
ECE 4750 Computer Architecture

Tutorial 3: Verilog Hardware Description Language

School of Electrical and Computer Engineering
Cornell University

revision: 2022-09-05-17-11

Contents

1 Introduction 3

2 Functional-, Cycle-, and Register-Transfer-Level Modeling 4

2.1 Comparison of FL, CL, and RTL Modeling . 4

2.2 Verilog Modeling: Synthesizable vs. Non-Synthesizable RTL 4

3 Verilog Basics: Data Types, Operators, and Conditionals 5

3.1 Hello World . 5

3.2 Logic Data Types . 6

3.3 Shift Operators . 11

3.4 Arithmetic Operators . 13

3.5 Relational Operators . 14

3.6 Concatenation Operators . 16

3.7 Enum Data Types . 17

3.8 Struct Data Types . 19

3.9 Ternary Operator . 22

3.10 If Statements . 23

3.11 Case Statements . 25

3.12 Casez Statements . 26

4 Registered Incrementer 27

4.1 Modeling a Registered Incrementer . 27

4.2 Ad-Hoc Testing Using Verilog . 30

4.3 Ad-Hoc Testing Using Python . 32

4.4 Visualizing a Model with Line Traces . 36

4.5 Visualizing a Model with Text-Based Waveforms . 38

4.6 Visualizing a Model with VCD Waveforms . 38

4.7 Verifying a Model with Unit Testing . 40

4.8 Verifying a Model with Test Vectors . 43

1

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

4.9 Verifying a Model with Random Testing . 46

4.10 Reusing a Model with Structural Composition . 47

4.11 Parameterizing a Model with Static Elaboration . 51

5 Sort Unit 56

5.1 FL Model of Sort Unit . 56

5.2 Flat RTL Model of Sort Unit . 58

5.3 Structural RTL Model of Sort Unit . 61

5.4 Evaluating the Sort Unit Using a Simulator . 63

6 Greatest Common Divisor 65

6.1 FL Model of GCD Unit . 65

6.2 RTL Model of GCD Unit . 70

6.3 Evaluating the GCD Unit using a Simulator . 77

2

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1. Introduction

In the lab assignments for this course, we will be using Verilog for register-transfer-level (RTL) mod-
eling and Python for functional-level modeling, verification, and simulator harnesses. This tutorial
briefly reviews the basics of the Verilog hardware description language, but primarily focuses on
how we can integrate Verilog RTL modeling into our PyMTL3 framework. The tutorial also in-
cludes some information about the coding conventions we will be using in the course. We will be
using several open-source packages and tools: Icarus Verilog (iverilog) for experimenting with
basic Verilog syntax; Verilator (verilator) for converting our more complex Verilog models into
C++ source code; PyMTL3 for easily simulating and interacting with these compiled Verilog models;
the pytest framework for powerful test-driven Python development; and GTKWave (gtkwave) for
viewing waveforms. All tools are installed and available on the ecelinux machines. This tutorial
assumes that students have completed the Linux and Git tutorials.

Before you begin, make sure that you have logged into the ecelinux servers as described in the
remote access tutorial. You will need to open a terminal and be ready to work at the Linux command
line. You can do this using any of the methods described in the remote access tutorial: Windows
PowerShell, Mac OS X Terminal, VS Code, X2Go, MobaXterm, or Mac Terminal w/ XQuartz. Since
GTKWave is a Linux application with a GUI, you will need to use X2Go, MobaXterm, or Mac Termi-
nal w/ XQuartz to view waveforms. To follow along with the tutorial, type the commands without
the % character (for the bash prompt) or the >>> characters (for the python interpreter prompt). In
addition to working through the commands in the tutorial, you should also try the more open-ended
tasks marked with the H symbol.

Before you begin, make sure that you have sourced the setup-ece4750.sh script. Sourcing the setup
script sets up the environment required for this tutorial.

