
ECE 5745 Complex Digital ASIC Design

Topic 9: CMOS Combinational Logic

School of Electrical and Computer Engineering
Cornell University

revision: 2022-02-22-20-38

1 RC Modeling 3

2 Delay 5

2.1. RC Delay of Inverter . 5

2.2. RC Delay of 2-Input NAND Gate . 6

2.3. Equal Rise/Fall Times . 9

2.4. Equal Drive Strength . 10

2.5. Larger Gates . 11

2.6. Larger Loads . 12

2.7. Comparison of Inverter, NAND, NOR Gates 13

2.8. Logical Effort: Single Stage . 16

2.9. Logical Effort: Multiple Stages . 22

3 Energy 37

4 Area 44

1

Copyright © 2022 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 5745 Complex Digital ASIC
Design. Download and use of this handout is permitted for individual educational non-
commercial purposes only. Redistribution either in part or in whole via both commercial
or non-commercial means requires written permission.

2

1. RC Modeling

1. RC Modeling

• Csb capacitors do not actually switch, so ignore
• Lump Cdbp + Cdbn since both tied to constant nodes
• Lump Cgsp + Cgsn since both tied to constant nodes
• Assume PMOS mobility is 2× worse than NMOS mobility

3

1. RC Modeling

• Let C be the gate capacitance of minimum sized NMOS
• Let R be the effective resistance of a minimum sized NMOS
• Let k be width of a transistor relative to minimum sized NMOS

2-Input NAND Gate

Draw and label the parasitic capacitances.

4

2. Delay 2.1. RC Delay of Inverter

2. Delay

• We will initially use RC modeling to estimate delay
• We will then use RC modeling to derive logical effort (LE)
• LE is a fast way to estimate delay for simple static CMOS circuits
• Often need to use a mix of RC modeling and LE

2.1. RC Delay of Inverter

1τ 2τ 3τ 4τ

0

Vdd
2

Vdd

• Let tpd be the propagation delay, time until Vout = Vdd/2

5

2. Delay 2.2. RC Delay of 2-Input NAND Gate

Vout = Vdd e−t/τ

Vdd
2

= Vdd e−t/τ

1
Vdd

Vdd
2

= e−t/τ

ln
(

1
2

)
=
−t
τ

−τ ln
(

1
2

)
= t

t = τ ln(2)

• So tpd = ln(2) · RC1

• Let R′ = ln(2) · R, so tpd = R′C1

• For inverter on previous page,
tpd = 2R′C

• We usually just assume effective
resistance is scaled by ln(2)

• So propagation delay of inverter
on previous page:

tpd = 2RC

2.2. RC Delay of 2-Input NAND Gate

• Requires complicated 2nd order model
• We can use a simple approximation

τ = τ1 + τ2 = RC1 + (R + R)C2

= RC + (2R)(3C)

= RC + 6RC = 7RC (3.5× slower than inverter)

• Best when one τ much larger than the other τ

• Even if τ1 = τ2, error is < 15%

6

2. Delay 2.2. RC Delay of 2-Input NAND Gate

Generalized Elmore Delay

tpd =
all nodes

∑
i

RijCi

Assume all
resistances are R and
all capacitances are C

• Delay of path from x to y is impacted by branch to z
• Delay of path from x to z is impacted by branch to y
• For path x to y, lump C2 + C3 and use shared resistance R0 + R1

• For path x to z, lump C1 and use shared resistance R0 + R1

• This extra term estimates impact of delay due to “branch”

Tpd,xy = R0C0 + (R0 + R1 + R2)C1 + (R0 + R1)(C2 + C3)

