
1

RTL SPI Modules User Guide
Kyle Infantino and Dilan Lakhani

https://github.com/pymtl/pymtl3-spi

This guide provides information on how to use the modules found in the pymtl/pymtl3-spi
GitHub repository. These pre-assembled RTL modules allow for communication to a chip over
SPI while abstracting away the intricacies of the SPI protocol. Instead, the SPI communication
can be controlled through the use of the familiar val/rdy interface.

The main motivation for these designs is to communicate with a chip when limited pins
are available. SPI allows for full duplex communication between a master and minion while only
requiring 4 pins, making it a logical protocol to use when taping out a chip.

A few restrictions to note: To ensure synchronization between the SCLK and the on chip
clock period, SCLK must have a period at least 6 times longer than that of the chip. It should
also be noted that SPI is inherently a push/pull protocol. This means that the SPI master
completely controls when data is sent and received from the minion. Although this detail is
largely abstracted away through the use of the SPI Minion Adapter, it is still a fact to keep in
mind.

All modules are provided with both PyMTL and SystemVerilog implementations.

https://github.com/pymtl/pymtl3-spi


2

SPI Minion

The SPI Minion sends and receives messages over SPI and transfers them using a
Push/Pull interface. The module takes in an “nbits” parameter which represents the size of the
shift registers and spi packets. This parameter can take any value, but the physical SPI driver
can only send messages that are some whole number of bytes. The push and pull messages
will also be “nbits” long.

In addition to the two interfaces, the minion also contains a parity bit. This parity bit is the
result of an XOR operation on all but the two most significant bits of the push message, followed
by an AND with the push enable signal. The reason for not including the two most significant
bits is that the minion is meant to be used with the SPI Minion Adapter, in which case the two
most significant bits of the message would be control bits and not part of the actual data being
communicated. The AND operation ensures that the parity will only output a non-zero value
when the message is “valid”.



3

SPI Minion Adapter

The SPI Minion Adapter is designed to be used along with the SPI Minion to convert the
inherent Push/Pull behavior of the SPI protocol to a more flow-controlled val/rdy interface. The
module takes as parameters “nbits” and “num_entries”. The “nbits” parameter signifies the
number of bits in the pull and push messages. These messages contain the two control bits
which are then stripped off, meaning the send and receive messages will have length nbits-2.
The “num_entries” parameter indicates the size of each of the queues in the adapter. This value
determines how many messages to be sent/received can be held in the adapter at a time.

To implement flow control over SPI, two control bits are added to the beginning of each
push and pull message as seen above. Since communication is completely controlled by the
Master in the SPI protocol, these flow control bits are used to indicate to the Master if the Minion
is ready to receive more data or if it has data to send. Since SPI is full duplex, meaning on every
transmission data is sent both ways, the data flowing in either direction may not be valid all the
time, motivating the need for valid bits. The most significant bit of the push message is the
val_write bit. This bit indicates that the SPI Master has a valid message to send to the SPI
Minion. The second most significant bit is the val_read bit. This bit indicates that the SPI Master
is ready to receive the next message from the SPI Minion. The most significant bit of the pull



4

message is a val bit that is used to indicate if the message being sent from the SPI Minion to the
Master is valid. The second most significant bit “space” is used to indicate if the SPI Minion
Adapter has space in its queue to receive another message from the Master.

The SPI Minion Adapter also includes a parity bit which consists of the bits of the send
message XORed together and ANDed with the send_val bit. This ensures the parity bit can only
display a nonzero value when the message is valid.



5

SPI Minion Adapter Composite

The SPI Minion Adapter Composite simply instantiates the SPI Minion and SPI Minion Adapter
and connects them. The resulting module contains an SPI interface, Val/rdy interface, and the
two parity bits from the minion and minion adapter. This should be the primary module used for
interfacing with SPI through val/rdy.



6

Packet Assembler

The Packet Assembler is useful when moving from a narrow bit domain to a wider bit
domain. For example, moving from a domain where all packets are 8 bits wide to a domain
where packets are 32 bits wide. In this case, we need to assemble four packets from the first
domain, then send the concatenated 32-bit packet to the second domain. The Packet
Assembler is instantiated with a certain number of internal registers that it uses to accept
smaller input packets. If we follow the example from above, we would need 4 internal registers:
one for each of the 8-bit packets. Once the Packet Assembler has received 4 valid packets, it
will output a valid 32-bit packet. The Packet Assembler is parameterized by input bit width and
output bit width, so it can be applied to any domain-crossing situation as long as the input bit
width is smaller than the output bit width.



7

Packet Disassembler

The Packet Disassembler is the opposite of the Assembler. We use it to move from a
wide bit domain to a narrow bit domain. For example, moving from a domain where all packets
are 32 bits wide to a domain where packets are 8 bits wide. In this case, we need to
disassemble the 32 bits into 4 separate 8-bit packets. A valid transaction is started when the
Disassembler receives a valid input packet. It stores the input packet in a single internal register.
In the next cycle, the Disassembler outputs a valid packet that consists of the most-significant
bits of the input packet. If we use the 32-bit input and 8-bit output example and the input packet
was 0x1234ABCD, then the first output packet would be 0x12. In the next cycle, the
Disassembler would output 0x34, followed by 0xAB, and finally 0xCD. Then, the transaction is
over and in the next cycle the Disassembler is ready to accept a new input packet. Like the
Assembler, the Disassembler is parameterized by input bit width and output bit width, provided
that the input is wider than the output.



8

SPI Test Harness
The purpose of the SPI Test Harness is to simplify the process of testing over an SPI

interface by completely abstracting away the SPI protocol and flow control used by the SPI
Minion Adapter. This allows existing tests to be sent to a chip via SPI with minimal modifications
to the tests. As parameters, the harness takes an instantiated design to be tested, the number
of different components on the chip able to receive SPI messages, and the number of bits in an
SPI packet (this number includes the two flow control bits, any optional component addressing,
and the data). The number of components is used to determine how many bits of the spi packet
should be reserved for addressing the different components on the chip. Once on the chip, this
address can be used by the router to determine which component to send the message to. For
many designs, there will only be one component.

To run a test, the “t_mult_msg” function is called. It takes as parameters “req_len” and
“resp_len”, which represent the number of data bits in each request or response message (this
value does not include any control or address bits). It also takes a “request_list” and “expected
_resp_list”. The request list is a list of Bit objects to be sent to the chip, and the expected
response list is a list that will be checked against the actual output of the chip. In the case where
a test only wants to write or read a message to/from the chip, the response/request list can be
empty and the resp/req_len is a don’t care value. The optional component address is the
address of the component this packet should be sent to. If the number of components is 0 or 1,
the component address is a don’t care value. The “return_msgs” option indicates whether or not
the chip responses should be checked or returned. False indicates that the chip output should
be checked against the expected response list. This is the default option that allows for
automated testing. True indicates that the output will not be checked and will simply be returned.
This option should be used when the exact output is uncertain and should be checked manually.

Once the “t_mult_msg” function is called, it will run until it has received all of its expected
responses. The function handles all the toggling of all the SPI lines as well as the flow control
used with the SPI Minion Adapter. Once all the responses are received, the function will either
compare the responses to the expected response list or return them according to the
“return_msgs” flag. If the harness never receives the expected number of results the program
will hang. If this happens, double check the arguments in the harness instantiation and
t_mult_msg function call. Otherwise, it is likely a problem with the RTL. When trying to diagnose
issues, remember that the SPI protocol takes 6 chip clock cycles to send a single bit.

Examples of how to use the SPITestHarness module can be found in the
“SPI_v3/test/SPITestHarness_test.py” file in the repository.


