ECE 5745 Complex Digital ASIC Design Course Overview

Christopher Batten

School of Electrical and Computer Engineering Cornell University

http://www.csl.cornell.edu/courses/ece5745

Technology

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - Example design-space exploration
 - > Example real ASIC chips

ASIC Design Case Studies

The Computer Systems Stack

Application
Algorithm
Programming Language
Operating System
Compiler
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Gate Level
Circuits
Devices
Technology

In its broadest definition, computer architecture is the design of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

What is Computer Architecture?

Application Requirements

- Provide motivation for building system
- SW/HW interface expressive yet productive

Computer architects provides feedback to guide application and technology research directions

Technology Constraints

- Restrict what can be done efficiently
- New technologies make new arch possible

In its broadest definition, computer architecture is the design of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]

Key Metrics in Computer Architecture

- Primary Metrics
 - Execution time (cycles/task)
 - Energy (Joules/task)
 - Cycle time (ns/cycle)
 - ⊳ Area (µm²)
- Secondary Metrics
 - Performance (ns/task)
 - Average power (Watts)
 - Peak power (Watts)
 - ▷ Cost (\$)
 - Design complexity
 - Reliability
 - Flexibility

Discuss qualitative first-order analysis from ECE 4750 on board

Unanswered Questions from ECE 4750

- How can we quantitatively evaluate area, cycle time, and energy?
- How do we actually implement processors, memories, and networks in a real chip?
- How should we implement/analyze application-specific accelerators?
 - Very loosely coupled memory-mapped accelerators
 - More tightly coupled co-processor accelerators
 - Specialized instructions and functional units

ASIC: Application-Specific Integrated Circuit

ASIC: Application-Specific Integrated Circuit

Goal for ECE 5745 is to answer these questions!

- How can we quantitatively evaluate area, cycle time, and energy?
- How do we actually implement processors, memories, and networks in a real chip?
- How should we implement/analyze application-specific accelerators?
 - Very loosely coupled memory-mapped accelerators
 - More tightly coupled co-processor accelerators
 - Specialized instructions and functional units

Full Custom Design vs. Standard-Cell Design

Full-custom layout in 1.0µm w/ 2 metal layers

Full-Custom Design (ECE 4740)

- Designer is free to do anything, anywhere; though team usually imposes some design discipline
- Most time consuming design style; reserved for very high performance or very high volume chips (Intel microprocessors, RF power amps for cellphones)
- Standard-Cell Design (ECE 5745)
 - Fixed library of "standard cells" and SRAM memory generators
 - Register-transfer-level description is automatically mapped to this library of standard cells, then these cells are placed and routed automatically
 - ▷ Enables agile hardware design methodology

ASIC Design Case Studies

Standard-Cell Design Methodology

ASIC Design Case Studies

Standard-Cell Design Methodology

ASIC Design Case Studies

Example Standard-Cell Chip Plot

Control Processor	8.1%
Vector Register File	56.9%
Vector Integer ALUs	9.7%
Vector FPUs	9.4%
Vector Memory Units	7.6%
Other	8.3%

810 µm

What is Complex Digital ASIC Design?

Complex digital ASIC design is the process of

quantitatively exploring the area, cycle time, execution time, and energy trade-offs

of various

application-specific accelerators (and general-purpose proc+mem+net)

using

automated standard-cell CAD tools

and then to transform the most promising design to

layout ready for fabrication

Technology

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - > How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - Example design-space exploration
 - Example real ASIC chips

Technology Scaling is Slowing

Example Application Domain: Image Recognition

ASIC Design Case Studies

Machine Learning: Training vs. Inference

ASIC Design Case Studies

ImageNet Large-Scale Visual Recognition Challenge

ASIC Design Case Studies

Accelerators for Machine Learning in the Cloud

NVIDIA DGX Hopper

- Graphics processor specialized just for accelerating machine learning
- Available as part of a complete system with both the software and hardware designed by NVIDIA

Google TPU v4

- Custom chip specifically designed to accelerate Google's TensorFlow C++ library
- Tightly integrated into Google's data centers

Microsoft Catapult

- Custom FPGA board for accelerating Bing search and machine learning
- Accelerators developed with/by app developers
- Tightly integrated into Microsoft data center's and cloud computing platforms

ASIC Design Case Studies

Accelerators for Machine Learning at the Edge

Amazon Echo

- Developing AI chips so Echo line can do more on-board processing
- Reduces need for round-trip to cloud
- Co-design the algorithms and the underlying hardware

Facebook Oculus

- Starting to design custom chips for Oculus VR headsets
- Significant performance demands under strict power requirements

Movidius Myriad 2

Top-five software companies are all building custom accelerators

 Facebook: w/ Intel, in-house AI chips
 Amazon: Echo, Oculus, networking chips
 Microsoft: Hiring for AI chips
 Google: TPU, Pixel, convergence
 Apple: SoCs for phones and laptops
 Chip startup ecosystem for machine learning accelerators is thriving!