= RC + 3RC + 4RC = 8RC

Tpd,xz = R0C0 + (R0 + R1 + R3)C2 + (R0 + R1 + R3 + R4)C3 + (R0 + R1)C1

= RC + 3RC + 4RC + 2RC = 10RC

7

2. Delay 2.2. RC Delay of 2-Input NAND Gate

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NAND Gate

tpd,1→ 0

A = 1
B = 0→ 1

tpd,1→ 0

A = 0→ 1
B = 1

tpd,0→ 1

A = 1→ 0
B = 1→ 0

tpd,0→ 1

A = 1
B = 1→ 0

tpd,0→ 1

A = 1→ 0
B = 1

8

2. Delay 2.3. Equal Rise/Fall Times

2.3. Equal Rise/Fall Times

tpd,1→ 0

in = 0→ 1

tpd,0→ 1

in = 1→ 0

• For equal rise/fall times, the effective resistance of pullup must
equal effective resistance of pulldown

• If we assume PMOS mobility 2× worse than NMOS, then PMOS
must be 2× size of NMOS in an inverter for equal rise/fall times

9

2. Delay 2.4. Equal Drive Strength

2.4. Equal Drive Strength

• Size transistors so worst case effective resistance is equal in both the
pullup and pulldown networks.

tpd,1→ 0 tpd,0→ 1

worst best worst best

inverter

2-input NAND w/o internal cap

2-input NAND w/ internal cap

• Is this a fair comparison? No, we are not normalizing anything
across these gates. We need to either normalize:

– Input gate gap (i.e., load on previous gate)
– Drive strength (i.e., effective resistance)

10

2. Delay 2.5. Larger Gates

• All three gates with equal rise/fall times and equal drive strengths

2.5. Larger Gates

tpd,1→ 0 =

tpd,0→ 1 =

• This is the parasitic delay, independent of size (k)

11

2. Delay 2.6. Larger Loads

2.6. Larger Loads

tpd,1→ 0 =

12

2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

2.7. Comparison of Inverter, NAND, NOR Gates

• Complete a fair comparison assuming equal rise/fall times, equal
drive strength, only parasitic delay

tpd,1→ 0 tpd,0→ 1

worst best worst best

inverter

2-input NAND w/o internal cap

2-input NAND w/ internal cap

2-input NOR w/o internal cap

2-input NOR w/ internal cap

13

2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NOR Gate

tpd,1→ 0

A = 0→ 1
B = 0→ 1

tpd,1→ 0

A = 0
B = 0→ 1

tpd,1→ 0

A = 0→ 1
B = 0

tpd,0→ 1

A = 0
B = 1→ 0

tpd,0→ 1

A = 1→ 0
B = 0

14

2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

Use RC Modeling to Estimate Delay of 2-Input NAND and NOR Gates

• Ignore internal capacitance
• Assume worst case delay
• Assume an output load of 15C

15

2. Delay 2.8. Logical Effort: Single Stage

2.8. Logical Effort: Single Stage

• Logic effort (LE) is just an abstraction over RC modeling
• Logic effort (LE) is a linear delay model
• Useful for building intuition for static CMOS modeling
• Keep in mind often need to use a mix of RC modeling and LE

Cin = αCt

Ri = Rui = Rdi = Rt/α

Cpi = αCpt

16

2. Delay 2.8. Logical Effort: Single Stage

• We know the propagation delay of the gate instance is:

tpd = Ri(Cout + Cpi)

• Let’s rewrite this in terms of the template

Cin = αCt

Ri = Rui = Rdi = Rt/α

Cpi = αCpt

tpd = Ri(Cout + Cpi)

= RiCout + RiCpi

=
Rt

α
Cout +

Rt

α
Cpi

=
Rt

α
Cout +

Rt

α
(αCpt)

=
Rt

α

(
Cin
Cin

)
Cout +

Rt

α
(αCpt)

=
Rt

α
αCt

(
Cout

Cin

)
+

Rt

α
(αCpt)

= RtCt

(
Cout

Cin

)
+ RtCpt

17

2. Delay 2.8. Logical Effort: Single Stage

• We don’t want to deal with absolute delay
• Let’s rewrite our propagation delay equation to be a “relative” delay
• Relative to the delay of a single unloaded minimal inverter
• Let’s start by defining some new parameters

