
ECE 5745 Complex Digital ASIC Design

Tutorial 1: Linux Development Environment

School of Electrical and Computer Engineering
Cornell University

revision: 2022-01-24-23-15

Contents

1 Introduction 2

2 The Linux Command Line 2

2.1 Hello World . 2

2.2 Manual Pages . 3

2.3 Create, View, and List Files . 3

2.4 Create, Change, and List Directories . 4

2.5 Copy, Move, and Remove Files and Directories . 6

2.6 Using wget to Download Files . 8

2.7 Using grep to Search Files . 8

2.8 Using find to Find Files . 10

2.9 Using tar to Archive Files . 10

2.10 Using top to View Running Processes . 11

2.11 Environment Variables . 11

2.12 Command Output Redirection . 12

2.13 Command Chaining . 13

2.14 Command Pipelining . 13

2.15 Aliases, Wildcards, Command History, and Tab Completion 14

3 Course-Specific Linux Commands 15

3.1 Course Setup Script . 15

3.2 Using quota to Check Your Space Usage . 15

3.3 Using trash to Safely Remove Files . 16

4 Conclusion 16

1

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

1. Introduction

The programming assignments for this course are designed assuming you will be using a Linux (or
UNIX-like) operating system for development. Basic Linux knowledge is essential to successfully
complete this work and a more in-depth understanding enhances productivity. This tutorial cov-
ers the computing resources to be used in the course and offers a brisk introduction to the Linux
operating system for first time users including some details specific to this course.

Before you begin, make sure that you have logged into the ecelinux servers as described in the
remote access tutorial. You will need to open a terminal and be ready to work at the Linux command
line. You can do this using any of the methods described in the remote access tutorial: (1) Windows
PowerShell or Mac OS X Terminal; (2) VS Code; or (3) X2Go. To follow along with the tutorial, type
the commands without the % character. In addition to working through the commands in the tutorial,
you should also try the more open-ended tasks marked with the H symbol.

Before you begin, make sure that you have sourced the setup-ece5745.sh script or that you have
added it to your .bashrc script, which will then source the script every time you login. Sourcing the
setup script sets up the environment required for this tutorial.

2. The Linux Command Line

In this section, we introduce the basics of working at the Linux command line. Our goal is to get you
comfortable with commands required to complete the laboratory assignments and design project.
The shell is the original Linux user interface which is a text-based command-line interpreter. The
default shell on the ecelinux machines is Bash. While there are other shells such as sh, csh, and
tcsh, for this course we will always assume you are using Bash. As mentioned above, we use the %
character to indicate commands that should be entered at the Linux command line, but you should
not include the actual % character when typing in the commands on your own. To make it easier to
cut-and-paste commands from this tutorial document onto the command line, you can tell Bash to
ignore the % character using the following command:

% alias %=""

Now you can cut-and-paste a sequence of commands from this tutorial document and Bash will not
get confused by the % character which begins each line.

2.1. Hello World

We begin with the ubiquitous “Hello, World” example. To display the message “Hello, World” we
will use the echo command. The echo command simply “echoes” its input to the console.

% echo "Hello, World"

The string we provide to the echo command is called a command line argument. We use command line
arguments to tell commands what they should operate on. Although simple, the echo command can
very useful for creating simple text files, displaying environment variables, and general debugging.

H To-Do On Your Own: Experiment with using the echo command to display different messages.

2

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

2.2. Manual Pages

You can learn more about any Linux command by using the man command. Try using this to learn
more about the echo command.

% man echo

You can use the up/down keys to scroll the manual one line at a time, the space bar to scroll down
one page at a time, and the q key to quit viewing the manual. You can even learn about the man
command itself by using man man. As you follow the tutorial, feel free to use the man command to
learn more about the commands we cover.

H To-Do On Your Own: Use the man command to learn more about the cat command.

2.3. Create, View, and List Files

We can use the echo command and a feature called command output redirection to create simple text
files. We will discuss command output redirection in more detail later in the tutorial. Command
output redirection uses the > operator to take the output from one command and “redirect” it to a
file. The following commands will create a new file named ece5745-tut1.txt that simply contains
the text “Complex Digital ASIC Design”.

