheaffinity scheduling[22, 12, 24] attemptsto reschedule
a processon the processorit last used,therebyreducingprocess
migrationandcacheinterference.Theeffectivenessof cacheaffin-
ity hasbeenevaluatedthroughanalyticalstudies[22, 21], simu-
lation [12], andactualimplementations[24, 8, 27]. Experiments
on bus-based multiprocessors[24], however, show that realistic
applicationsachieveonly moderategains(less than 10%) from
affinity scheduling. We will show that the gains can be much
largeron CC-NUMA machines.

Gang Scheduling: For parallelapplications,Ousterhout[19]
proposed thegangschedulingor coscheduling approachin which
all theprocessesof a parallelapplicationarescheduledto run at
the sametime. This improvesthe synchronizationandcommuni-
cationbehaviorof applications,particularlythoseusingbusy-wait
synchronization. However, two-phasesynchronization—where a
processspinsfor awhile trying to acquirethelock, andthenblocks
if the lock is still unavailable—offers a muchmorerobustalter-
nativewithout any lossof performance,makingthis issuelargely
irrelevant(all of ourapplicationsusedtwo-phaselocking). Exper-
imental evaluationsof gangschedulinghavefound only limited
gains(rangingfrom -5 to 15% [25]) for multiprogrammedwork-
loads.However, thesestudieshavebeenperformedon bus-based
machines; we explorethe usefulnessof the gang-scheduling ap-
proachon CC-NUMA machines.

Processor Sets: In contrastto the abovetime-multiplexing
approaches, the processorsetstechnique[3] spacepartitions the
machine.Themachineis partitionedinto setsof processors,each
of which executesa singleparallelapplication. This reducesthe
cacheinterferencebetweenmultiple applicationsrunning on the
sameprocessor. Usingprocessorsetscanalsoensurethatdifferent
applicationsget an equalportion of the machine.(In contrast,in
a gangscheduledmachine,anapplicationthathasmoreprocesses
getsalargerfractionof themachine.)Suchequi-partitioningof re-
sourceshasbeenshownto reduceaverageresponsetime [16, 12].
In contrastto previoussimulation-basedstudies,we evaluatethe
performanceof processor setsandits interactionwith theNUMA
memoryhierarchyon a real machine.

Process Control/Scheduler Activations: The speedup
achieved by a parallelapplicationtypically dropsoff with increas-
ing number of processors,reflecting the penaltiesof increased
communication, synchronization,and load imbalance. A paral-
lel application thereforeexecutesmore efficiently (i.e., achieves

better processor utilization) with fewer processors.This is la-
beled the operatingpoint effect. The processcontrol/scheduler
activationsapproaches[26, 1] arean extensionof processor sets
in which a parallel applicationdynamically adjustsits number
of active processesto match the numberof physicalprocessors
assignedto its processorset. As a result the applicationexe-
cutesat a moreefficient operatingpoint alongits speedupcurve.
Processcontrol is most easily exploitedby parallel applications
written usingthetask-queuemodelof parallelism[1, 5], in which
user-level tasksarescheduledonto a numberof kernelprocesses.
Adjustmentsto the numberof active processes can thereforebe
embeddedwithin theruntimesystem,becomingtransparentto the
applicationprogrammer. Evaluationsof thesepolicies [11, 1] on
bus-basedmachinessuchasSGI workstationsandthe DEC Fire-
fly report significantperformanceimprovementsthat rangefrom
8-22%. Weexploretheinteractionof thisapproachwith themem-
ory hierarchyof CC-NUMA machines.

2.2 Page Migration Policies

Pagemigration policies havepreviously beenstudiedprimarily
in the contextof non-cache-coherentNUMA machines,suchas
the BBN Butterfly. Thesepolicies are basedon the pagefault
mechanism,andmigratea pageto the local memoryof the pro-
cessorthat referencesit. However, pagesthat areactively shared
betweenseveralprocessors mayberepeatedlymigratedfrom one
processor’s memory to another. To avoid this ping-pongingef-
fect, pagesare usually frozen in memoryafter a certainnumber
of migrations,and defrostedafter a timeout period so that they
are againeligible for migration. Severalvariationsof this basic
strategyhavebeenstudied[4, 14], andhavereportedsignificant
gains.

In contrast,we focuson the usefulnessof automaticpagemi-
grationon cache-coherentNUMA machines.Furthermore,while
pagemigrationis mostbeneficialfor pageswith high cachemiss
counts,this informationis not availableto theoperatingsystemon
currentmachines.We thereforealsoexplorethe effectivenessof
usingTLB misscountsasanapproximationto cachemisscounts
for makingpagemigrationdecisions.

3 Experimental Environment

Our experimentsareperformedon a directory-basedCC-NUMA
multiprocessor, theStanfordDASH [15]. We usea machinewith
sixteen33MHz MIPS R3000processorsorganizedinto four clus-
ters,with eachclustercontainingfour processorsandsomephys-
ical memory (56 MB each). Eachprocessorhasa 64 KB first
level cacheand a 256 KB second-level cache. Referencesthat
are satisfiedin the first-level cachetake a single processor cy-
cle, while hits in the second-levelcachetake about 14 cycles.
Memory referencesto datain the local clustermemorytake ap-
proximately30 cycles,while referencesto thememoryof another
cluster take between100 and 170 cycles. The machineruns a
modifiedversionof SGI IRIX, anoperatingsystembasedon Sys-
tem V Release3. We havemodifiedthe kernelto implementthe
schedulingpoliciesdescribedearlier. We havealsoimplemented
a simple pagemigration policy. Each of theseis describedin
detail in later sections.

To obtaindetailedperformanceinformation,we instrumented
the kernel to dynamicallytrack a variety of information relating
to schedulingand pagedistribution. We augmentedthe context
switch routine to count (a) the numberof context switchesin-
curredby a process,(b) thenumberof timesa processis resched-
uled on anotherprocessor, and(c) the numberof timesa process

2



is switchedto anothercluster. We alsoaugmentedthe pageallo-
cationroutineto trackthedistributionacrossclustersof thepages
belongingto eachprocess.Sinceboth contextswitch and page
allocationaresufficiently expensive operations,maintainingthese
countersincursnegligibleoverhead.Weraneachexperimentthree
times,andpresentresultsfrom the medianrun.

Finally, we used the hardware performancemonitor on
DASH [15] to monitor the bus and network activity in a non-
intrusivemanner. For example,we trackedthe numberof cache
missesto local andremotememoriesfor eachof the processors.
To understand theeffectivenessof usingTLB misscountsfor page
migration,we alsogatheredtracescontainingall cacheandTLB
misses.

4 Evaluation of Sequential Workloads

In this sectionwe evaluatetheperformanceof OSschedulingand
pagemigration strategiesfor multiprogrammedsequentialwork-
loads. We first describeour policiesalongwith their implemen-
tation,andthenpresentperformanceresultsfor the workloads.

4.1 Implementation of the Policies

Of the various schedulersdescribedearlier, only the affinity
scheduling policies makesensefor workloadsconsistingof se-
quential applications. We explore two variations of affinity,
namelycacheaffinity andclusteraffinity. Cacheaffinity improves
reusein thecachein two ways. First,agivenprocessortriesto run
thesameprocessthatit lastran,effectively increasingtheschedul-
ing time-slice. Second,a processbeingscheduled tries to return
to the processor where it last ran therebyavoiding the penalty
of reloadingthe cacheon anotherprocessor. Clusteraffinity im-
provesmemorylocality (servicingcachemissesfrom local rather
thanremotememory)on a cluster-basedmachinelike DASH by
trying to schedulea processin the sameclusterwhereit last ran.
Theseaffinity policies work togetherto improveboth cacheand
memorylocality in a CC-NUMA machinelike DASH.

We baseour implementationof affinity schedulingon the tra-
ditional priority mechanismin Unix [24], in which thepriority of
a process is decreasedasit accumulatesCPU time (onepoint for
every20msof executiontime). We implementedaffinity schedul-
ing throughtemporaryboostsin thepriority of desirableprocesses.
While searchingfor the next processto execute,a processor fa-
vors (a) the processthat was just running on the processor, (b)
processesthat lastranon thatprocessor, and(c) processesthat last
ran within the sameclusteras the processor. We usea priority
boostof 6 points for eachof thesethree factors—thisprovides
a moderatedegreeof affinity while maintainingfair scheduling
acrossmultiple applications.We verified that the performanceof
our affinity scheduleris relatively insensitiveto small variations
in thevalueof the priority boost.

