

- 1 -

ece5745-buf-resizing-insertion.txt

During lecture today, I mentioned that _adding_ inverters can sometimes
reduce the path delay. This might seems counter intuitive based on what
you learned in ECE 2300. In ECE 2300, gates had a _constant_ delay. So
every inverter might always have a delay of 1 tau, and every NAND2 gate
might always have a delay of 2 tau. In fact, we used a similar
simplification when estimating the critical path in ECE 4750. If we
assume a constant delay model, then adding a pair of inverters would
indeed _always_ slow down the path delay. Adding a pair of inverters
would simply increase the total propagation delay.

Based on what we have learned in ECE 5745 so far, it should be clear that
the constant delay model is a significant oversimplication. The delay of
a gate depends on many things including its size, the load capactance at
the output, when inputs arrive, the rise/fall time of the inputs, layout
details, etc. Our RC modeling and method of logical effort use a _linear_
delay model which is a little more reasonable than a _constant_ delay
model (but of course is still a significant simplification!). So the
delay of a gate is:

 d = gh + p

The logical effort (g) and the parasitic delay (p) depend only on the
template, while the electrical effort (h) depends on both the size of the
gate (Cin) and the load capacitance at the output (Cout).

Let’s look in more detail at the example we were discussing in lecture to
demonstrate how _adding_ intervers can sometimes _reduce_ the path delay.
Assume after synthesis we have the following two-gate path:

 --|NAND
 |NAND---I>o----.---
 --|NAND |
 4C --- 1000C
 NAND2X1 INVX4 ---
 |
 V

So we have a X1 two-input NAND gate (NAND2X1) and a X4 inverter driving a
load of 1000C. The synthesis tool optimized the design assuming the
inverter was driving a modest load, but after place-and-route, it turned
out that the inverter has to drive a cross-chip global wire and thus a
very large fixed capacitance.

What is the delay of this two-gate path?

 D = (g0*h0 + g1*h1) + (p0 + p1)
 = (4/3 * 12/4 + 1 * 1000/12) + (2 + 1)
 = (4 + 83.3) + 3
 = 90.3 tau

Recall that the minimum delay will occur when the stage effort is equal
across all stages. Notice that the stage effort of the two stages is not
even close to being equal which suggests this sizing is suboptimal.

The place-and-route tool can potentially reduce the path delay using
"buffer resizing". So let’s assume the tool wants to increase the size of
the inverter. Let’s use logical effort to figure out the optimal sizing.

 F = GHB = 4/3 * 1000/4 * 1 = 333
 f’ = F^(1/N) = (333)^(1/2) = 18.25
 D’ = N*F^(1/N) + P = 2*18.25 + (2 + 1) = 39.5 tau

- 2 -

ece5745-buf-resizing-insertion.txt

Note that I am using f’ instead of f "hat" and D’ instead of D "hat". The
path delay is significatly lower if we can resize the inverter. Let’s
figure out how large the final inverter needs to be to achieve this
optimal delay.

 C_in,1 = (g/f’) * C_load = (1/18.25) * 1000 = 54.8C

That is a pretty big inverter! The inverter’s NMOS would be 18.27 times
the minimum width and the inverter’s PMOS would be 36.53 times the
minimum width. Assume our standard cell library has an INVX1, INVX2,
INVX4, INVX8, INVX16, INVX32, and INVX64. Let’s choose the INVX16 for the
final inverter (which is a little smaller than the optimal full-custom
sizing).

 --|NAND
 |NAND---I>o----.---
 --|NAND |
 4C --- 1000C
 NAND2X1 INVX16 ---
 |
 V

What is the new delay of the new path?

 D = (g0*h0 + g1*h1) + (p0 + p1)
 = (4/3 * 48/4 + 1 * 1000/48) + (2 + 1)
 = (16 + 20.8) + 3
 = 39.8 tau

The delay using the standard cell is a little slower and the stage effort
is not exactly balanced, but buffer resizing does still significantly
reduce the path delay.

The place-and-route tool can potentially further reduce the path delay
using "buffer insertion". Let’s quickly estimate the optimal number of
stages.

 log_4(F) = log_4(333) = 4.2

So the rough estimate of the optimal number of stages if 4, but we are
only using two stages. Let’s add two INVX1 gates at the end of the path
to see if that helps.