% echo "Complex Digital ASIC Design" > ece2400-tut1.txt

We can use the cat command to quickly display the contents of a file.

% cat ece5745-tut1.txt

For larger files, cat will output the entire file to the console so it may be hard to read the file as it
streams past. We can use the less command to show one screen-full of text at a time. You can use
the up/down keys to scroll the file one line at a time, the space bar to scroll down one page at a time,
and the q key to quit viewing the file.

% less ece5745-tut1.txt

You can use the ls command to list the filenames of the files you have created.

% ls

We can provide command line options to the ls command to modify the command’s behavior. For
example, we can use the -1 (i.e., a dash followed by the number one) command line option to list
one file per line, and we can we can use the -l (i.e., a dash followed by the letter l) command line
option to provide a longer listing with more information about each file.

% ls -1
% ls -l

You should see the newly created ece5745-tut1.txt file along with some additional directories or
folders. We will discuss directories in the next section. Use the following commands to create a few
more files using the echo command and command output redirection, and then list the files again.

3

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

% echo "Application" > ece5745-tut1-layer1.txt
% echo "Algorithm" > ece5745-tut1-layer2.txt
% ls -1

H To-Do On Your Own: Create a new file named ece5745-tut1-layer3.txt which contains the third
layer in the computing systems stack (i.e., programming language). Use cat and less to verify
the file contents.

2.4. Create, Change, and List Directories

Obviously, having all files in a single location would be hard to manage effectively. We can use
directories (also called folders) to logically organize our files, just like one can use physical folders to
organize physical pieces of paper. The mechanism for organizing files and directories is called the
file system. When you first login to an ecelinux machine, you will be in your home directory. This is
your own private space on the server that you can use to work on the laboratory assignments and
design project and store your files. You can use the pwd command to print the directory in which you
are currently working, which is known as the current working directory.

% pwd
/home/netid

You should see output similar to what is shown above, but instead of netid it should show your
actual NetID. The pwd command shows a directory path. A directory path is a list of nested directory
names; it describes a “path” to get to a specific file or directory. So the above path indicates that there
is a toplevel directory named home that contains a directory named netid. This is the directory path
to your home directory. As an aside, notice that Linux uses a forward slash (/) to separate directories,
while Windows uses a back slash (\) for the same purpose.

We can use the mkdir command to make new directories. The following command will make a new
directory named ece5745 within your home directory.

% mkdir ece5745

We can use the cd command to change our current working directory. The following command will
change the current working directory to be the newly created ece5745 directory, before displaying
the current working directory with the pwd command.

% cd ece5745
% pwd
/home/netid/ece5745

Use the mkdir, cd, and pwd commands to make another directory.

% mkdir tut1
% cd tut1
% pwd
/home/netid/ece5745/tut1

We sometimes say that tut1 is a subdirectory or a child directory of the ece5745 directory. We might
also say that the ece5745 directory is the parent directory of the tut1 directory.

4

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

There are some important shortcuts that we can use with the cd command to simplify navigating
the file system. The special directory named . (i.e., one dot) always refers to the current working
directory. The special directory named .. (i.e., two dots) always refers to the parent of the current
working directory. The special directory named ~ (i.e., a tilde character) always refers to your home
directory. The special directory named / (e.g., single forward slash) always refers to the highest-
level root directory. The following commands illustrate how to navigate up and down the directory
hierarchy we have just created.

% pwd
/home/netid/ece5745/tut1
% cd .
% pwd
/home/netid/ece5745/tut1
% cd ..
% pwd
/home/netid/ece5745
% cd ..
% pwd
/home/netid
% cd ece5745/tut1
% pwd
/home/netid/ece5745/tut1
% cd
% pwd
/home/netid
% cd /
% pwd
/
% cd ~/ece5745
% pwd
/home/netid/ece5745

Notice how we can use the cd command to change the working directory to another arbitrary direc-
tory by simply using a directory path (e.g., ece5745/tut1). These are called relative paths because the
path is relative to your current working directory. You can also use an absolute path which always
starts with the root directory to concretely specify a directory irrespective of the current working di-
rectory. A relative path is analogous to directions to reach a destination from your current location
(e.g., How do I get to the coffee shop from my current location?), while an absolute path is analogous
to directions to reach a destination from a centralized location (e.g., How do I get to the coffee shop
from the center of town?).