You should start by forking the tutorial repository on GitHub. Start by going to the GitHub page for
the tutorial repository located here:

• https://github.com/cornell-ece4750/ece4750-tut3-verilog

Click on Fork in the upper right-hand corner. If asked where to fork this repository, choose your
personal GitHub account. After a few seconds, you should have a new repository in your account:

• https://github.com/githubid/ece4750-tut3-verilog

Where githubid is your GitHub ID, not your NetID. Now access an ecelinux machine and clone
your copy of the tutorial repository as follows:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:githubid/ece4750-tut3-verilog.git tut3
% cd tut3/sim
% TUTROOT=${PWD}

NOTE: It should be possible to experiment with this tutorial even if you are not enrolled
in the course and/or do not have access to the course computing resources. All of the
code for the tutorial is located on GitHub. You will not use the setup-ece4750.sh script,
and your specific environment may be different from what is assumed in this tutorial.

3

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

2. Functional-, Cycle-, and Register-Transfer-Level Modeling

Computer architects can model systems at various levels of abstraction including at the: functional-
level (FL), cycle-level (CL), and register-transfer-level (RTL). In this section, we provide a brief overview
of these different levels of modeling and also provide more detail on the difference between synthe-
sizable and non-synthesizable RTL modeling.

2.1. Comparison of FL, CL, and RTL Modeling

Each level of modeling has its own unique advantages and disadvantages, so the most effective
designers uses a mix of these modeling levels as appropriate. This tutorial will use various examples
to illustrate how to incrementally refine a design through FL, CL, and RTL models. Although it is
useful for students to understand CL modeling (and indeed most computer architects focus primarily
on CL modeling), the actual lab assignments will focus on FL and RTL modeling.

Functional-Level – FL models implement the functionality but not the timing of the hardware target.
FL models are useful for exploring algorithms, performing fast emulation of hardware targets, and
creating golden models for verification of CL and RTL models. FL models can also be used for
building sophisticated test harnesses. FL models are usually the easiest to construct, but also the
least accurate with respect to the target hardware.

Cycle-Level – CL models capture the cycle-approximate behavior of a hardware target. CL models will
often augment the functional behavior with an additional timing model to track the performance of
the hardware target in cycles. CL models are usually specifically designed to enable rapid design-
space exploration of cycle-level performance across a range of microarchitectural design parameters.
CL models attempt to strike a balance between accuracy, performance, and flexibility.

Register-Transfer-Level – RTL models are cycle-accurate, resource-accurate, and bit-accurate represen-
tations of hardware. RTL models are built for the purpose of verification and synthesis of specific
hardware implementations. RTL models can be used to drive EDA toolflows for estimating area,
energy, and timing. RTL models are usually the most tedious to construct, but also the most accurate
with respect to the target hardware.

In this course, we will focus on FL and RTL models, but it is important to keep in mind that many
computer architects exclusively use CL modeling to productively explore high-level microarchitec-
tural trade-offs before potentially working with chip designers to do RTL modeling.

2.2. Verilog Modeling: Synthesizable vs. Non-Synthesizable RTL

Verilog is a powerful language that was originally intended for building simulators of hardware as
opposed to models that could automatically be transformed into hardware (e.g., synthesized to an
FPGA or ASIC). Given this, it is very easy to write Verilog code that does not actually model any kind
of realistic hardware. Indeed, we actually need this feature to be able to write clean and productive
assertions and line tracing. Non-synthesizable Verilog modeling is also critical when implementing
Verilog test harnesses. So students must be very diligent in actively deciding whether or not they
are writing synthesizable register-transfer-level models or non-synthesizable code. Students must
always keep in mind what hardware they are modeling and how they are modeling it!

Students’ design work will almost exclusively use synthesizable register-transfer-level (RTL) models.
It is acceptable to include a limited amount of non-synthesizable code in students’ designs for the
sole purpose of debugging, assertions, or line tracing. If a student includes non-synthesizable code
in the actual design, they must explicitly demarcate this code by wrapping it in `ifndef SYNTHESIS

4

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

and `endif. This explicitly documents the code as non-synthesizable and aids automated tools in re-
moving this code before synthesizing the design. If at any time students are unclear about whether
a specific construct is allowed in a synthesizable concurrent block, they should ask the instructors.