 --|NAND
 |NAND---I>o----I>o----I>o----.---
 --|NAND |
 4C --- 1000C
 NAND2X1 INVX16 INVX1 INVX1 ---
 |
 V

 D = (g0*h0 + g1*h1 + g2*h2 + g3*h3) + (p0 + p1 + p2 + p3)
 = (4/3 * 48/4 + 1 * 3/48 + 1 * 3/3 + 1 * 1000/3) + (2 + 1 + 1 + 1)
 = (16 + 0.0625 + 1 + 333.3) + 5
 = 355 tau

Yeow -- this is a bad idea. The delay is 9x worse! Instead of driving the
large load capacitance with an INVX16, now we are driving this large load
capacitance with an INVX1. Very bad idea. What if we add two more INVX16
gates at the end of the path?

- 3 -

ece5745-buf-resizing-insertion.txt

 --|NAND
 |NAND---I>o----I>o----I>o----.---
 --|NAND |
 4C --- 1000C
 NAND2X1 INVX16 INVX16 INVX16 ---
 |
 V

 D = (g0*h0 + g1*h1 + g2*h2 + g3*h3) + (p0 + p1 + p2 + p3)
 = (4/3 * 48/4 + 1 * 48/48 + 1 * 48/48 + 1 * 1000/48) + (2 + 1 + 1 + 1
)
 = (16 + 1 + 1 + 20.8) + 5
 = 43.8 tau

This is better than the original design, but slower than the optimized
two-gate design with buffer resizing. The key is that we don’t want to
add more inverters. We want to add more inverters and then properly
resize the gates to ensure we are balancing the stage efforts
appropriately. We can just use the method of logical effort to find the
optimal delay and the optimal sizing.

 F = GHB = 4/3 * 1000/4 * 1 = 333
 f’ = F^(1/N) = (333)^(1/4) = 4.27
 D’ = N*F^(1/N) + P = 4*4.27 + (2 + 1 + 1 + 1) = 22.1 tau

So we have further reduced the delay by using a combination of buffer
insertion and buffer resizing. Let’s figure out how large each
inverter needs to be to achieve this optimal delay.

 C_in,3 = (g/f’) * C_load = (1/4.27) * 1000 = 234C
 C_in,2 = (g/f’) * C_in,3 = (1/4.27) * 234 = 55C
 C_in,1 = (g/f’) * C_in,2 = (1/4.27) * 55 = 13C

Yeow -- that is a big final inverter! Our INVX64 has a C_in of 192C so
that will be the best we can do. Let’s size our inverters as follows:

 --|NAND
 |NAND---I>o----I>o----I>o----.---
 --|NAND |
 4C --- 1000C
 NAND2X1 INVX16 INVX32 INVX64 ---
 |
 V

And now let’s calculate the delay again:

 D = (g0*h0 + g1*h1 + g2*h2 + g3*h3) + (p0 + p1 + p2 + p3)
 = (4/3 * 48/4 + 1 * 96/48 + 1 * 192/96 + 1 * 1000/192) + (2 + 1 + 1 +
 1)
 = (16 + 2 + 2 + 5.2) + 5
 = 27.2 tau

The original design without buffer insertion/resizing had a delay of 90.3
tau while the new design with buffer insertion/resizing has a delay of
only 27.2, and improvement of 3.3x! So clearly _adding_ inverters can
reduce the path delay, but (as we saw with some of our
counter-examples) this is only true if you properly size the gates!

- 1 -

ece5745-freepdk45nm-process.txt

It is useful in our pen-and-paper analysis to have a good estimate for
some of the technology parameters in our target process. For example,
when estimating the power and energy of a circuit, we need to know the
supply voltage and gate capacitance (since all of our switched
capacitance estimtes will be in units of C). West & Harris provides a
methodology for using SPICE simulations to estimate various technology
parameters. We can also look in the .lib file for our 45nm standard cell
library, since this file was itself generated from many SPICE
simulations.

The following snippet shows the entry in the .lib file for our cannonical
inverter (INV_X1). We can see that the nominal supply voltages is 1.1V
and that the total input gate capacitance for this inverter is estimated
to be 1.7fF.

 library (NangateOpenCellLibrary) {
 ...