Our pagemigration strategyis basedon TLB missesto the
datapagesof a process.We modifiedthesoftwareTLB misshan-
dler invoked on missesin the hardwareTLB (64 entries,fully-
associative) of the MIPS R3000processorto checkif the target
of the miss is in local or remotememory. If remote,the page
is markedfor migration anda trap is generatedto the fault han-
dler which thenperformsthe actualmigrate. To avoid moving a
pagetoo often we freezea page(making it ineligible for migra-
tion) immediatelyfollowing a migration; a defrost daemonruns
periodically(every second) anddefrostsall pagesin the system.
While onecanimaginemanymorecomplexandsophisticatedal-
gorithms,our resultsshow that this schemeis both simple and
effective.

Table 1: Applications used in the sequentialworkloads,
their standaloneexecutiontime, anddatasetsize.

Appl. Description Time Size
(sec) (KB)

Mp3d Simulationof rarefiedhypersonic flow. 21.7 7,536
Input: 40000particles,200 time steps.

Ocean Model eddycurrentsin anoceanbasin. 26.3 3,059
Input: 96x96grid.

Water N-bodymoleculardynamicsapplication. 50.3 1,351
Input: 343molecules.

Locus VLSI router for standardcell circuit. 29.1 3,461
Input: circuit with 2040wires.

Panel Choleskyfactorizationof a sparsematrix. 39.0 8,908
Input: Sparsematrix with 4K rows.

Radiosity Computethe radiosityof a scene. 78.6 70,561
Input: a room scene.

Pmake 4-processparallelcompilation. 55.0 2,364
Input: 17 C files, average770 lines each.

Table2: Schedulingeffectivenessof thedifferentstrategies
for the Mp3d applicationfrom the Engineeringworkload.

Scheduler Switchesper second
Context Processor Cluster

Unix 19.90 19.70 15.90
Cluster 9.03 8.08 0.03
Cache 0.71 0.15 0.15
Both 0.69 0.06 0.03

4.2 Workloads

Our sequentialworkloadscontain a mix of both short and
long running jobs that one might encounterin a computeserver
environment.The first workload(Engineering) consistsof scien-
tific/engineeringapplicationschosento modelanengineeringde-
velopmentenvironment.The secondworkload(I/O) is a diverse
mix that includesengineeringapplications,a graphicsapplication,
a pmake,and two editor sessions. This workload is intendedto
modela moreinteractive,I/O intensiveenvironment.Eachof our
workloadscontainsabouttwenty-fiveactivejobson asixteenpro-
cessormachine,with the individual jobs startingandcompleting
in a staggeredfashion. Table1 providessomeof the character-
istics of eachapplication,while Figure1 givesa dynamicprofile
of the executionof eachworkloadundera standardUnix sched-
uler. Note that the workloadscausethe machineto go from an
initial underloadedphasethroughan overloadedphaseto a final
underloadedphase,thusamplyexercisingtheschedulingandpage
migrationalgorithms.

4.3 Performance Results

We run eachworkloadunderfour differentschedulers—Unix,
cacheaffinity alone, cluster affinity alone, and cacheand clus-
ter affinity combined. Furthermore,we run eachschedulerwith
and without automaticpagemigration enabled. The exception
is Unix with pagemigration, which performsparticularly badly
sinceprocesses arecontinuallyrescheduledon a differentcluster
causingexcessive pagemigrations. We first presentresultsfrom
theaffinity scheduling policiesalone,followed by theresultsfrom
combiningpagemigrationwith affinity scheduling.

4.3.1 Performance with Affinity SchedulingAlone

To evaluatethe effectivenessof the affinity schedulers,we mon-
itor the schedulingof eachapplicationin the workload. Table2

3



Application

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (sec)

locus

panel

water

ocean

mp3d

Engineering Workload

pmake

ocean

mp3d

edit

locus

rad

water

0 10 20 12011010090807060504030

Time (sec)

I/O Workload

Application

Figure1: Executiontimeline for the individual applicationsin eachworkloadwhenrun underthe Unix scheduler. Eachline showsthe
startandfinish time for that application.

| | | | | | | ||0

|20

|40

|60

 C
P

U
 T

im
e 

(s
ec

)

System

  50
  45   45

  39

  69

  57
  52   54

  67

  61
  55   54

u cl ca b
MP3D

u cl ca b
Ocean

u cl ca b
Water

User

Figure2: TheCPU time for someapplicationsfrom the engineering
workload under different schedulerswithout migration. Unix (u),
clusteraffinity (cl), cacheaffinity (ca), and both cacheand cluster
affinity (b).

||0

|50

|100

|150

|200

 c
ac

he
 m

is
se

s 
(in

 m
ill

io
ns

)

Remote
 170

 155

 115  113

 202  196
 185

 174

u cl ca b
Engineering

u cl ca b
I/O

Local

Figure3: Local andremotecachemissesunderdifferentschedulers
without migration. Unix (u), clusteraffinity (cl), cacheaffinity (ca),
andbothcacheandclusteraffinity (b).

presentsthe scheduling profile for theMp3d applicationfrom the
Engineeringworkload (the schedulingbehaviorof the other ap-
plicationsin the two workloadsis similar). The tablepresentsthe
averagerateat which this applicationincurredcontext,processor,
andclusterswitchesover the durationof its executionunderthe
different schedulers. The numbersindicate that the application
was frequently movedaroundunder Unix. In contrast,adding
cluster affinity almost eliminated cluster switches,while cache
affinity as well as combinedcacheand cluster affinity dramati-
cally reducedthe frequencyof context and processorswitches.
Theseimprovementsin scheduling behavioraredirectly reflected
in theperformanceof individualapplicationsin theworkload. We
first discussthe engineeringworkload,thenthe I/O workload.

Figure 2 showsthe performanceof three applicationsfrom
the Engineeringworkload: Mp3d, Ocean,andWater. The height
of eachbar representsthe CPU time for the completionof the
application,and is brokendown into userandsystemtime. The
resultsshowsubstantialperformancegainswith eachof theaffin-
ity schedulers:cacheaffinity performsslightly betterthancluster
affinity, andcombinedcacheand clusteraffinity usuallyoutper-
forms the otherschedulers.

The performanceimprovementsof the Engineeringapplica-
tions are due to the improvedcachebehaviorthat occursunder
affinity scheduling.This is demonstratedby the barson the left
handsideof Figure3, whichplot thetotal numberof cachemisses
incurredundereachscheduler. We find that clusteraffinity has
limited effect on the numberof cachemisses,since it aims at
memory locality rather than cachereuse. However, the number
of cachemissesdecreasessubstantiallywith cacheor combined
cacheand cluster affinity. (Limitations of the DASH hardware
monitorpreventusfrom analyzingper-applicationcachebehavior
in the workload.)

The cachemiss resultsfor the I/O workload are similar al-
though less pronounced. This is becausethe natureof the ap-
plications in the I/O workload reducesthe effectivenessof the
affinity schedulers.For instance,the pmakeapplicationrepeat-
edly createsshort-livedprocesses, therebydisturbingother jobs
that may haveacquiredaffinity for a processor. Furthermore,all
I/O on the configurationof DASH we usedis performedonly on
a single cluster, forcing applicationsto competefor thosefour
processorsto do I/O. Theseworkloadcharacteristicspreventthe
affinity schedulers from achievingthe reductionsin cachemisses
that were possiblewith the Engineeringworkload. The overall

4



|0

|20

|40

|60

 C
P

U
 T

im
e 

(s
ec

)
System

  31   29   29
  34   32

  29

  55   54   54

cl ca b
MP3D

cl ca b
Ocean

cl ca b
Water

User

Figure4: TheCPU time for someapplicationsfrom the engineering
workloadunderthe differentschedulerswith automaticpagemigra-
tion. Unix (u), clusteraffinity (cl), cacheaffinity (ca),andbothcache
andclusteraffinity (b).

||0

|50

|100

|150

|200

 c
ac

he
 m

is
se

s 
(in

 m
ill

io
ns

)

Remote

 148

 114  112

 205

 179

 200

cl ca b
Engineering

cl ca b
I/O

Local

Figure5: Local andremotecachemissesunderdifferentschedulers
with pagemigration. Unix (u), clusteraffinity (cl), cacheaffinity (ca),
andbothcacheandclusteraffinity (b).

improvementsin executiontime for the applicationswas about
10-20%aswe will showin Section4.4.