Appendix A includes a table that outlines which Verilog constructs are allowed in synthesizable
RTL, which constructs are allowed in synthesizable RTL with limitations, and which constructs are
explicitly not allowed in synthesizable RTL. There are no limits on using the Verilog preprocessor,
since the preprocessing step happens at compile time.

3. Verilog Basics: Data Types, Operators, and Conditionals

We will begin by writing some very basic code to explore Verilog data types, operators, and condi-
tionals. We will not be modeling actual hardware yet; we are just experimenting with the language.
Start by creating a build directory to work in.

% mkdir ${TUTROOT}/build
% cd ${TUTROOT}/build

3.1. Hello World

Create a new Verilog source file named hello-world.v with the contents shown in Figure 1 using
your favorite text editor. A module is the fundamental hardware building block in Verilog, but for
now we are simply using it to encapsulate an initial block. The initial block specifies code which
should be executed “at the beginning of time” when the simulator starts. Since real hardware cannot
do anything “at the beginning of time” initial blocks are not synthesizable and you should not
use them in the synthesizable portion of your designs. However, initial blocks can be useful for
test harnesses and when experimenting with the Verilog language. The initial block in Figure 1
contains a single call to the display system task which will output the given string to the console.

We will be using iverilog to compile Verilog models into simulators in the beginning of this tu-
torial before we turn our attention to using Verilator. You can run iverilog as follows to compile
hello-world.v.

% cd ${TUTROOT}/build
% iverilog -g2012 -o hello-world hello-world.v

The -g2012 option tells iverilog to accept newer SystemVerilog syntax, and the -o specifies the
name of the simulator that iverilog will create. You can run this simulator as follows.

% cd ${TUTROOT}/build
% ./hello-world

1 module top;
2 initial begin
3 $display("Hello World!");
4 end
5 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-hello-world.v

Figure 1: Verilog Basics: Display Statement – The obligatory “Hello, World!” program to compiling a basic
Verilog program.

5

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Logical Operators

& bitwise AND
| bitwise OR
^ bitwise XOR
^~ bitwise XNOR
~ bitwise NOT

&& boolean AND
|| boolean OR
! boolean NOT

Arithmetic Operators

+ addition
- subtraction

Reduction Operators

& reduce via AND
~& reduce via NAND
| reduce via OR
~| reduce via NOR
^ reduce via XOR
^~ reduce via XNOR

Shift Operators

>> shift right
<< shift left
>>> arithmetic shift right

Relational Operators

== equal
!= not equal
> greater than
>= greater than or equals
< less than
<= less than or equals

Other Operators

{} concatenate
{N{}} replicate N times

Table 1: Table of Verilog Operators – Not all Verilog operators are shown, just those operators that are accept-
able for use in the synthesizable RTL portion of students’ designs.

As discussed in the Linux tutorial you can compile the Verilog and run the simulator in a single step.

% cd ${TUTROOT}/build
% iverilog -g2012 -o hello-world hello-world.v && ./hello-world

This makes it easy to edit the Verilog source file, quickly recompile, and test your changes by switch-
ing to your terminal, pressing the up-arrow key, and then pressing enter.

H To-Do On Your Own: Edit the string that is displayed in this simple program, recompile, and rerun
the simulator.

3.2. Logic Data Types

To understand any new modeling language we usually start by exploring the primitive data types
for representing values in a model. Verilog uses a combination of the wire and reg keywords which
interact in subtle and confusing ways. SystemVerilog has simplified modeling by introducing the
logic data type. We will be exclusively using logic as the general-purpose, hardware-centric data
type for modeling a single bit or multiple bits. Each bit can take on one of four values: 0, 1, X, Z.
X is used to represent unknown values (e.g., the state of a register on reset). Z is used to represent
high-impedance values. Although we will use variables with X values in this course, we will not use
variables with Z values (although you may see Z values if you forget to connect an input port of a
module).