τ = RinvCinv “relative delay units”

g = RtCt/RinvCinv logical effort

h = Cout/Cin electrical effort

p = RtCpt/RinvCinv parasitic delay

18

2. Delay 2.8. Logical Effort: Single Stage

• Let’s rewrite our propagation delay equation in terms of τ

τ = RinvCinv “relative delay units”

g = RtCt/RinvCinv logical effort

h = Cout/Cin electrical effort

p = RtCpt/RinvCinv parasitic delay

tpd = dabs = RtCt

(
Cout

Cin

)
+ RtCpt

=

(
RinvCinv
RinvCinv

)
RtCt

(
Cout

Cin

)
+

(
RinvCinv
RinvCinv

)
RtCpt

= RinvCinv

(
RtCt

RinvCinv

)(
Cout

Cin

)
+ RinvCinv

(
RtCpt

RinvCinv

)
= τgh + τp

= τ(gh + p)

dabs = τ(gh + p)

• Let d be the delay in units of τ (i.e., d = gh + p)

19

2. Delay 2.8. Logical Effort: Single Stage

Templates for Inverter, NAND, NOR Gates

20

2. Delay 2.8. Logical Effort: Single Stage

Use LE to Estimate Delay of 2-Input NAND and NOR Gates

• Assume an output load of 15C

Let’s list the many approximations we have made

21

2. Delay 2.9. Logical Effort: Multiple Stages

2.9. Logical Effort: Multiple Stages

• Path delay is the sum of the delay of each stage

D = ∑ di = ∑(gihi + pi)

• Calculate path delay assuming canonical sized gates

gi 1 5/3 4/3 1

hi 5/3 4/5 3/4 40/3

gi · hi 5/3 4/3 1 40/3

pi 1 2 2 1

di 2.67 3.33 3 14.33

D 23.33

• Calculate path delay assuming final gate is X16

gi 1 5/3 4/3 1

hi 5/3 4/5 48/4 40/48

gi · hi 5/3 4/3 16 40/48

pi 1 2 2 1

di 2.67 3.33 18 1.83

D 25.83

22

2. Delay 2.9. Logical Effort: Multiple Stages

Q1: How should we size gates to minimize total delay?

• Independent variables are hi (i.e., internal gate sizing)
• We want to choose hi to minimize D
• Take the partial derivative of D with respect to hi, set to zero, and

solve for optimum hi

D = (g1h1 + p1) + (g2h2 + p2)

• Note that h1 and h2 are constrained since C1 and C3 are given and
input cap of gate 2 is output cap for gate 1

h1 =
C2

C1
h2 =

C3

C2
h1h2 =

C2

C1

C3

C2
=

C3

C1

• Let H = h1h2 = C3/C1, H is a constant since C1 and C3 are given
• Let’s rework D to get it in terms of just one variable

D = (g1h1 + p1) + (g2h2 + p2)

D = g1h1 + g2h2 + (p1 + p2)

= g1h1 + g2
H
h1

+ (p1 + p2)

= g1h1 + g2Hh−1
1 + (p1 + p2)

23

2. Delay 2.9. Logical Effort: Multiple Stages

• Take partial derivative with respect to the only variable h1

D = g1h1 + g2Hh−1
1 + (p1 + p2)

∂D
∂h1

= g1 − g2Hh−2
1 + 0

= g1 −
g2H
h2

1

• Set partial derivative to zero and solve for h1

∂D
∂h1

= g1 −
g2H
h2

1
= 0

g1 =
g2H
h2

1

g1h2
1 = g2H

h2
1 =

g2

g1
H

h1 =

√
g2

g1
H

• Can use similar approach to find optimal hi for more than 2 stages
• However, there is actually a much more interesting result!