4.3.2 Performance with Automatic PageMigration

When optimizationsfor cachereusealoneare not sufficient
for goodperformance(i.e., missesarestill high), pagemigration
canhelpreducememorystall time by automaticallymovingpages
from remoteto local memory. Figure 4 showsthe performance
of the threeapplicationsfrom Figure 2 when pagemigration is
enabled. Comparingresultsacrossthesetwo figures,we seesub-
stantialperformancegainswith pagemigration for Mp3d (25%)
andOcean(45%) undercombinedcacheandclusteraffinity. In
contrast,theWaterapplicationhasa smallworking setandworks
well within its cache,hencepagemigrationdoesnot helpit much.
For theMp3dandOceanapplicationsin Figure4, theoverheadof
pagemigrationis reflectedin thesizeableportionsof systemtime
for eachapplication. However, the gains from pagemigration
morethancompensatefor this additionaloverhead.

The impact of pagemigration is also demonstratedby the
composition of the cachemissesin the workload(Figure5). For
instance,comparingthe compositionof cachemissesundercom-
binedcacheandclusteraffinity with andwithout pagemigration
for theEngineeringworkload(Figures3 and 5), we canseethat
althoughthe total numberof cachemissesis not affected,many
moreof thesemissesareservicedfrom local memorywhenpage

|

0
|

10
|

20
|

30
|

40
|

50

|0

|20

|40

|60

|80

|100

 No Migration

 Time (sec)

 %
 o

f P
ag

es
 L

oc
al

|

0
|

10
|

20
|

30
|

40
|

50

|0

|20

|40

|60

|80
|100

 Migration

 Time (sec)
 %

 o
f P

ag
es

 L
oc

al

Figure6: Schedulingbehaviorandpagedistributionfor the
Oceanapplicationwith cacheaffinity, without pagemigra-
tion (above)and with pagemigration (below). The plots
showthe fraction of pagesin local memory, with thesmall
barsalongthe x-axis identifying pointsof clusterswitch.

migration is turnedon. The sameis true of the I/O workload.
To help build intuition for theseeffects, Figure 6 presents

the correlationbetweenscheduling behaviorand pagemigration
for the Oceanapplicationfrom the engineeringworkload under
the cacheaffinity scheduler. The figure showsthe resultswith
and without pagemigration. The small vertical bars along the
x-axis indicate points where the applicationwas switchedfrom
one cluster to another, while the curve plots the percentageof
pagesof the applicationthat arelocal to the application’s current
cluster. As shownin the figure, affinity schedulingwithout page
migrationprovideshighly variableperformance.For instance,the
processoften acquiresaffinity for a processor/clusterwith most
of its datain remotememory, while sometimesthe processgets
lucky andfindsmostof its datain local memory. With migration,
however, the performanceis muchmorerobust.A clusterswitch
cancausemostof thedatato beremote,but pagemigrationsoon
movesthe application’s working setto the new cluster, asshown
by the initial dip followed by improvementsin the percentageof
local pages.Note that the horizontalline at 60% of pageslocal
actually indicatesexcellentlocality, sincethe remaining40% of
the pagesareno longer referencedby the applicationduring this
part of its execution.

4.4 Summary

Having lookedat the resultsfrom individual applications,we

5



Table3: Performanceof the different schedulerswith and
without pagemigration. Numbersshow the averageand
standarddeviationof the overall responsetime normalized
to Unix without migration.

EngineeringWorkload I/O Workload
Sched No Migration Migration No Migration Migration

Avg StDv Avg StDv Avg StDv Avg StDv
Unix 1.00 — — — 1.00 — — —
Cluster 0.76 0.17 0.59 0.12 0.90 0.06 0.69 0.14
Cache 0.71 0.15 0.55 0.12 0.80 0.09 0.69 0.14
Both 0.72 0.15 0.54 0.13 0.84 0.11 0.71 0.17

 Unix
 Cache+Clus
 Cache+Clus+Migr

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|

70
|

80
|

90
|

100
|

110
|

120
|

130
|

140

|0

|5

|10

|15

|20

|25

 Time (secs)

 L
oa

d

Figure7: The load profile (numberof activejobs) over time for
theengineeringworkloadunderUnix andthescheduler with both
cacheandclusteraffinity with andwithout pagemigration. The
curveswith affinity schedulingand pagemigration indicatethat
individual applicationsand the workload as a whole complete
faster.

nowlookattheoverallperformanceof theworkloads.Wemonitor
the wall-clock completiontime (responsetime) of eachapplica-
tion, sincethat is the bottom-line metric for a personusing the
machine.Next, we normalizethe responsetime of eachapplica-
tion in the workload to its time whenrun underUnix. We then
simply take the averageof this normalizedtime over all appli-
cationsin the workload. As shownby the numbersin Table3,
affinity schedulingsubstantiallyimprovesthe averageresponse
time for both workloads:acrossthe different affinity schedulers,
the gainsrangebetween25-30% for the engineeringworkload,
andbetween10-20%for the I/O workload. With pagemigration
theperformancegainsareevenmoredramatic,almostashighasa
factorof two (on theaverage)for applicationsfrom theengineer-
ing workload. Table3 also showsthe standarddeviationin the
normalizedresponsetime acrossthe applicationsin a workload.
This numberis uniformly small acrossall schedulers and both
workloads.This indicatesthat nearlyeveryapplicationimproved
in performancewith affinity scheduling,and no applicationwas
starvedunfairly. Figure 7 showsgraphically that the workload
asa wholecompletessoonerwith affinity schedulingandaffinity
with pagemigration thanunderUnix scheduling.

To summarize,in contrastto previousstudiesthat havere-
portedmodestgainsof up to 10%with affinity scheduling onbus-
basedmachines,our experiencesuggeststhat affinity scheduling
offerssignificantperformancebenefitson large-scalemultiproces-
sorswith NUMA memoryhierarchies. The latencyof memory
references,particularly to remotedata, is much larger in these
machines, andoptimizationsto improvelocality in thecacheand
in local memory are correspondinglymore important. Affinity
scheduling helps improve cachereuse,and can be successfully
combinedwith OS pagemigrationstrategiesto bring the remote

pagesinto local memory(providing COMA [23] style benefits).
We havefound that for sequentialworkloads,simplepagemigra-
tion schemesoffer substantialgainsevenon NUMA architectures
with hardwarecaching,andarequite robustin practice.

5 Evaluation of Parallel Workloads

In thissectionweevaluateOSschedulingandpagemigrationpoli-
ciesin thecontextof parallelapplications.We first discusstrade-
offs betweendifferent schedulingpoliciesanddescribetheir im-
plementation.We thenevaluateperformanceof differentschedul-
ing policies(without consideringpagemigration)usingcontrolled
experimentsandmultiprogrammedworkloads.Finally, wediscuss
implementationissuesandtheperformancepotentialof automatic
pagemigrationby the operatingsystem.

5.1 Tradeoffs Amongst Scheduling Policies

In Section2 wedescribedtheparallel-applicationschedulingpoli-
ciesof gangscheduling,processorsets,andprocesscontrol. Un-
like theaffinity schedulingpolicy usedfor sequentialapplications,
schedulingpoliciesfor parallelapplicationshavea largeeffect not
only on performance,but they also determinethe programming
modelseenby the programmer, runtimesystem,and/orthe com-
piler. We discussbelow effectsof the scheduler on potential to
exploit datalocality, efficiencydueto the operatingpoint effect,
andon the synchronizationbehaviorof parallelapplications.

5.1.1 Data Locality

Theprimary mechanismto improvedatalocality in a parallelap-
plication is to distributetasksanddataso that tasksexecuteclose
to the datathey reference[5]. However, it is commonto assume
exclusiveuseof the machinein performingtheseoptimizations,
anassumptionthat is no longervalid in a multiprogrammedenvi-
ronment. Becauseof its coschedulingproperty, gangscheduling
providesthe illusion of an exclusivemachine,with eachapplica-
tion processassignedto a particular processor. This allows the
programmer/compilerto successfully performtheseoptimizations
without regardfor otherapplications.However, dependingon the
systemload, the processesof an applicationmay be movedto
a differentsetof processorsduring execution,affecting any data
distributionoptimizations.Thespace-sharingapproachesmaydy-
namicallyvary both the numberof processors aswell asthe ac-
tual processorsassigned to an application, again making these
optimizationsdifficult.