Table 1 shows the operators that we will be primarily using in this course. Note that Verilog and
SystemVerilog support additional operators including * for multiplication, / for division, % for mod-
ulus, ** for exponent, and ===/!=== for special equality checks. There may occasionally be reasons
to use one of these operators in your assertion or line tracing logic. However, these operators are
either not synthesizable or synthesize poorly, so students are not allowed to use these operators in
the synthesizable portion of their designs.

6

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module top;
2

3 // Declare single-bit logic variables.
4

5 logic a;
6 logic b;
7 logic c;
8

9 initial begin
10

11 // Single-bit literals
12

13 a = 1'b0; $display("1'b0 = %x ", a);
14 a = 1'b1; $display("1'b1 = %x ", a);
15 a = 1'bx; $display("1'bx = %x ", a);
16 a = 1'bz; $display("1'bz = %x ", a);
17

18 // Bitwise logical operators for doing AND, OR, XOR, and NOT
19

20 a = 1'b0;
21 b = 1'b1;
22

23 c = a & b; $display("0 & 1 = %x ", c);
24 c = a | b; $display("0 | 1 = %x ", c);
25 c = a ^ b; $display("0 ^ 1 = %x ", c);
26 c = ~b; $display("~1 = %x ", c);
27

28 // Bitwise logical operators for doing AND, OR, XOR, and NOT with X
29

30 a = 1'b0;
31 b = 1'bx;
32

33 c = a & b; $display("0 & x = %x ", c);
34 c = a | b; $display("0 | x = %x ", c);
35 c = a ^ b; $display("0 ^ x = %x ", c);
36 c = ~b; $display("~x = %x ", c);
37

38 // Boolean logical operators
39

40 a = 1'b0;
41 b = 1'b1;
42

43 c = a && b; $display("0 && 1 = %x ", c);
44 c = a || b; $display("0 || 1 = %x ", c);
45 c = !b; $display("!1 = %x ", c);
46

47 end
48

49 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-sbit.v

Figure 2: Verilog Basics: Single-Bit Logic and Logical Operators – Experimenting with single-bit logic vari-
ables and literals, logical bitwise operators, and logical boolean operators.

7

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Figure 2 shows an example program that illustrates single-bit logic types. Create a new Verilog
source file named logic-sbit.v and copy some or all of this code. Compile this source file and run
the resulting simulator.

Lines 13–16 illustrate how to write single-bit literals to express constant values. Lines 23–26 illustrate
basic bitwise logical operators (&, |, ˆ, ~). Whenever we consider an expression in Verilog, we should
always ask ourselves, “What will happen if one of the inputs is an X?” Lines 33–36 illustrate what
happens if the second operand is an X for bitwise logical operators. Recall that X means “unknown”.
If we OR the value 0 with an unknown value we cannot know the result. If the unknown value is
0, then the result should be 0, but if the unknown value is 1, then the result should be 1. So Verilog
specifies that in this case the value of the expression is X. Notice what happens if we AND the value
0 with an unknown value. In this case, we can guarantee that for any value for the second operand
the result will always be 0, so Verilog specifies the value of the expression is 0.

In addition to the basic bitwise logical operators, Verilog also defines three Boolean logical operators
(&&, ||, !). These operators are effectively the same as the basic logical operators (&, |, ~) when
operating on single-bit logic values. The difference is really in the designer’s intent. Using &&, ||, !
suggests that the designer is implementing a Boolean logic expression as opposed to doing low-level
bit manipulation.

H To-Do On Your Own: Experiment with more complicated multi-stage logic expressions by writing
the Boolean logic equations for a one-bit full-adder. Use the display system task to output the
result to the console. Experiment with using X input values as inputs to these logic expressions.

8

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Multi-bit logic types are used for modeling bit vectors. Figure 3 shows an example program that
illustrates multi-bit logic types. Create a new Verilog source file named logic-mbit.v and copy
some or all of this code. Compile this source file and run the resulting simulator.