g1h2
1 = g2H

g1h2
1 = g2h1h2

g1h1 = g2h2

f1 = f2

24

2. Delay 2.9. Logical Effort: Multiple Stages

• Delay is minimized when stage effort (fi) is the same in both stages!
• Let f̂ be the optimal stage effort (i.e., f̂ = f1 = f2)
• We can use a trick to quickly calculate f̂

f̂ =

√
f̂ 2 =

√
f̂ f̂ =

√
f1 f2

=
√
(g1h1)(g2h2)

=
√
(g1g2)(h1h2)

• Let G = g1g2, this is the path logical effort
• Let H = h1h2 = Cout/Cin, this is the path electrical effort
• Let F = GH, this is the path effort

f̂ =
√
(g1g1)(h1h2)

=
√

GH

=
√

F

• We can calculate f̂ without finding the optimal size of each gate!
• Minimal delay with optimal sizing can be quickly calculated using:

D̂ = 2 f̂ + (p1 + p2)

25

2. Delay 2.9. Logical Effort: Multiple Stages

• This generalizes to paths with any number of stages

G = ∏ gi path logical effort

H = ∏ hi =
Cout

Cin
path electrical effort

F = GH path effort

f̂ = F1/N optimal stage effort

P = ∑ pi path parasitic delay

D̂ = N f̂ + P min delay with opt sizing

Method for optimal sizing

1. Calculate path effort (F = GH)

2. Calculate effort for each stage (f̂ = F1/N)

3. Estimate minimum delay with optimal sizing (D̂ = N f̂ + P)

4. Starting with last stage, work backwards sizing each gate

f̂ = gh = g
Cout

Cin
Cin =

g
f̂

Cout

26

2. Delay 2.9. Logical Effort: Multiple Stages

Revisit earlier example

gi 1 5/3 4/3 1

pi 1 2 2 1

27

2. Delay 2.9. Logical Effort: Multiple Stages

Optimal sizing with standard cells

• This assumes we can size gates arbitrarily using full custom design
• What about if we are using a standard cell library?
• Assume we have a standard cell library with the following cells

– INVX1, INVX2, INVX4, INVX8
– NANDX1, NANDX2, NANDX4
– NORX1, NORX2, NORX4

• Assume we have determined optimal sizing in Cin
• How do we figure out which standard cell to use?

28

2. Delay 2.9. Logical Effort: Multiple Stages

• Given optimum Cin from before, what is α?

Cin g Cin/(g× 3C) = α gate

17.17C 1 17.17C/(1 × 3C) = 5.72 INVX4

9.83C 4/3 9.83C/((4/3) × 3C) = 2.45 NANDX2

7.03C 5/3 7.03C/((5/3) × 3C) = 1.41 NORX1

3.02C 1 3.02C/(1 × 3C) = 1.00 INVX1

• Recalculate actual delay given these gates
• First calculate actual Cin for each standard cell gate

gate α g α× g× 3C = Cin

INVX4 4 1 4× 1× 3C = 12C

NANDX2 2 4/3 2× 4/3× 3C = 8C

NORX1 1 5/3 1× 5/3× 3C = 5C

INVX1 1 1 1× 1× 3C = 3C

• Now use path delay equation

D = ∑ gh + ∑ p

= (1× 40
12

) + (
4
3
× 12

8
) + (

5
3
× 8

5
) + (1× 5

3
) + (1 + 2 + 2 + 1)

= 3.33 + 2 + 2.67 + 1.67 + 6 = 9.67 + 6 = 15.67

• Compare with optimal delay which is 15.32, off by 2.3%

29

2. Delay 2.9. Logical Effort: Multiple Stages

What about branching?