The different schedulersalso affect the cachebehaviorof a
parallel application. For instance,gang schedulingmay cause
cacheinterferencebetweenprocessesthat belongto differentap-
plicationsbut are time multiplexedonto the samephysicalpro-
cessor. The space-sharing approaches avoid this problemsince
eachprocessor set is assignedexclusivelyto a singleapplication.
However, in processorsets,multiple processes of the sameappli-
cationmay be time-sharedon the sameprocessor, causingcache
interferenceif their working setsdo not overlap.

5.1.2 Operating Point

As discussed earlier in Section2, anapplicationusuallyexecutes
at a moreefficient operatingpoint alongits speedupcurve(i.e., at
a point wherethe marginal efficiencyof eachprocessorallocated
to the applicationis higher)whenthe numberof processors used
by it is smaller. Consequently, in a multiprogrammedenviron-
ment,wherethe effective numberof processorsavailableto any
given applicationis smallerthan the total numberof processors,

6



it is desirablefor applicationsto reducetheir activeprocessesto
matchthe numberof availableprocessors. The processcontrol
scheduler exploitsthis effect by keepingeachparallelapplication
informedof thenumberof processorsallocatedto it (in its proces-
sor set),therebyenablingthe applicationto dynamicallyadaptto
the processor resourcesit is allocated.The gangschedulingpol-
icy, in contrast,providesamachineabstractionasif all processors
arestill availableto eachof the applications.The processor-sets
scheduler alsodividesup the processorsamongthe applications,
but it doesnot inform the userapplicationabout the changein
resources; thusthe operatingpoint cannot be exploited.

5.1.3 Synchronization

The scheduling policiesof the operatingsystemcansignificantly
affect the synchronization behaviorof parallel applications,par-
ticularly thoseusing busy-wait synchronization. For instancea
processmaygetdescheduledby theOSin themiddleof a critical
section,causingotherprocesseswaiting for the critical sectionto
spin. However, this is largely a non-issuefor applicationsusing
two-phasesynchronization(spin for a while and thenblock); all
our applicationsusetwo-phaselocks.

5.2 Implementation of Scheduling Policies

Weimplementgangschedulingusingthematrix method[6, 7, 25],
in which rows representtime slicesand columnsrepresentpro-
cessors. When a parallel applicationstartsup, its processes are
placedwithin a single row. The schedulerconceptually executes
the rows in a round-robin fashion—all processesin a row are
scheduledfor thedurationof a timeslice(default100ms),before
moving on to the next row. We schedulea row for execution
througha simpleextensionto the Unix scheduler, by temporarily
boostingthepriority of all processesin thatrow for thattimeslice.
If theprocessesof a newapplicationdo not fit within anexisting
row thena newrow is created.As applicationsstartandcomplete
the matrix is likely to get fragmented;we thereforecompactthe
matrix periodically(every10 secondsin our currentimplementa-
tion). Finally, theprocessesof a parallelapplicationareplacedin
a contiguous setof columnswithin a row; they thereforeexecute
on a contiguousset of physicalprocessorson the machine,and
exploit clusterlevel locality in anarchitecturesuchasDASH.

In our processorsets implementation,an application can
choose to executein its own processorset by making a special
systemcall. This createsa new processorset with its own run
queueonwhich theprocessesof thecorrespondingapplicationare
enqueued. The partitioning of processorsamongapplicationsis
recomputedeachtime a parallelapplicationarrivesor completes.
Processorsaredistributedequallyacrossprocessorsetsunlessan
applicationrequestsfewer processors. There is a separatepro-
cessor set that executesall sequential jobs andthoseparallel ap-
plicationsthat did not requesta processorset. The size of this
default processor set is varied dynamicallybasedon the system
load. Finally, we allocatephysicalprocessorsto a setin multiples
of anentireDASH clusterasfar aspossible,andtherebyexploit
clusterlocality in DASH.

For processcontrol we extendour processorsetsimplemen-
tation with a mechanismto keep applicationsinformed of the
numberof processorsallocatedto their processor set. Eachpro-
cessor sethasa variable,maintainedwithin the operatingsystem,
for the numberof processorsin the set at any time. In a task-
queuemodel,the runtimesystemof theapplicationexaminesthis
variableat safesuspensionpoints(i.e. at the endof a task),and
suspendsor resumesa processasnecessary to matchthe number
of processorsassigned.Detailsof the implementationcorrespond
closelyto thosein Tucker’s thesis[25].

Table 4: The parallel applicationsusedin the controlled
experimentsandtheir standalonerunningtimes.

Appl. Description Time
(16 procs)

Ocean Eddyandboundarycurrentsin anoceanbasin. 40.9s
Input: 192x192grid.

Water N-bodymoleculardynamicsapplication. 29.4s
Input: 512molecules.

Locus VLSI routerfor standardcell circuit. 39.4s
Input: circuit with 3029wires.

Panel Choleskyfactorizationof a sparsematrix. 58.3s
Input: tk29.O,matrix with 11K rows.

5.3 Performance Results

Weevaluatethethreeschedulingpoliciespresentedabove(affinity
schedulingperformedsimilar to Unix and is not reportedhere),
usingseveralparallelapplications.Ourevaluationconsistsof both
controlled experimentsand multiprogrammedworkloads. The
controlledexperimentsconsistof a singleapplicationrunningby
itself in an emulatedmultiprogrammedenvironment,therebyen-
abling us to isolate the different factors affecting performance.
Themultiprogrammedworkloadsconsistof a mix of differentap-
plicationsthroughwhichwe cancomparetheoverallperformance
of the differentschedulers,but cannotstudyindividual effects.

5.3.1 Parallel Applications and Results

For both our controlledexperimentsandworkloadswe usefour
parallel applications:Ocean,Water, Locus,and Panel. All four
applicationsarewritten in the

�������
[5] parallelprogramminglan-

guage,anextensionof C++ that supportsdynamictask-levelpar-
allelism. (The applicationsareoriginally from the SPLASH[20]
suite.) Theuseof task-levelparallelismis an importantprerequi-
site for benefitingfrom processcontrol scheduling.

The Oceanprogrammodelseddycurrentsin an oceanbasin.
The main datastructuresin Oceanare severalmatrices,and the
basicoperationsare very regular, suchas addingtwo matrices.
Both dataandcomputationarepartitionedacrossprocessorssuch
that eachprocessor computesprimarily within its local data.The
Waterapplicationmodelsa systemof watermoleculesinteracting
with eachother. Moleculesare partitionedacrossprocessorsso
thateachprocessorworkson its assignedsetof molecules,except
for onephasethat requiresall-to-all communication.The cache
hit ratesare high due to low communicationandsmall working
sets;datadistributionis thereforerelativelyunimportant.Locusis
a VLSI routingprogramwherethemaindatastructureis a shared
costmatrix thatis bothreadandmodifiedby all processors.There
is ahighdegreeof communicationsodatadistributionis againnot
helpful. Panelis a sparsematrix factorizationprogramin which
the matrix is partitionedinto setsof columns(or panels)that are
distributedacrossprocessors.Tasksfor the basicoperation,an
updateof a panelby anotherpanel,aredistributedbasedon the
panelthey updatefor betterlocality.

Table 4 lists the applications,the input used,and the total
executiontime (i.e. including both serial and parallel portions)
runningstandaloneon 16 processors.(Theapplicationis run with
16 processesandeachprocessis attachedto a specificprocessor
for thedurationof thewholerun.) Figure8 reportson theparallel
portion of eachapplication,showingthe executiontime and the
numberof cachemisses(brokeninto local/remotemisses)when
running standaloneon 4, 8, and 16 processors.A high fraction
of local missesindicatesthat locality is quite important for the
application.

7



|0

|20

|40

|60

|80
 P

ar
al

le
l e

xe
cu

tio
n 

tim
e 

(s
ec

)   87

  45

  27

  44

  25

  15

  63

  38

  23
  29

  17
  13

s4 s8 s16
Ocean

s4 s8 s16
Water 

s4 s8 s16
Locus

s4 s8 s16
Panel

|0

|20

|40

|60

|80

|100

|120

 C
ac

he
 m

is
se

s 
(in

 m
ill

io
ns

) 

Remote
 118

  98

  79

  16
  21  25

  41
  46  46

  27  29
  36

s4 s8 s16
Ocean 

s4 s8 s16
Water

s4 s8 s16
Locus

s4 s8 s16
Panel

Local

Figure 8: Wall-clock executiontime (in seconds),and number
of cachemisses(in millions) partitioned into local and remote
references,in the parallel portion of eachapplicationstandalone
on 4, 8, and16 processors(labeleds4,s8,s16).