Lines 5–8 declares multi-bit logic variables. The square brackets contain the index of the most-
significant and the least-significant bit. In this course, you should always use zero as the index
of the least significant bit. Note that to declare a four-bit logic value, we use [3:0] not [4:0].

Lines 14–17 illustrate multi-bit literals that can be used to declare constant values. These literals have
the following general syntax: <bitwidth>’<base><number> where <base> can be b for binary, h for
hexadecimal, or d for decimal. It is legal to include underscores in the literal, which can be helpful
for improving the readability of long literals.

Lines 24–28 illustrate multi-bit versions of the basic bitwise logic operators. As before, we should
always ask ourselves, “What will happen if one of the inputs is an X?” Lines 35–39 illustrate what
happens if two bits in the second value are Xs. Note that some bits in the result are X and some can
be guaranteed to be either a 0 or 1.

Lines 45–50 illustrate the reduction operators. These operators take a multi-bit logic value and com-
bine all of the bits into a single-bit value. For example, the OR reduction operator (|) will OR all of
the bits together.

H To-Do On Your Own: We will use relational operators (e.g., ==) to compare two multi-bit logic
values, but see if you can achieve the same effect with the bitwise XOR/XNOR operators and
OR/NOR reduction operators.

9

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module top;
2

3 // Declare multi-bit logic variables
4

5 logic [3:0] A; // 4-bit logic variable
6 logic [3:0] B; // 4-bit logic variable
7 logic [3:0] C; // 4-bit logic variable
8 logic [11:0] D; // 12-bit logic variable
9

10 initial begin
11

12 // Multi-bit literals
13

14 A = 4'b0101; $display("4'b0101 = %x", A);
15 D = 12'b1100_1010_0101; $display("12'b1100_1010_0101 = %x", D);
16 D = 12'hca5; $display("12'hca5 = %x", D);
17 D = 12'd1058; $display("12'd1058 = %x", D);
18

19 // Bitwise logical operators for doing AND, OR, XOR, and NOT
20

21 A = 4'b0101;
22 B = 4'b0011;
23

24 C = A & B; $display("4'b0101 & 4'b0011 = %b", C);
25 C = A | B; $display("4'b0101 | 4'b0011 = %b", C);
26 C = A ^ B; $display("4'b0101 ^ 4'b0011 = %b", C);
27 C = A ^~ B; $display("4'b0101 ^~ 4'b0011 = %b", C);
28 C = ~B; $display("~4'b0011 = %b", C);
29

30 // Bitwise logical operators when some bits are X
31

32 A = 4'b0101;
33 B = 4'b00xx;
34

35 C = A & B; $display("4'b0101 & 4'b00xx = %b", C);
36 C = A | B; $display("4'b0101 | 4'b00xx = %b", C);
37 C = A ^ B; $display("4'b0101 ^ 4'b00xx = %b", C);
38 C = A ^~ B; $display("4'b0101 ^~ 4'b00xx = %b", C);
39 C = ~B; $display("~4'b00xx = %b", C);
40

41 // Reduction operators
42

43 A = 4'b0101;
44

45 C = &A; $display(" & 4'b0101 = %b", C);
46 C = ~&A; $display("~& 4'b0101 = %b", C);
47 C = |A; $display(" | 4'b0101 = %b", C);
48 C = ~|A; $display("~| 4'b0101 = %b", C);
49 C = ^A; $display("^ 4'b0101 = %b", C);
50 C = ^~A; $display("^~ 4'b0101 = %b", C);
51

52 end
53

54 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-mbit.v

Figure 3: Verilog Basics: Multi-Bit Logic and Logical Operators – Experimenting with multi-bit logic variables
and literals, bitwise logical operators, and reduction operators.

10

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.3. Shift Operators

Figure 4 illustrates three shift operators on multi-bit logic values. Create a new Verilog source file
named logic-shift.v and copy some or all of this code. Compile this source file and run the result-
ing simulator.