Graphcore

- Nervana
- Cerebras
- Wave Computing
- Horizon Robotics
- Cambricon
- DeePhi
- Esperanto
- SambaNova
- Eyeriss
- Tenstorrent
- Mythic
- ThinkForce
- Groq
- Lightmatter

Activity

The field of complex digital ASIC design is experiencing a disruptive sea change and has a critical choice:

A technological fallow period
 A golden age of ASIC design

This course will help you appreciate and possibly contribute to this golden age!

Course Motivation: Comp Arch Research Perspective

ASIC Design Case Studies

Cross-Layer Interaction is Critical

Architecture-level researchers need to quantitatively understand area, cycle time, and energy trade-offs to create new architectures for the accelerator era

> Cross-layer interaction can generate some of the most exciting research ideas!

Course Motivation: Circuits Research Perspective

ASIC Design Case Studies

Cross-Layer Interaction is Critical

Circuit-level researchers need to appreciate the system-level context for their circuits

Cross-layer interaction can generate some of the most exciting research ideas!

Technology

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - > How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - Example design-space exploration
 - Example real ASIC chips

Course Goal, Structure, Motivation

Activity

ASIC Design Case Studies

Part 1: ASIC Design Overview

Course Goal, Structure, Motivation •

Activity

ASIC Design Case Studies

Part 3: CAD Algorithms

ASIC Design Case Studies

Five-Week Design Project

Technology

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - > How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - Example design-space exploration
 - Example real ASIC chips

Fixed-Latency Iterative Multiplier Datapath

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - > Example design-space exploration
 - > Example real ASIC chips

Scalar Processors with Multithreading

Programmer's Logical View

Vector-SIMD Processors

Quantitative Area Evaluation

Control Processor	8.1%
Vector Register File	56.9%
Vector Integer ALUs	9.7%
Vector FPUs	9.4%
Vector Memory Units	7.6%
Other	8.3%

 $810 \ \mu m$

Quantitative Area Evaluation

Quantitative Performance and Energy Evaluation

Complex Digital ASIC Design

- Course goal, structure, motivation
 - What is the goal of the course?
 - Why should students want to take this course?
 - How is the course structured?
- Activity: Evaluation of Integer Multiplier
- ASIC Design Case Studies
 - Example design-space exploration
 - Example real ASIC chips

Activity Course Goal, Structure, Motivation ASIC Design Case Studies Simple RISC Processor ASIC INUE -----**SP** Control 11111=1111 1111 -1101 SP Datapath **SP Regfile** 1111 RAM Interface m ARE RE-Controller VCO IIII 4 RAM RAM 1111 alith **Subbank** Subbank i en re-SILL (2KB) (2KB) hmie 300 A RI I HEI IS Inn Di ROM RAM RAM Subbank **Subbank** -100 (2KB) (2KB) A REAL RE RARE 11011 51111 IN RUUTA NUTANA NUT -

Simple RISC Processor ASIC

$\begin{array}{c}1&1&1&1&1\\1&2&3&4&5\\0&0&0&0&0\\0&0&0&0&0\end{array}$) 0 () ()	1 9 0 0	2 0 0 0	2 1 0 0	2 2 0 0	2 3 0 0	2 4 0 0	2 5 0 0	2 6 0	2 7 0 0	2 8 0 0	2 9 0 0	3 0 0 0	3 1 0 0	3 2 0 0	3 3 0 0	3 4 0 0	3 5 0	3 6 0	3 7 0 0	3 8 0 0	3 9 0 0	4 0 0 0
750 740	••••	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
730 720		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
710 700			:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	÷	*	*	*	*	:
690 680	• •	•	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	• *	• *	*	*	*	* *	*	:
670 660	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	*	*	*	*	*	*	•	•
650 640	• • •		:	:	:	:	:	:	:	:	:	:	:	• * *	• * *	*	*	*	*	*	*	*	• * *	:
630	• •		:	:	:	:	÷	:	:	:	:	• • *	*	*	*	*	*	*	*	*	*	*	•	:
620 610			:	:	:	:	:	:	:	:	*		*	*	*	*	*	*	*	*	*	*	*	:
600 590	·		:	:	:	:	:	:	:	*	*	*	*	*	*	*	*	*	*	*	*	* *	*	:
580 570	•	•	÷	:	÷	÷	÷	÷	*	*	*	*	*	*	*	*	*	*	*	*	*	* *	• *	• *
560 550		•	·	·	·	·	• *	•	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
540 530	• •		:	:	:	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	•	• * *
520			:	:	:	• * *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
510 500	• : :		:	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
490 480			:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* *	* *	*	* *
470 460	•	•	*	*	* *	* *	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	* *	*	* *
450 440	••••	•	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* *
430 420		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* *
410	. *	* *	*	*	~ * *	*	* *	*	*	*	*	*	*	*	*	*	*	* *	* *	*	*	*	*	*
400	* *	* *	*	*	Ŧ	Ŧ	Ŧ	Ŧ	*	Ŧ	*	Ŧ	*	*	*	*	*	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	*	*
380 · · · · · · · · · · · · · · · · · · ·	* *	* *	*	*																				
360 350 *	* * *	* *	*	* *																				
340 * 330 *		* *	*	*																				
320 * * 310 * *	***		*	*																				
300 * *	* * *		*	*																				
280 * * *	* * *	* *	*	*																				
270 * * * 260 * * *			*	*																				
250 * * * 240 . * * * *	* * * * * *		*	* *																				
230 . * * * * 220 . * * * *	***		*	*																				
210 . * * * *	* * *	* *	*	*																				
200 * * * * * 190 * * * * *	* * *	* *	*	*																				
180 * * * * *	* * *	* *	*	*																				