% pwd
/home/netid/ece5745
% cd /home/netid/ece5745/tut1
% pwd
/home/netid/ece5745/tut1
% cd
% pwd
/home/netid

5

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

This example illustrates one more useful shortcut. The cd command with no command line argu-
ments always changes the current working directory to your home directory. We can use the ls
command to list files as well as directories. Use the following commands to create a new file and
directory in the ece5745/tut1 subdirectory, and then list the file and directory.

% cd ~/ece5745/tut1
% echo "Computer Systems Programming" > ece5745-tut1.txt
% mkdir dirA
% ls -1

You should see both the dirA subdirectory and the newly created ece5745-tut1.txt file listed. Feel
free to use the cat command to verify the file contents of the newly created file. We can use the tree
command to recursively list the contents of a directory. The following commands create a few more
directories before displaying the directory hierarchy.

% cd ~/ece5745/tut1
% mkdir -p dirB/dirB_1
% mkdir -p dirB/dirB_2
% mkdir -p dirC/dirC_1
% cd ~/ece5745/tut1
% tree
.
+-- dirA
+-- dirB
| |-- dirB_1
| ‘-- dirB_2
|-- dirC
| ‘-- dirC_1
‘-- ece5745-tut1.txt

Note that we are using the -p command line option with the mkdir command to make multiple
nested directories in a single step.

H To-Do On Your Own: Experiment with creating additional directories and files within the
ece5745/tut1 subdirectory. Try creating deeper hierarchies with three or even four levels of
nesting using the -p option to the mkdir command. Experiment with using the . and .. special
directories. Use the tree command to display your newly created directory hierarchy.

2.5. Copy, Move, and Remove Files and Directories

We can use the cp command to copy files. The first argument is the name of the file you want to copy,
and the second argument is the new name to give to the copy. The following commands will make
two copies of the files we created in the previous section.

% cd ~/ece5745/tut1
% cp ece5745-tut1.txt ece5745-tut1-a.txt
% cp ece5745-tut1.txt ece5745-tut1-b.txt
% ls -1

6

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

We can also copy one or more files into a subdirectory by using multiple source files and a final
destination directory as the arguments to the cp command.

% cd ~/ece5745/tut1
% cp ece5745-tut1.txt dirA
% cp ece5745-tut1-a.txt ece5745-tut1-b.txt dirA
% tree

We can use the -r command line option to enable the cp command to recursively copy an entire
directory.

% cd ~/ece5745/tut1
% tree
% cp -r dirA dirD
% tree

If we want to move a file or directory, we can use the mv command. As with the cp command, the
first argument is the name of the file you want to move and the second argument is the new name of
the file.

% cd ~/ece5745/tut1
% mv ece5745-tut1.txt ece5745-tut1-c.txt
% ls -1

Again, similar to the cp command, we can also move one or more files into a subdirectory by using
multiple source files and a final destination directory as the arguments to the mv command.

% cd ~/ece5745/tut1
% tree
% mv ece5745-tut1-a.txt dirB
% mv ece5745-tut1-b.txt ece5745-tut1-c.txt dirB
% tree

We do not need to use the -r command line option to move an entire directory at once.

% cd ~/ece5745/tut1
% tree
% mv dirD dirE
% tree

The following example illustrates how we can use the special . directory to move files from a subdi-
rectory into the current working directory.

% cd ~/ece5745/tut1
% tree
% mv dirE/ece5745-tut1.txt .
% tree

We can use the rm command to remove files. The following command removes a file from within the
ece5745/tut1 subdirectory.

% cd ~/ece5745/tut1

7

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

% ls -1
% rm ece5745-tut1.txt
% ls -1

To clean up, we might want to remove the files we created in your home directory earlier in this
tutorial.

% cd
% rm ece5745-tut1.txt
% rm ece5745-tut1-layer1.txt
% rm ece5745-tut1-layer2.txt
% rm ece5745-tut1-layer3.txt

We can use the -r command line option with the rm command to remove entire directories, but please
be careful because it is relatively easy to permanently delete many files at once. See Section 3.3 for
a useful command that you might want to use instead of the rm command to avoid accidentally
deleting important work.