5.3.2 Controlled Experiments

In our controlledexperimentswe focuson the time spentin the
parallelpartof eachapplicationandignoretheserialportions,dur-
ing which the applicationusesa singleprocessorandtheparallel
schedulersare thereforeequivalentin performance.To compare
schedulerswe usethe metric “normalizedCPU time”, computed
by addingup thetime spentonall theprocessorswithin theparal-
lel portionandnormalizingit to its valuein the idealcase(which
is theapplicationrunningstandalonewith asmanyprocessorsas
it requested).This metric can be viewed as the inverseof ma-
chine efficiency—the larger the value the more inefficiently the
processors are being usedas comparedto the standalonecase.
The normalizedmetric also allows us to compareresults from
differentapplicationsin thesamechartwithout scalingproblems.

In addition to the normalizedCPU time metric, we usethe
performancemonitor on DASH to countthenumberof local and
remotecachemisses.Again to allow comparisons,we normalize
the numberof missesto the valuefor the standalonecase.(Note
that the absolutenumberscan be computedfrom both normal-
ized metricsusing the basenumbersprovidedin Figure8). The
normalizationvalueis 100 in all figures.

5.3.2.1 Gang Scheduling: In a multiprogrammingenviron-
mentusinggangscheduling,themajor factorsdegradingapplica-
tion performancearecacheinterferenceandthepossibledifficulty
of doingdatadistributionoptimizations.To examinetheeffect of
cacheinterferencewemodifiedthekernelto flushthecachesin the
systemat eachgangrescheduling interval. This effectively mod-
elsworst-casecacheinterferencewith otherapplicationswherean
applicationmust reloadits working setevery time it is resched-

| | | | | | | | | ||0

|30

|60

|90

|120

|150

 N
or

m
al

iz
ed

 C
P

U
 ti

m
e

 122

 156

 105 103
 109 109

 103  98  101
 110

 102 102  102

 121

 101 102

g1gnd1g3 g6
Ocean

g1gnd1g3 g6
Water 

g1gnd1g3 g6
Locus

g1gnd1g3 g6
Panel

| | | | | | | | | ||0

|40

|80

|120
|160

|200

|240

 N
or

m
al

iz
ed

 C
ac

he
 m

is
se

s

Remote

 196

 220

 114 114

 187 185

 127
 114

 151 157

 111 111

 156
 164

 109 110

g1gnd1g3 g6
Ocean

g1gnd1g3 g6
Water

g1gnd1g3 g6
Locus

g1gnd1g3 g6
Panel

Local

Figure 9: GangScheduling:Normalizedparallel executiontime
and normalizedcachemiss count (w.r.t. standalone16). With
cacheflush andtimesliceof 100ms(g1), turning off datadistri-
bution (gnd1),timesliceof 300ms(g3), timesliceof 600ms(g6).

uled. Sincethe performanceimpactof thesereloadcachemisses
aredependent on the lengthof the timeslice,we alsoexaminethe
performancewith 300msand600mstimeslicesin additionto the
default100mstimeslice.

Undera multiprogrammedworkload,a gangschedulermight
haveto move applicationsbetweenCPUs in order to keep the
load balancedacrossthe machine.However, this movementcan
breakthe datadistribution donefor the application. To examine
this effect we simply turn off the explicit datadistribution opti-
mizations,andallocatedatabasedon thedefaultfirst-touchpolicy
(datais allocatedfrom thelocal memoryof theprocessor thatfirst
touchesit).

Figure9 showsthe normalizedCPUtime andthe normalized
cachemissesfor the parallel part of eachapplication. All the
barscorrespondto runs where the cacheis explicitly flushedat
everytimeslice. Bar g1 showsresultswith datadistributionopti-
mizationsanda schedulingintervalof 100ms.Datadistributionis
turnedoff in gnd1.Barsg3andg6representgangscheduling with
datadistributionandtimeslicesof 300msand600msrespectively.

The resultsshowthat with a 100mstimeslice,cacheinterfer-
encein gang-scheduling cansubstantiallyincreasethe numberof
cachemissessufferedby an application. In our runsthe number
of missesincreasedbetween50% and100%over the ideal case.
Theoveralleffect of thesemisseson applicationperformancede-
pendedon the application. For memory intensiveapplications
such as Ocean,performancedrops by as much as 22%. The
restof theapplicationsencounter relatively small (lessthan10%)
slowdowns.

The g3 andg6 barsshowthat with longer timeslicesalmost
all effectsof cacheinterferencecanbe mitigated. In fact, with a
timesliceof 600ms(g6), both cachemissesandperformanceare

8



|0

|40

|80

|120

|160

|200

|240

|280

|320

 N
or

m
al

iz
ed

 C
P

U
 ti

m
e  305 314

 112 105  108
  89

 125
 105

p8 p4
Ocean

p8 p4
Water 

p8 p4
Locus

p8 p4
Panel

Figure 10: Processorsets: Normalizedparallel executiontimes
(w.r.t. standalone16). 16-processapplicationon a 8-processor
set(p8), on a 4-processorset(p4).

closeto ideal. The timeslice period, however, must be chosen
carefully—large timeslicesmitigate cacheinterferencebut may
leadto unfair schedulingof multiple applications.

Finally, theresultsalsoshowthatthe impactof not doingdata
distributionvariesdependingon theapplication(asshownby the
gnd1bars in Figure 9). Applicationswherememory locality is
importantperform quite poorly whendatadistribution optimiza-
tionsaredisabled(e.g. Oceanis 56%worse,Panelis 21%worse).
Theotherapplicationsperformonly 10%worsewithout datadis-
tribution.

5.3.2.2 Processor Sets: In processorsets, the schedulerre-
sponds to an increasedmultiprogrammedworkloadby squeezing
the applicationon to fewer processors.To model this we ran a
16-process invocationof eachapplicationwith only 8 or 4 pro-
cessors. Figure 10 showsthe cumulativeexecutiontime for the
parallel part of eachapplicationwhen running on 8 and 4 pro-
cessors, normalizedto the ideal casewherethe applicationruns
standalone on 16 processors.

The results show that Ocean reacts very badly to being
squeezed onto a smaller number of processors,Panel suffered
a 25% slowdown,while the other applicationsare affectedonly
mildly. The 300% slowdownfor Oceanis a direct consequence
of multiplexing severalprocessesonto fewer processors within a
processor set. In Oceaneachprocesscomputesprimarily within
its assigned portion of datawith little inter-processcommunica-
tion. Theindividualdataportionsarelarge,thereforemultiplexing
multiple processesontothesameprocessoractsasif a cacheflush
wasbeingdoneeverytime slice.

In contrast, the small working set in Water, and the shar-
ing betweenprocesses in LocusandPanel,keepthe performance
degradation small for theseapplications.Locusbenefitedenough
from thesharingto run 10%moreefficiently on 4 processorsthan
on the16 CPU standalonecaseto which we normalized.

5.3.2.3 Process Control: Our experimentswith processcon-
trol aresimilar to theprocessorsetexperiments,with processcon-
trol havingthe samedisadvantage that no datalocality optimiza-
tions (suchaspagemigration)areusedfor the results.However,
comparingthe performanceof processcontrol to the 16-process
standalone executionin Figure11, we seethat evenwithout data
distributionoptimizations,theprocesscontrol schedulerperforms
quitewell dueto theoperatingpointeffect. Performanceimprove-
mentover the standalonecaseis ashigh as26% for Panel.

The one major exceptionto the generalimprovementsdue
to processcontrol is Oceanon 8 processors,wherethe machine
efficiency is abouttwo timesworsethanstandalonewith 16 pro-
cessors andprocesscontrol with 4 processors.The performance

|0

|40

|80

|120

|160

|200

 N
or

m
al

iz
ed

 C
P

U
 ti

m
e  204

  88   89
  78

 108

  81   88
  74

p8 p4
Ocean

p8 p4
Water 

p8 p4
Locus

p8 p4
Panel

Figure 11: ProcessControl: Normalizedparallel executiontime
w.r.t. standalone16. 16-processapplicationon a 8-processorset
(p8), on a 4-processorset(p4).

|0

|50

|100

|150

|200

|250
|300

 N
or

m
al

iz
ed

 C
P

U
 ti

m
e

 105

 305

 204

 103 112
  89

 102 108 108  101
 125

  88

g ps pc
Ocean

g ps pc
Water 

g ps pc
Locus

g ps pc
Panel

Figure 12: Comparingdifferent schedulers:Normalizedparallel
executiontime w.r.t. standalone16 experiment. Gang(g), pro-
cessorsets(ps), andprocesscontrol (pc).

is worsethan the standalonecasebecauseit usesoptimizedtask
assignmentto processors and datadistribution in main memory,
sothat therearefewer total missesanda larger fractionarelocal.
Looking closelyat theperformanceof processcontrolwith 4 and
8 processors,we foundthat while the total numberof misseswas
approximatelythe same,the 8 processor casehada much larger
fractionof remotemisses.An explanationis thatgiventhesizeof
datagrids usedin Oceanandthe somewhatrandomtaskassign-
mentthat is happeningdueto processcontrol, Oceangeneratesa
lot of interferencemisses.Thesemissesarelikely servicedby the
cacheof oneof the otherprocessors(ratherthan main memory)
executingthe application. Sincein the 4 processorcaseall pro-
cessorsare on the samecluster, all thesemissesappearas local
misses,while in the 8 processor casethereis a 50% chancethat
a misswill needto go to the remotecacheto beserviced.