- RISC processor w/ 8 KB SRAM
- ► TSMC 0.18 µm process
- ▶ 1.7 × 2.1 mm
- 610K Transistors
- 450 MHz at 1.8 V

Scale Vector-Thread Processor ASIC

Scale Vector-Thread Processor ASIC

TSMC 0.18µm • 7.14 Million Transistors • 16.6 mm² Core Area

Scale Energy vs. Performance Results

Batten Research Group Test Chips

Course Goal, Structure, Motivation

ASIC Design Case Studies

BRG Test Chip 1 (2016)

Post-Silicon Evaluation Strategy

The testing platform enables running small test programs on BRGTC1 to compare the performance and energy of pure-software kernels versus the HLS-generated sorting accelerator

Taped-out Layout for BRGTC1

2x2mm 1.3M transistors in IBM 130nm RISC processor, 16KB SRAM HLS-generated accelerators Static Timing Analysis Freq. @ 246 MHz

Celerity System-on-Chip Overview (2017)

Target Workload: High-Performance Embedded Computing

- 5×5 mm in TSMC 16 nm FFC
- 385 million transistors
- 511 RISC-V cores
 - 5 Linux-capable Rocket cores
 - 496-core tiled manycore
 - 10-core low-voltage array
- 1 BNN accelerator
- 1 synthesizable PLL
- 1 synthesizable LDO Vreg
- 3 clock domains
- 672-pin flip chip BGA package
- 9-months from PDK access to tape-out

BRG Test Chip 2 (2018)

Block Diagram 4xRV32IMAF cores with "smart" sharing L1\$/LLFU, synthesizable PLL

I\$ D\$ Bloom D\$ I\$ Filter Tag Tag Tag Tag Core Accel Shared MDU LO Core IS IS D\$ D\$ Data Data Data Data Shared Core FPU Core

Taped-out Layout for BRGTC2

2x2mm, 1.2M-trans, IBM 130nm Static Timing Analysis Freq. @ 500MHz

BRG Test Chip 3/4 (2020/2021)

ECE 5745

ECE 5745 Teaching Tapeout (2022)

- First teaching tapeout in 10 years
 - SkyWater 130nm through efabless
 - Taped out using completely open-source EDA tools!
- Four student projects
 - CRC32 checksum unit implemented using C++ HLS
 - Latency insensitive synthesizable memory implemented in PyMTL3
 - 2x2 systolic array multiplier implemented in SystemVerilog
 - Greatest common divisor unit implemented in SystemVerilog
 - Each unit included dedicated SPI interface

Course Goal, Structure, Motivation

Activity

ASIC Design Case Studies

BRG Test Chip #5 (2022)

RISC-V RV32IM core with 32-KB of SRAM SPI minion for config; SPI master and GP I/O for peripherals 2x2.5mm, TSMC 180nm 100% done using PyMTL3 by ECE 5745 Alumni

BRG Test Chip #5 (2022)

BRG Test Chip #5 (2022)

Simulated and Measured Energy per Instruction at 66 MHz and 3.3 V Core Voltage

Take-Away Points

- Complex digital ASIC design is the process of quantitatively exploring the area, cycle time, execution time, and energy trade-offs of general-purpose and application-specific designs using automated standard-cell CAD tools and then to transform the most promising design to layout ready for fabrication
- Course provides an excellent foundation for students interested in pursuing a career in in industry development of ASICs or can provide useful experience with cross-layer interaction for students interested in pursuing research in computer architecture or circuits