• Consider the following simple example

G = 1× 1 = 1

H = 90C/5C = 18

F = GH = 18

F = ∏ gihi

= (1× 6)× (1× 6) = 36

• So in this example F = 2GH
• The factor of two is called the branching effort
• Key Idea: some drive current is directed off path we are analyzing
• Similar to Elmore delay for trees

b =
Conpath + Coffpath

Conpath
stage branching effort

B = ∏ bi path branching effort

• So our new path effort equation is now:

F = ∏ fi = GBH

• Note that path effort depends on circuit topology and loading of
entire path, but not size of transistors in network

• Note that path effort does not change if we add or remove inverters!

30

2. Delay 2.9. Logical Effort: Multiple Stages

Q2: How should we change topology to minimize delay?

• Assume we want to implement an eight input AND gate
• Calculate min delay assuming optimal sizing for three topologies
• First assume H = 1, then assume H = 12

H = 1 H = 12

Topology NF1/N P D̂ NF1/N P D̂

NAND8

NAND4

NAND2

31

2. Delay 2.9. Logical Effort: Multiple Stages

Determine optimal number of stages for chain of inverters

D̂ = NF1/N + NPinv

∂D̂
∂N

= F1/N − F1/N ln(F1/N) + Pinv = 0

• If Pinv = 0

∂D̂
∂N

= F1/N − F1/N ln(F1/N) = 0

ln(F1/N) = 1

F1/N = e

f̂ = e

• So if we assume Pinv = 0, then the optimal number of stages results
in a stage effort of e (i.e., 2.718) for every stage

• Since G = 1 for an inverter, this means h = 2.718 for every stage

32

2. Delay 2.9. Logical Effort: Multiple Stages

• If Pinv = 1, then we need to solve this nonlinear equation:

F1/N − F1/N ln(F1/N) + 1 = 0

• Let ρ = F1/N̂ where N̂ is optimal number of stages

1 + ρ(1− ln(ρ)) = 0

• We can solve this numerically to find that ρ ≈ 3.59
• So if we assume Pinv = 1, then the optimal number of stages results

in a stage effort of 3.59 for every stage
• Since G = 1 for an inverter, this means h = 3.59 for every stage
• We can roughly approximate 3.59 to be 4
• Let’s solve for N̂ as a function of F

F1/N̂ = 4

log(F1/N̂) = log(4)

1
N̂

log(F) = log(4)

N̂ =
log(F)
log(4)

= log4(F)

• This is actually a pretty good estimate even for a path of gates which
are not inverters!

33

2. Delay 2.9. Logical Effort: Multiple Stages

34

2. Delay 2.9. Logical Effort: Multiple Stages

35

2. Delay 2.9. Logical Effort: Multiple Stages

36

3. Energy

3. Energy

• Energy is a measure of work
• Power is the rate at which work is done

Electric
Potential
Energy

Capacity for doing work
which arises from
position of a charge in an
electric field

Joules

Electric
Potential

Electric potential energy
of a position per unit
charge

Volts
1V = 1J/C
∆V = ∆E/Q

Current Rate at which charge
flows past position

Amps
1A = 1C/S
I = Q/∆t

Power Rate at which electric
energy is supplied or
consumed

Watts
1W = 1J/S
P = ∆E/∆t = ∆V·Q

Q/I = VI

37

3. Energy

Energy Stored on a Capacitor

EC =
∫ ∞

0
P(t)dt =

∫ ∞

0
V(t)I(t)dt

=
∫ ∞

0
V(t)

dQ
dt

dt =
∫ ∞

0
V(t)

Cdv
dt

dt

= C
∫ VDD

0
V(t)dV =

1
2

CVDD
2

• So on 1→ 0 input transition, 1
2 CVDD

2 is stored on capacitor
• This energy is released on 0→ 1 input transition

Energy Delivered From Power Supply

Esupply =
∫ ∞

0
P(t)dt =

∫ ∞

0
VDD I(t)dt

= VDD

∫ ∞

0

dQ
dt

dt = VDD

∫ ∞

0

Cdv
dt

dt

= CVDD

∫ VDD

0
dV = CVDD

2

• 0→ 1 output transition

– CVDD
2 energy is delivered from power supply

– half this energy dissipated as heat in PMOS
– half this energy is stored on the capacitor