5.3.2.4 Comparing the Schedulers: Havinglookedat the in-
dividual effectsof the variousschedulers,we now comparetheir
relativeperformancein Figure12. For eachapplicationwe show
the executiontime in the parallel portion undereachscheduler
normalizedto ideal standaloneexecution. The gang scheduled
version is modeledwith cacheinterference,a 300mstimeslice,
and with datadistribution. For both processorsetsand process
control no datadistributionoptimizationsareperformed,andthe
executionconsistsof 16-processesmultiplexedonto8 processors.

The performanceof the different schedulers is a tradeoff be-
tweenthe relative importanceof data distribution optimizations
for betterlocality, cacheinterference,andthe operatingpoint ef-
fect. As shownby the resultsin Figure12, Oceanperformsbet-
ter undergang-scheduling dueto the datalocality optimizations,
while Paneland Water perform best under processcontrol due

9



Table5: Applicationswithin the two parallelworkloads.

Application Workload 1 Workload 2
Procs Input Procs Input

Ocean 16 146x146grid 12 146x146 grid
Ocean1 - - 8 130x130 grid
Panel 16 tk29.O 8 tk17.O
Locus 16 3029wires 8 3029wires
Locus1 16 3029wires - -
Water 16 512molecules 4 512molecules
Water1 16 512molecules 16 343molecules

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 W
al

lC
lo

ck
 ti

m
e 

  88

  97

  77

  61

  95

  70

Ga Ps Pc
Total

Ga Ps Pc
Parallel

Workload 1

|0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 W
al

lC
lo

ck
 ti

m
e 

  96
  90

  82

  94  94

  84

Ga Ps Pc
Total

Ga Ps Pc
Parallel

Workload 2

Figure13: Workloadperformanceunderdifferentschedulers.Av-
eragenormalizedparallelandtotal time (w.r.t. Unix). Gang(Ga),
processor sets(Ps),andProcessControl (Pc).

primarily to the operatingpoint effect. The performancediffer-
encesfor Locusaresmall,with gang-scheduling doingmarginally
better. Overall, therefore,gang-scheduling offersmorerobustper-
formancein thesecontrolledenvironments.The next subsection
examinesmultiprogrammedworkloads,wheretheschedulingsit-
uationis morechaotic.

5.3.3 Performance of Workloads

The controlled experimentsshowedus that the relative perfor-
manceof differentschedulersis affectedby the applicationchar-
acteristics. We thereforechoosea mix of the different applica-
tionsstudiedearlier(Table5) to constructtwo differentworkloads
representingmultiprogrammedenvironments.The first workload
representsarelativelystaticenvironmentin whichapplicationsare
long-runningand arrive/completeinfrequently. The applications
are sized to run on the entire machine. This favors the gang-
scheduling approachsinceit avoidsfragmentationin theschedul-
ing matrix, andprocessesdo not movefrom oneprocessorto an-
other during execution,enablingdatadistribution optimizations.
The secondworkloadis intendedto modela moredynamicmul-
tiprogrammedenvironmentwith applicationsfrequently starting
andcompleting. Applicationsare sizedfor different numbersof
processors; they are thereforelikely to move aroundwithin the
matrix in gang-scheduling, making it difficult to distribute data
effectively.

Theperformanceof theworkloadsis shownin Figure13. We
normalizeboth the time spentin the parallelportion andthe total
time for eachapplicationto the correspondingvaluesunder the
Unix scheduler. Figure 13 presentsan averageof eachof these
normalizednumbersacrossall the applicationsin the workload.

Theresultsshowthat all of theparallelschedulersconsidered
hereoutperformthestandardUnix scheduler. In workload1gang-
scheduling enjoys the benefitsof data distribution and is 40%
betterthanUnix in parallel time, 12% better in total time. Pro-

cessorsetsshowsgainsof only 5%, but processcontrol benefits
from the operatingpoint effect and is 30% better than Unix in
the parallel portion. Gangthereforeoutperformsthe two space
multiplexing schedulersin the parallelportion.

In workload2gangno longerenjoysthe datadistribution ad-
vantages,and showsonly modestgainsof 6% in parallel time,
comparedto 16% for processcontrol. Thesegainsare also re-
flectedin (smaller) improvementsin the total executiontime of
the applications.

Overall,ourexperimentswith theseworkloadsbearoutourex-
periencewith thecontrolledexperiments.Gang-scheduling offers
the compiler/programmerthe opportunity to effectively do data
locality optimizations,thus offering potential for increasedper-
formanceby reducingremotemisses.In contrast,process-control
schedulingallows applicationsto exploit information about re-
sourceallocation changes, thus offering potential for increased
performancethroughthe operatingpoint effect. Theoverall suit-
ability of theschedulersthusdependson thecharacteristicsof the
applicationsin the workload.

5.4 Page Migration

As we haveseenin the previoussection,spacemultiplexing has
the disadvantageof preventingeffective data distribution opti-
mizations.However, after everyreallocationof processors in the
space-partitioningschemes,theoperatingsystemcouldpotentially
moveeachapplication’s datato memorythat is local to it. Sev-
eral pagemigrationschemesof varying sophisticationhavebeen
proposedin the literature[4, 14]. We performedsomeinitial ex-
perimentswith a simpleextensionof our pagemigrationstrategy
presentedearlier for uniprocessorapplications(we havenot yet
attemptedpagereplication in our experiments). Our policy at-
temptsto capturethesharingbehaviorof a parallelapplicationby
migrating a pageonly after a certainnumber(4) of consecutive
remotemissesto thepage(in theTLB handler).To preventapage
from unnecessarily migratingbetweenprocessors,it is frozenfor
onesecondafter it is migratedandon a TLB missby a processor
local to the page.

Unfortunately, however, our pagemigration schemedid not
improvetheresponsetime for theworkloads.Theprimary reason
for this wasthat the synchronization structureof the IRIX virtual
memorysystemrequiredexcessivelocking to perform pagemi-
gration. Without major modificationsto the VM system,it was
necessary to lock the pagetableof the applicationwhenmoving
a page.This coarsegrain locking led to high lock contention,and
the time spentwaiting on locks more than canceledthe benefits
from migrating the page.

Since we were limited by the current designof the virtual
memorydatastructures,weinsteadperformeda trace-drivenstudy
to exploretheperformancebenefitsof pagemigration. We instru-
mentedthe kernelto traceTLB missesandusedthe DASH non-
intrusive performancemonitor to recordcacheand TLB misses
while running the Paneland Oceanapplications. Theseappli-
cation were chosenbecausethey havethe greatestpotential for
improvementfrom datadistribution. In the trace we only con-
sidercacheandTLB missesincurredto datapageswhile running
in usermode.Tracingwasstartedat thebeginningof theparallel
sectionof eachapplication. In analyzingthe trace, we do not
assumethat memory is connected to a clusteras in DASH, but
that eachprocessor hasits own memory, which is remoteto all
the others.

Theapplicationswererun ona 16 processormachineutilizing
8 processes. The datafor the applicationswasdistributedamong
the 16 processor’s memoryin a round robin fashion. This data
and processorallocation correspondsto an applicationrunning
underprocesscontrol whereits processor allocationwasrecently

10



 ocean 
 panel 

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|

70
|

80
|

90
|

100

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 % of hot TLB pages

 %
 o

ve
rla

p 

Figure14: Percentageoverlapof hot TLB pageswith hot cache-
misspages.

reducedfrom 16 to 8 processors.It is in this typeof scenariothat
pagemigration is neededto restoreanapplication’s datalocality.