% cd ~/ece5745/tut1
% ls -1
% rm -r dirA dirB dirC dirE
% ls -1

H To-Do On Your Own: Creating additional directories and files within the ece5745/tut1 subdirec-
tory, and then use the cp, mv, and rm commands to copy, move, and remove the newly created
directories and files. Use the ls and tree commands to display your file and directory organiza-
tion.

2.6. Using wget to Download Files

We can use the wget command to download files from the internet. For now, this is a useful way to
retrieve a text file that we can use in the following examples.

% cd ~/ece5745/tut1
% wget http://www.csl.cornell.edu/courses/ece5745/overview.txt
% cat overview.txt

2.7. Using grep to Search Files

We can use the grep command to search and display lines of a file that contain a particular pat-
tern. The grep command can be useful for quickly searching the contents of the source files in your
laboratory assignments and design project. The command takes the pattern and the files to search
as command line arguments. The following command searches for the word “computer” in the
overview.txt file downloaded in the previous section.

% cd ~/ece5745/tut1
% grep "computer" overview.txt

8

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

You should see just the lines within the overview.txt file that contain the word “computer”. We can
use the ––line-number and ––color command line options with the grep command to display the
line number of each match and to highlight the matched word.

% cd ~/ece5745/tut1
% grep --line-number --color "computer" overview.txt

We can use the -r command line option to recursively search all files within a given directory hier-
archy. In the following example, we create a subdirectory, copy the overview.txt file, and illustrate
how we can use the grep command to recursively search for the word “computer”.

% cd ~/ece5745/tut1
% mkdir dirA
% cp overview.txt dirA
% grep -r --line-number --color "computer" .

Notice how we specify a directory as a command line argument (in this case the special . direc-
tory) to search the current working directory. You should see the three lines from both copies of the
overview.txt file. The grep command also shows which file contains the match.

As another example, we will search two special files named /proc/cpuinfo and proc/meminfo.
These files are present on every modern Linux system, and they contain information about the
processor and memory hardware in that system. The following command first uses the less com-
mand so you can browse the file, and then uses the grep command to search for processor in the
/proc/cpuinfo file. Recall that with the less command, we use the up/down keys to scroll the file
one line at a time, the space bar to scroll down one page at a time, and the q key to quit viewing the
file.

% cd ~/ece5745/tut1
% less /proc/cpuinfo
% grep "processor" /proc/cpuinfo

It should be pretty clear that you are using a system with multiple processors. You can also search to
find out which company makes the processors and what clock frequency they are running at:

% cd ~/ece5745/tut1
% grep "vendor_id" /proc/cpuinfo
% grep "cpu MHz" /proc/cpuinfo

We can find out how much memory is in the system by searching for MemTotal in the /proc/meminfo
file.

% cd ~/ece5745/tut1
% grep "MemTotal" /proc/meminfo

H To-Do On Your Own: Try using grep to search for the words “computer” and “systems” in the
overview.txt file.

9

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

2.8. Using find to Find Files

We can use the find command to recursively search a directory hierarchy for files or directories that
match a specified criteria. While the grep command is useful for searching file contents, the find
command is useful for quickly searching the file and directory names in your laboratory assignments
and design project. The find command is very powerful, so we will just show a very simple example.
First, we create a few new files and directories.

% cd ~/ece5745/tut1
% mkdir -p dirB/dirB_1
% mkdir -p dirB/dirB_2
% mkdir -p dirC/dirC_1
% echo "test" > dirA/file0.txt
% echo "test" > dirA/file1.txt
% echo "test" > dirB/dirB_1/file0.txt
% echo "test" > dirB/dirB_1/file1.txt
% echo "test" > dirB/dirB_2/file0.txt
% tree

We will now use the find command to find all files named "file0.txt". The find command takes
one command line argument to specify where we should search and a series of command line options
to describe what files and directories we are trying to find. We can also use command line options
to describe what action we would like to take when we find the desired files and directories. In
this example, we use the ––name command line option to specify that we are searching for files with
a specific name. We can also use more complicated patterns to search for all files with a specific
filename prefix or extension.