• 1→ 0 output transition

– no energy is delivered from power supply
– remaining energy on capacitor dissipated as heat in NMOS

38

3. Energy

• On average, each bit transition requires 1
2 CVDD

2

• Let α be the activity factor, probability of a bit transitions per cycle

Enode = α 1
2 CVDD

2

Power Consumption

Ptot = Pswitching + Pstatic

= α f
1
2

CVDD
2 + VDD Ioff

• Sometimes engineers will assume α is the probability of just a 0→ 1
output transition instead of the probability of any transition

– α = probability of any transition
– α′ = probability of a 0→ 1 transition only

• If you use α′ then do not include the factor of 1/2

• Note that book uses α but it is really α′ in our notation!

39

3. Energy

Comparing Energy

• Calculate the total switched cap in worst case

g 10/3 1

p 8 1

G 10/3

H 1

B 1

F 10/3

f̂ 1.8

Cinv,g =
1

1.8
× 10 = 5.6

Cnand,g =
10/3
1.8
× 5.6 = 10.4

Ctot,g = Cinv,g + 8Cnand,g

= 88.8C

g 2 5/3

p 4 2

G 10/3

H 1

B 1

F 10/3

f̂ 1.8

Cnor,g =
5/3
1.8
× 10 = 9.3

Cnand,g =
2

1.8
× 9.3 = 10.3

Ctot,g = 2Cnor,g + 8Cnand,g

= 101C

• To determine parasitic cap need to understand how gate cap is
distributed across transistors

40

3. Energy

41

3. Energy

Enode = α 1
2 CVDD

2

• Assume α = 0.1 and VDD = 1V for both
• Only difference is amount of switched cap

• For 8-input NAND topology

Ctot = Ctot,g + Ctot,p = 88.8 + (5.6 + 24.96) = 119.36C

• For 4-input NAND topology

Ctot = Ctot,g + Ctot,p = 101 + (11.16 + 2× 20.58) = 153.32C

• So second topology requires ≈30% more energy in the worst case
• Worst case is when all capacitance is switched
• This ignores the energy for switching the output load
• Let’s assume C = 0.5 fF (see extra notes)
• Assume clock frequency is 500 MHz

E = α
1
2

CVDD
2 = 0.1× 1

2
× 120C× 0.5 f F

C
× (1V)2 = 3fJ

P = α f
1
2

CVDD
2 = (0.5× 109)(30× 10−15) = 1.5µW

42

3. Energy

Activity Factors

• Previous example used fixed α = 0.1 for all nodes
• Can improve accuracy by:

– Propagate activity factor of inputs to internal nodes
– Use RTL to calculate activity of inputs, then propagate
– Use gate-level simulation to find activity of each node

Pi = probability node is one on cycle i

Pi = 1− Pi = probability node is zero on cycle i

α = Pi−1Pi + Pi−1Pi

α′ = Pi−1Pi

• Assuming inputs have uncorrelated random data
• Each of these is equally likely: 0→0, 0→1, 1→0, 1→1

α = Pi−1Pi + Pi−1Pi = 0.5

α′ = Pi−1Pi = 0.25

α′ =
1
2

α

43

4. Area

Output Activity Factor of NAND2

• Calculate output activity factor of a NAND2 gate
• Assume inputs are uncorrelated random data
• Output of NAND2 is zero if both inputs one, otherwise output is one

α′out = Pout,i−1Pout,i

= (PAPB)(1− PAPB)

= (0.5× 0.5)(1− 0.5× 0.5)

= (0.25)(1− 0.25)

= 0.1875

Output Activity Factor of NAND8

4. Area

• Sum the transistor widths across all transistors in design
• Use standard cell footprints

44