5.4.1 Trace-based Evaluation of PageMigration

A pagemigrationpolicy mustaddressthreeissues.First, it must
identify candidatepagesfor migration. Second,it mustselectan
appropriatenew location for suchpages. Third, it must decide
whena pageshouldbe migrated. We usethe tracesto analyze
theseissuesin detail.

Given that there is a cost associatedwith migrating a page,
only thosepageswith a large numberof cachemissesshouldbe
considered for migration. Unfortunately, information about the
numberof cachemissesto a pageis not availableto theoperating
systemon mostcomputers.We thereforeexplorethe usefulness
of an alternatestrategyin which the TLB missesto a pageare
usedto predictpageswith large numberof cachemisses.

To evaluatethe correlationbetweencachemissesand TLB
misses,we plot theoverlapbetweenthepageswith themostTLB
misses(i.e. most hot) and thosewith the most cachemissesin
Figure14. Thex-axisshowsincreasingpercentagesof thehottest
TLB pages,andthe y-axis plots the percentageoverlapwith the
corresponding setof hot cachemisspages.For example,a point
on a curve at an x-value of 20% and a y-value of 30% means
that, of the top 20% of the pagesorderedby TLB misses,30%
arealsoin the top 20% orderedby cachemisses.

An exactcorrelationbetweentheTLB andcachemisseswould
bea horizontalline closeto 100%,indicatingthat thesetof pages
selectedby TLB missesoverlapsvery closely with the set se-
lectedusingcachemisses.Figure14 showsthat, while nowhere
nearperfect,thereis reasonable correlationbetweenTLB misses
andcache misses.Consideringthehottest30%of the total pages
thereis significantoverlap(50%)betweenpagestakingmanyTLB
missesandthosewith high cachemisses.As we shall see,page
migrationpoliciescanpotentiallygain with this level of correla-
tion.

Thesecondrequirementis to migratea pageto the particular
CPUthat is incurringthemostcachemisses.OnceagaintheTLB
missinformationcanpotentiallybeusedto track the distribution
of missesacrossprocessors.Using the traces,we look at the
correlationbetweentheTLB andthecachemissdistributionacross
processors for eachpage. Intuitively, we want to know if the
processor that suffered the mostcachemissesalsohadthe most
TLB misses.Therefore,for eachpagewe identify the processor
with the most cachemisses,and rank this processorin a list of
processorsorderedin decreasingTLB missesto thatpage.A rank

| | | | | | | | | ||0

|400

|800

|1200

 N
um

be
r 

of
 p

ag
es

1277

  51
   4   4   3   3   2   1

 448

  96
  34  17   9   4   2   1

1 2 3 4 5 6 7 8
Ocean

1 2 3 4 5 6 7 8
Panel

Figure15: TLB miss rank distribution of the processorwith the
mostcachemisses.

 ocean cache
 ocean TLB
 panel cache
 panel TLB

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|

70
|

80
|

90
|

100

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 % Total misses

 %
 L

oc
al

 m
is

se
s

Figure 16: Comparisonof local missesthroughpost-factostatic
placementbasedon cachemissesandTLB misses.

of 2 indicatesthattheprocessorincurredthesecond-mostnumber
of TLB missesto that page.A rankof 1, therefore,is idealsince
that indicatesthat the sameprocessorincurs the most cacheand
TLB misses.

Figure15 showsthedistributionof this rankfor thehot pages
(definedas pageswith more than 500 cachemisses)over one
secondintervalsaveragedover the entire trace. This correlation
is very good: there is a sharppeakat 1 implying that a large
numberof pageshavea singleprocessorincur themostTLB and
cachemisses.Themeanvalueis 1.1for Oceanand1.47for Panel.

Besidesthe correlationin rank,we alsolook at the difference
betweenusing TLB missesandcachemissesto determinepage
placement.Figure 16 plots the cumulativepercentageof misses
that would be local if the pageswere placedbasedon the pro-
cessorincurring the most cachemisses,aswell asbasedon the
processorincuring the mostTLB misses.(As we movefrom left
to right on theX-axis, we increasethefractionof theapplications’
pagesconsidered.)Theappropriatedestinationprocessor for each
pageis determinedpostfactofrom the trace;thepagedistribution
thereforecorrespondsto thebestpossiblestaticallocationof data
basedon eithercacheor TLB misses.

For both applications,theTLB basedplot closelyfollows the
cachemissbasedplot, with only a small absolutedifferencebe-
tweenthem. Thedifferencein thenumberof local missesis fairly
low—4% for Paneland2.2%for Ocean.Thesetwo metrics,rank
distribution and the local miss percentage,demonstratethat us-
ing TLB missesto placea pageis quite promisingand closely

11



Table6: Performanceof pagemigration policieswith Paneland
Ocean,showingnumberof local andremotecachemisses,pages
migrated,andtime spentin the memorysystem.

Cachemisses Pages Memory
Migration policy (millions) migrated time

Local Remote (sec)

PANEL
a. No migration 1.2 18.9 - 86.2
b. Staticpostfacto 8.1 12.1 - -
c. Competitive(cache) 5.5 14.6 1577 73.9
d. Singlemove(cache) 5.7 14.4 2891 75.9
e. Singlemove(TLB) 3.3 16.9 3052 85.0
f. Freeze1 sec(TLB) 6.5 13.7 6498 80.4
g. Freeze1 sec(hybrid) 6.2 14.0 3800 76.1

OCEAN
a. No migration 1.6 22.6 - 103.2
b. Staticpostfacto 20.9 3.3 - -
c. Competitive(cache) 19.4 4.8 1453 42.1
d. Singlemove(cache) 20.2 4.1 1487 39.4
e. Singlemove(TLB) 9.4 14.9 1525 78.3
f. Freeze1 sec(TLB) 19.4 4.9 1709 42.7
g. Freeze1 sec(hybrid) 18.7 5.5 1627 44.8

approximatesplacementbasedon cache-misses.
Finally, weaddressthelastquestionof whento migrateapage

by simulatingsomesimplepagemigration policiesbasedon the
tracedata. For eachpolicy we track the numberof cachemisses
andthetotal time spentin thememorysystem.Our costmodelfor
computingthe memorysystemtime is looselybasedon DASH.
We assumethata local misstakes30 clock cycles,a remotemiss
takes150cycles,andmigratingapagetakes2 milliseconds(about
66000cycles).

We evaluatedthe following policies: (a) a basewith no page
migration, (b) static post-factodistribution of pagesbasedon
cachemisses(thereforeperfectstaticplacement),(c) competitive
pagemigration basedon cachemisses[2] with a miss threshold
of 1000misses,(d) singlepagemigrateuponthefirst cachemiss,
(e) singlemigrateuponthe first TLB miss,(f) the policy that we
actuallytried on DASH (describedearlierin thissection):migrate
after 4 consecutive remotemissesandfreezea pagefor onesec-
ond after a migrateor a local TLB miss,and(g) a hybrid policy
wherepagesare selectedfor migration basedon the numberof
caches misses(500) andplacedusingpolicy (e). This last policy
is basedon our observationthat thecorrelationfor total missesto
a pageis notasgoodasthatfor thedistributionacrossprocessors.

The results are shown in Table 6. For thesetwo applica-
tions, all the policies show an advantageover the no migration
case(including the overheadfor pagemigration). The bestpoli-
ciesachievelocal miss ratescloseto the postfacto staticalloca-
tion. The cache-missbasedpolicesin generaldo betterthan the
TLB-basedpolicies. The hybrid policy, althoughrequiring less
information,still performsnearlyaswell asthecache-missbased
policies.

In the analysisof processschedulingschemesin Section5.3
we hadseenthe performanceof Oceandrop significantly in the
caseof spacepartitioning due to the increasednumberof cache
missesthat had to be servicedremotely. Our tracebasedanal-
ysis shows that using simple page migration policies we can
get a substantialreductionin the time spentin the memorysys-
tem for Ocean(from over 100 seconds to lessthan50 seconds).
Pagemigrationcanthereforepotentiallybenefitspacemultiplex-
ing schemeslike processcontrol wherestaticdatadistribution is
difficult. Furthermore,basedon our experiencewith theSPLASH

applications,we believethatapplicationswheredataplacementis
successful shouldalsoshowgoodresultswith pagemigration.