% cd ~/ece5745/tut1
% find . -name "file0.txt"

Notice that we are using the special . directory to tell the find command to search the current
working directory and all subdirectories. The find command always searches recursively.

H To-Do On Your Own: Create additional files named "file2.txt" in some of the subdirectories we
have already created. Use the "find" command to search for files named "file2.txt".

2.9. Using tar to Archive Files

We can use the tar command to “pack” files and directories into a simple compressed archive, and
also to “unpack” these files and directories from the archive. This kind of archive is sometimes
called a tarball. Most open-source software is distributed in this compressed form. It makes it easy
to distribute code among collaborators and it is also useful to create backups of files. We can use
the following command to create an archive of our tutorial directory and then remove the tutorial
directory.

% cd ~/ece5745
% tar -czvf tut1.tgz tut1
% rm -r tut1
% ls -l

10

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

Several command line options listed together as a single option (-czvf), where c specifies we want
to create an archive, z specifies we should use “gzip” compression, v specifies verbose mode, and f
specifies we will provide filenames to archive. The first command line argument is the name of the
archive to create, and the second command line argument is the directory to archive. We can now
extract the contents of the archive to recreate the tutorial directory. We also remove the archive.

% cd ~/ece5745
% tar -xzvf tut1.tgz
% rm tut1.tgz
% tree tut1

Note that we use the x command line option with the tar command to specify that we intend to
extract the archive.

H To-Do On Your Own: Create an example directory within the ece5745/tut1 subdirectory. Copy
the overview.txt file and rename it to add example files to your new directory. Use the tar
command to create and extract an archive of just this one new directory.

2.10. Using top to View Running Processes

You can use the top command to view what commands are currently running on the Linux system
in realtime. This can be useful to see if there are many commands running which are causing the
system to be sluggish. When finished you can use the q character to quit.

% top

The first line of the top display shows the number of users currently logged into the system, and the
load average. The load average indicates how “overloaded” the system was over the last one, five, and
15 minutes. If the load average is greater than the number of processors in the system, it means your
system will probably be sluggish. You can always try logging out and then back into the ecelinux
servers to see if you get assigned to a different server in the cluster.

2.11. Environment Variables

In the previous sections, we have been using the Bash shell to run various commands, but the Bash
shell is actually a full-featured programming language. One aspect of the shell that is similar in
spirit to popular programming languages, is the ability to write and read environment variables. The
following commands illustrate how to write an environment variable named ece5745_tut1_layer1,
and how to read this environment variable using the echo command.

% ece5745_tut1_layer1="application"
% echo ${ece5745_tut1_layer1}

Keep in mind that the names of environment variables can only contain letters, numbers, and under-
scores. Notice how we use the ${} syntax to read an environment variable. There are a few built-in
environment variables that might be useful:

% echo ${HOSTNAME}
% echo ${HOME}
% echo ${PWD}

11

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

We often use the HOME environment variable in directory paths like this:

% cd ${HOME}/ece5745

The PWD environment variable always holds the current working directory. We can use environment
variables as options to commands other than echo. A common example is to use an environment
variable to “remember” a specific directory location, which we can quickly return to with the cd
command like this:

% cd ${HOME}/ece5745/tut1
% TUT1=${PWD}
% cd
% pwd
/home/netid
% cd ${TUT1}
% pwd
/home/netid/ece5745/tut1

H To-Do On Your Own: Create a new environment variable named ece5745_tut1_layer2 and write
it with the second layer in the computer systems stack (i.e., algorithm). Use the echo com-
mand to display this environment variable. Experiment with creating a new subdirectory within
ece5745/tut1 and then using an environment variable to “remember” that location.

2.12. Command Output Redirection

We have already seen using the echo command and command output redirection to create simple
text files. Here is another example:

% cd ${HOME}/ece5745/tut1
% echo "Application" > computing-stack.txt
% cat computing-stack.txt

The > operator tells the Bash shell to take the output from the command on the left and overwrite the
file named on the right. We can use any command on the left. For example, we can save the output
from the pwd command or the man command to a file for future reference.