 /* Units Attributes */
 time_unit : "1ns";
 leakage_power_unit : "1nW";
 voltage_unit : "1V";
 current_unit : "1mA";
 pulling_resistance_unit : "1kohm";
 capacitive_load_unit (1,ff);

 /* Op Conditions */
 nom_process : 1.00;
 nom_temperature : 25.00;
 nom_voltage : 1.10;

 /**
 Module : INV_X1
 Cell Descr : Combinational cell (INV_X1) with drive strength X1
 ***/

 cell (INV_X1) {
 drive_strength : 1;
 area : 0.532000;

 ...
 pin (A) {
 direction : input;
 related_power_pin : "VDD";
 related_ground_pin : "VSS";
 capacitance : 1.700230;
 fall_capacitance : 1.549360;
 rise_capacitance : 1.700230;
 }
 ...

However, we need an estimate for C which is the gate cap for the NMOS in
this cannonical inverter. We can figure out C if we take a closer look at
the layout and SPICE deck for this inverter. The following page shows the
layout for an INV_X1, INV_X2, and INV_X4 gate along with the
corresponding SPICE deck for an INV_X1 and INV_X2 gate.

Notice how the layout uses multiple parallel "fingers" to implement a
single larger "logical" transistor. So an X2 gate has two fingers and an
X4 has four fingers. The SPICE deck has the exact length and width of
each transistors (we could also just measure the layout). Notice that
both transistors have a width of 50nm even though this is a 45nm process!
It is not unsual for standard-cell libraries to use slightly longer than

- 2 -

ece5745-freepdk45nm-process.txt

minimum transistors, since this geometry offers a nice compromise between
performance and power consumption. The PMOS width is 630nm and the NMOS
width is 415nm. Notice that the PMOS is definitely not twice the width of
the NMOS (it is only 630/415 = 1.5x). This is probably because the
mobility of an NMOS transistor is not exactly 2x the mobility of a PMOS
transistor, and also because the standard-cell library is choosing to
offer slightly unequal rise/fall times to offer reduced energy and area.
Also notice that the NMOS in this inverter is 415/45 is about 9x the
technology node size. This is ratio is a very reasonable size.

With this information we can now estimate C. We know the total gate cap
for an INV_X1 gate is 1.7fF, and we know the ratio of how much of that
gate cap comes from the NMOS is 415/(415+630) = 0.4. So C is 0.4 * 1.7fF
= 0.68fF. To make our analysis simpler we will just roughly estimate the
supply voltage as 1V and C as 0.5fF.

IN
V_
X1

IN
V_
X2

IN
V_
X4

.S
UB

CK
T

IN
V_

X1
 A

 Z
N

VD
D

VS
S

*.
PI

NI
NF

O
A:

I
ZN

:O
 V

DD
:P

 V
SS

:G
*.

EQ
N

ZN
=!

A
M_

i_
0

ZN
 A

 V
SS

 V
SS

 N
MO

S_
VT

L
W=

0.
41

5U
 L

=0
.0

50
U

M_
i_

1
ZN

 A
 V

DD
 V

DD
 P

MO
S_

VT
L

W=
0.

63
0U

 L
=0

.0
50

U
.E

ND
S

.S
UB

CK
T

IN
V_

X2
 A

 Z
N

VD
D

VS
S

*.
PI

NI
NF

O
A:

I
ZN

:O
 V

DD
:P

 V
SS

:G
*.

EQ
N

ZN
=!

A
M_

i_
0_

0_
x2

_0
 Z

N
A

VS
S

VS
S

NM
OS

_V
TL

 W
=0

.4
15

U
L=

0.
05

0U
M_

i_
0_

0_
x2

_1
 V

SS
 A

 Z
N

VS
S

NM
OS

_V
TL

 W
=0

.4
15

U
L=

0.
05

0U
M_

i_
1_

0_
x2

_0
 Z

N
A

VD
D

VD
D

PM
OS

_V
TL

 W
=0

.6
30

U
L=

0.
05

0U
M_

i_
1_

0_
x2

_1
 V

DD
 A

 Z
N

VD
D

PM
OS

_V
TL

 W
=0

.6
30

U
L=

0.
05

0U
.E

ND
S