6 Conclusions

While shared-memorymultiprocessorsoffer thepotentialfor cost-
effective computingin multiprogrammedenvironments,realizing
thispotentialposesasignificantchallengefor schedulingandpage
migration policies. In this paperwe havestudiedthe effect of
thesepoliciesin thecontextof theStanfordDASH, a CC-NUMA
multiprocessor, for both sequentialandparallelapplications.For
sequentialapplicationsworkloads,we demonstratethat a combi-
nationof cacheandclusteraffinity alongwith pagemigrationcan
behighly effective: ourworkloadsshowa2-fold performanceim-
provementover thestandardUnix scheduler. The techniquesthat
we useare simple, and can easily be incorporatedinto existing
operatingsystems.

For parallel applications,we found that both spacepartition-
ing andtime-slicingapproachesoffer modestgainsover the stan-
dardUnix scheduler. Therelativeperformanceof thesestrategies,
however, dependson two key applicationcharacteristics:the im-
portanceof datadistribution in main memory, and the shapeof
the speedup curve. Theworkloadswe evaluatedshowedno clear
winnerwith pagemigrationdisabled;gang-scheduling wasamore
effective approachwhen data distribution was important, while
processcontrol exploited the operatingpoint effect. Our initial
experimentswith automaticpagemigration suggestthat simple
migration policies may be able to addressthe data distribution
problemswe observedfor space-partitioningschedulers.

To addresspagemigration in real multiprocessors,we also
studied the correlation betweenTLB missesand cachemisses
per page,andshowedthat policiesbasedon TLB missescanbe
almost as effective as thosebasedon perfect cachemiss infor-
mation. However, we haveonly begunto addresstheseissuesin
the executionof parallelapplications;we plan to studythe inter-
action betweenschedulingand pagemigration policies for such
workloadsin greaterdetail.

Acknowledgements

VijayaraghavanSoundararajanandSteveHerrodhelpedin prepar-
ing the figurespresentedhere. JohnChapinandJonathanChew
helpedin collecting the tracedataon DASH. We arealsograte-
ful to JohnChapin,J. P. Singh, and the anonymous refereesfor
their comments. This researchhasbeensponsored by the De-
fenseAdvancedResearchProjectsAgencyunderDARPA contract
#N00039-91-C-0138. Anoop Guptais alsosupportedby an NSF
PresidentialYoungInvestigatorAward,andMendelRosenblumis
alsosupportedby an NSF YoungInvestigatorAward.

References
[1] T. E. Anderson,B. N. Bershad,E. D. Lazowska,andH. M. Levy.

Scheduleractivations: Effective kernel support for the user-level
management of parallelism.In Proceedingsof the13thACM Sympo-
siumon OperatingSystemPrinciples, pages95–109, October1991.

[2] D. Black, A. Gupta,andW.-D. Weber. Competitivemanagementof
distributedsharedmemory. In Proceedings of COMPCON, pages
184–190, March1989.

[3] D. L. Black. Schedulingsupportfor concurrencyand parallelism
in the Mach operatingsystem. IEEE Computer, 23(5):35–43, May
1990.

[4] W. J. Bolosky, M. L. Scott,R. P. Fitzgerald,R. J. Fowler, andA. L.
Cox. Numapolicies and their relation to memoryarchitecture. In

12



Proceedingsof theFourth InternationalConferenceon Architectural
Support for ProgrammingLanguagesandOperatingSystems, pages
212–221, SantaClaraCA, April 1991.

[5] R. Chandra,A. Gupta,andJ. L. Hennessy. Integratingconcurrency
anddataabstractionin the COOL parallel programminglanguage.
IEEE Computer, 27(8),August1994.

[6] M. Crovella. The costsand benefitsof coscheduling. Technical
report,Universityof RochesterComputerScienceDepartment,May
1991.

[7] M. Crovella,P. Das,C. Dubnicki,T. LeBlanc,andE. Markatos.Mul-
tiprogrammingonmultiprocessors.In Proceedingsof theThird IEEE
Symposium on Parallel andDistributedComputing, pages590–597,
Dec.1991.

[8] M. Devarakonda and A. Mukherjee. Issuesin implementationof
cache-affinity scheduling.In ProceedingsWinter 1992USENIXCon-
ference, pages345–357, January1992.

[9] J.Edler, J.Lipkis, andE. Schonberg. Processmanagementfor highly
parallelUNIX systems.In Proceedingsof theUSENIXWorkshopon
UNIX andSupercomputers, pages1–17,1988.

[10] D. G. FeitelsonandL. Rudolph.Distributedhierarchicalcontrol for
parallelprocessing.IEEE Computer, 23(5):65–77, May 1990.

[11] A. Gupta,A. Tucker, andL. Stevens.Makingeffectiveuseof shared-
memorymultiprocessors:the processcontrol approach. Technical
ReportCSL-TR-91-475A,ComputerSystemsLab, StanfordUniver-
sity, May 1991.

[12] A. Gupta,A. Tucker, andS. Urushibara.The impact of operating
systemschedulingpoliciesandsynchronization methodson theper-
formanceof parallel applications.In Proceedings of SIGMETRICS
’91, pages120–132,May 1991.

[13] KendallSquareResearch.KSR1Technical Summary. Waltham,MA,
1992.

[14] R. P. LaroweandC. S. Ellis. Experimentalcomparisonof memory
managementpoliciesfor numamultiprocessors.ACM Transactions
on ComputerSystems, 9(4):319–363,November1991.

[15] D. Lenoski,J. Laudon,T. Joe,D. Nakahira,L. Stevens,A. Gupta,
and J. L. Hennessy. The DASH prototype: Implementationand
performance. In Proceedings of the 19th InternationalSymposium
on ComputerArchitecture, pages92–103,May 1992.

[16] S. T. LeuteneggerandM. K. Vernon.Theperformanceof multipro-
grammedmultiprocessorschedulingpolicies. In Proceedingsof the
1990ACMSIGMETRICSConferenceonMeasurement andModeling
of ComputerSystems, pages226–236, BoulderCO, May 1990.

[17] T. Lovett and S. Thakkar. The SymmetryMultiprocessorSystem.
In Proceedings of the 1988 International Conference on Parallel
Processing, pagesI:303–310, August1988.

[18] Multimax technicalsummary. Technical report, EncoreComputer
Corporation,1986.

[19] J. K. Ousterhout. Schedulingtechniquesfor concurrent systems.
In 3rd InternationalConferenceon DistributedComputingSystems,
pages22–30,1982.

[20] J. P. Singh, W.-D. Weber, andA. Gupta. SPLASH: Stanfordpar-
allel applicationsfor sharedmemory. ComputerArchitecture News,
20(1):5–44, 1992.

[21] M. SquillanteandR. Nelson. Analysisof taskmigrationin shared-
memorymultiprocessorscheduling.In Proceedingsof SIGMETRICS
’91, pages143–155,May 1991.

[22] M. S. SquillanteandE. D. Lazowska.Usingprocessor-cacheaffinity
in shared-memorymultiprocessorscheduling.IEEE Transactionson
Parallel andDistributedSystems, 4(2):131–143,Feb.1993.

[23] P. Stenstrom,T. Joe,andA. Gupta.Comparativeperformanceeval-
uationof cache-coherentNUMA andCOMA architectures.In Pro-
ceedings of the 19th AnnualInternationalSymposiumon Computer
Architecture, pages80–91,May 1992.

[24] J. Torrellas,A. Tucker, and A. Gupta. Evaluatingthe benefitsof
cache-affinity schedulingin shared-memorymultiprocessors.Techni-
cal ReportCSL-TR-92-536,ComputerSystemsLaboratory, Stanford
University, Aug. 1992. Publishedin short form in the Proceedings
of SIGMETRICS’93, pages272–274,May 1993.

[25] A. Tucker. Efficient Schedulingon Multiprogrammed Shared-
MemoryMultiprocessors. PhDthesis,Departmentof ComputerSci-
ence,StanfordUniversity, November1993. Technical ReportCSL-
TR-94-601.

[26] A. TuckerandA. Gupta. Processcontrol andschedulingissuesfor
multiprogrammedshared-memorymultiprocessors.In Proceedings
of the12thACM SymposiumonOperatingSystemsPrinciples, pages
159–166, 1989.

[27] R. VaswaniandJ. Zahorjan. The implicationsof cacheaffinity on
processorschedulingfor multiprogrammed,sharedmemorymulti-
processors.In Proceedings of the ThirteenthACM Symposiumon
OperatingSystemsPrinciples, pages26–40,PacificGroveCA, Oc-
tober1991.

13