% cd ${HOME}/ece5745/tut1
% pwd > cmd-output.txt
% cat cmd-output.txt
% man pwd > cmd-output.txt
% cat cmd-output.txt

We can also use the >> operator which tells the Bash shell to take the output from the command on
the left and append the file named on the right. We can use this to create multiline text files:

% cd ${HOME}/ece5745/tut1
% echo "Algorithm" > computing-stack.txt
% echo "Programming Language" >> computing-stack.txt
% echo "Operating System" >> computing-stack.txt
% cat computing-stack.txt

12

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

H To-Do On Your Own: Add the remaining levels of the computing stack (i.e., gate-level, circuits,
devices, technology) to the computing-stack.txt text file. Use the cat command to verify that
the file contents.

2.13. Command Chaining

We can use the && operator to specify two commands that we want to chaining together. The second
command will only execute if the first command succeeds. Below is an example.

% cd ${HOME}/ece5745/tut1 && cat computing-stack.txt

H To-Do On Your Own: Create a single-line command that combines creating a new directory with
the mkdir command and then immediately changes into the directory using the cd command.

2.14. Command Pipelining

The Bash shell allows you to run multiple commands simultaneously, with the output of one com-
mand becoming the input to the next command. We can use this to assemble “pipelines”; we “pipe”
the output of one command to another command for further actions using the | operator.

The following example uses the grep command to search the special proc/cpuinfo file for lines
containing the word “processor” and then pipes the result to the wc command. The wc command
counts the number of characters, words, or lines of its input. We use the -l command line option
with the wc command to count the number of lines.

% grep processor /proc/cpuinfo | wc -l

This is a great example of the Linux philosophy of providing many simple commands that can be
combined to create more powerful functionality. Essentially the pipeline we have created is a com-
mand that tells us the number of processors in our system.

As another example, we will pipe the output of the last command to the grep command. The last
command lists the names of all of the users that have logged into the system since the system was
rebooted. We can use grep to search for your NetID and thus quickly see how when you previously
have logged into this system.

% last | grep netid

We can create even longer pipelines. The following pipeline will report the number of times you
have logged into the system since it was rebooted.

% last | grep netid | wc -l

H To-Do On Your Own: Use the cat command with the overview.txt file and pipe the output to the
grep command to search for the word “memories”. While this is not as fast as using grep directly
on the file, it does illustrate how many commands (e.g., grep) can take their input specified as a
command line argument or through a pipe.

13

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

2.15. Aliases, Wildcards, Command History, and Tab Completion

In this section, we describe some miscellaneous features of the Bash shell which can potentially be
quite useful in increasing your productivity.

Aliases are a way to create short names for command sequences to make it easier to quickly execute
those command sequences in the future. For example, assume that you frequently want to change to
a specific directory. We can create an alias to make this process take just two keystrokes.

% alias ct="cd ${HOME}/ece5745/tut1"
% ct
% pwd
/home/academic/netid/ece5745/tut1

If you always want this alias to be available whenever you login to the system, you can save it in
your .bashrc file. The .bashrc is a special Bash script that is run on every invocation of a Bash shell.

% echo "alias ct=\"cd ${HOME}/ece5745/tut1\"" >> ${HOME}/.bashrc

The reason we have to use a back slash (\) in front of the double quotes is to make sure the echo
command sees this command line argument as one complete string.

Wildcards make it easy to manipulate many files and directories at once. Whenever we specify a file
or directory on the command line, we can often use a wildcard instead. In a wildcard, the asterisk
(*) will match any sequence of characters. The following example illustrates how to list all files that
end in the suffix .txt and then copies all files that match the wildcard from one directory to another.

% cd ${HOME}/ece5745/tut1
% ls *.txt
% cp dirA/file*.txt dirB
% tree

The Bash shell keeps a history of everything you do at the command line. You can display the
history with the history command. To rerun a previous command, you can use the ! operator and
the corresponding command number shown with the history command.

% history

You can pipe the output of the history command to the grep command to see how you might have
done something in the past.

% history | grep wc

If you press the up arrow key at the command line, the Bash shell will show you the previous com-
mand you used. Continuing to press the up/down keys will enable you to step through your history.
It is very useful to press the up arrow key once to rerun your last command.

The Bash shell supports tab completion. When you press the tab key twice after entering the be-
ginning of a filename or directory name, Bash will try to automatically complete the filename or
directory name. If there is more than one match, Bash will show you all of these matches so you can
continue narrowing your search.

14

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

3. Course-Specific Linux Commands

In this section, we describe various aspects of the development environment that are specific to the
severs used in the course.

3.1. Course Setup Script

As discussed in the remote access tutorial, the very first thing you need to do after logging into
the ecelinux servers is source the course setup script. This will ensure your environment is setup
with everything you need for working on the laboratory assignments and design project. Enter the
following command on the command line:

% source setup-ece5745.sh

You should now see ECE 5745 in your prompt which means your environment is setup for the course.

It can be tedious to always remember to source the course setup script. You can also use auto setup
which will automatically source the course setup for you when you open a terminal. Note that if
the environment for ECE 5745 conflicts with the environment required by a different course then
you will need to manually source the setup script when you are working on this course. Enter the
following command on the command line to use auto setup:

% source setup-ece5745.sh --enable-auto-setup

Now close the terminal and log out completely from the ecelinux servers. Log back in and you
should see ECE 5745 in the prompt meaning your environment is automatically setup for the course.
If at anytime you need to disable auto setup you can use the following command:

% source setup-ece5745.sh --disable-auto-setup

Again, if for any reason running the setup script prevents you from using tools for another course,
you cannot use the auto setup. You will need to run the setup script manually every time you want
to work on this course.

3.2. Using quota to Check Your Space Usage

Students are allocated 10GB of storage on the servers. You can use the following command to show
much space you are using:

% quota

The blocks column is how much data you are using, and the quota column is your quota. If you
have exceed the 10GB quota, you can browse your home directory and list the size of files and the
contents of directories with the du command:

% cd ${HOME}
% du -sh *

By recursively changing directories and examining the sizes of files and directories you can figure
out what you need to delete. We can pipe the output of du to the sort and head commands to find
the top 20 largest files and directories like this:

% cd ${HOME}

15

ECE 5745 Complex Digital ASIC Design Tutorial 1: Linux Development Environment

% du -xak . | sort -nr | head --lines=20

Or just use the following to generate a human readable summary of the size of files/directories in the
current working directory. Note that it can take 20–30 seconds for this command to finish, so please
be patient.

The ASIC toolflow used in ECE 5745 can sometimes just use too much space such that you really
need more than 1GB. The ECE 5745 setup script will setup some extra storage that you can use on
the BRG servers. You should see a symlink here:

% cd ${HOME}/ece5745
% ls bits
% cd bits
% ls

The ece5745/bits symlink points to this extra space which you can use if you need it. There are a
couple of important caveats: (1) this extra bits space is _not_ backed up in any way; (2) the extra
bits space is local to each BRG server. Caveat (2) means that if you put some files in bits while
working on brg-01 these files will not be there on brg-02. This extra space is essentially on the local
disk; it is not on the network file server.

3.3. Using trash to Safely Remove Files

We have installed a simple program called trash which moves files you wish to delete into a special
subdirectory of your home directory located at ${HOME}/tmp/trash. The following commands create
a file and then deletes it using trash.

% cd ${HOME}
% echo "This file will be deleted." > testing.txt
% trash testing.txt
% echo "This file will also be deleted." > testing.txt
% trash testing.txt
% ls ${HOME}/tmp/trash

If you look in ${HOME}/tmp/trash you will see subdirectories organized by date. Look in the subdi-
rectory with today’s date and you should two files corresponding to the two files you deleted. We
highly recommend always using the trash command instead of rm since this avoids accidentally
deleting your work.

4. Conclusion

This tutorial hopefully helped you become familiar with Linux and how to use it for working on
the labs. There are many more resources online for learning Linux, and keep in mind that learning
to work productively using the Linux operating system can pay dividends in many other contexts
besides this course.

Acknowledgments

This tutorial was developed for the ECE 4750 Computer Architecture, ECE 5745 Complex Digi-
tal ASIC Design, and ECE 2400 Computer Systems Programming courses at Cornell University by
Shreesha Srinath, Christopher Torng, and Christopher Batten.

16