Notice how the logical shift operators (<<, >>) always shift in zeros, but the arithmetic right shift
operator (>>>) replicates the most-significant bit. Verilog requires that the left-hand operand to the
arithmetic shift operator be explicitly denoted as signed, which we have done using the signed
system task. We recommend this approach and avoiding the use of signed data types.

11

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module top;
2

3 logic [7:0] A;
4 logic [7:0] B;
5 logic [7:0] C;
6

7 initial begin
8

9 // Fixed shift amount for logical shifts
10

11 A = 8'b1110_0101;
12

13 C = A << 1; $display("8'b1110_0101 << 1 = %b", C);
14 C = A << 2; $display("8'b1110_0101 << 2 = %b", C);
15 C = A << 3; $display("8'b1110_0101 << 3 = %b", C);
16

17 C = A >> 1; $display("8'b1110_0101 >> 1 = %b", C);
18 C = A >> 2; $display("8'b1110_0101 >> 2 = %b", C);
19 C = A >> 3; $display("8'b1110_0101 >> 3 = %b", C);
20

21 // Fixed shift amount for arithmetic shifts
22

23 A = 8'b0110_0100;
24

25 C = $signed(A) >>> 1; $display("8'b0110_0100 >>> 1 = %b", C);
26 C = $signed(A) >>> 2; $display("8'b0110_0100 >>> 2 = %b", C);
27 C = $signed(A) >>> 3; $display("8'b0110_0100 >>> 3 = %b", C);
28

29 A = 8'b1110_0101;
30

31 C = $signed(A) >>> 1; $display("8'b1110_0101 >>> 1 = %b", C);
32 C = $signed(A) >>> 2; $display("8'b1110_0101 >>> 2 = %b", C);
33 C = $signed(A) >>> 3; $display("8'b1110_0101 >>> 3 = %b", C);
34

35 // Variable shift amount for logical shifts
36

37 A = 8'b1110_0101;
38 B = 8'd2;
39

40 C = A << B; $display("8'b1110_0101 << 2 = %b", C);
41 C = A >> B; $display("8'b1110_0101 >> 2 = %b", C);
42

43 end
44

45 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-shift.v

Figure 4: Verilog Basics: Shift Operators – Experimenting with logical and arithmetic shift operators and
fixed/variable shift amounts.

12

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.4. Arithmetic Operators

Figure 5 illustrates the addition and subtraction operators for multi-bit logic values. Create a new
Verilog source file named logic-arith.v and copy some or all of this code. Compile this source file
and run the resulting simulator.

These operators treat the multi-bit logic values as unsigned integers. Although Verilog does include
support for signed arithmetic, these constructs may not be synthesizable so you are required to use
only unsigned arithmetic. Also recall that *, /, %, ** are not allowed in the synthesizable portion of
your design.

Note that carefully considering the bitwidths of the input and output variables is important. Lines 22–
23 illustrate overflow and underflow. You can see that if you overflow the bitwidth of the output
variable then the result will simply wrap around. Similarly, since we are using unsigned arithmetic
negative numbers wrap around. This is also called modular arithmetic.

H To-Do On Your Own: Try writing some code which does a sequence of additions resulting in
overflow and then a sequence of subtractions that essentially undo the overflow. For example,
try 200 + 400 + 400 - 400 - 400. Does this expression produce the expected answer even
though the intermediate values overflowed?

1 module top;
2

3 logic [7:0] A;
4 logic [7:0] B;
5 logic [7:0] C;
6

7 initial begin
8

9 // Basic arithmetic with no overflow or underflow
10

11 A = 8'd28;
12 B = 8'd15;
13

14 C = A + B; $display("8'd28 + 8'd15 = %d", C);
15 C = A - B; $display("8'd28 - 8'd15 = %d", C);
16

17 // Basic arithmetic with overflow and underflow
18

19 A = 8'd250;
20 B = 8'd15;
21

22 C = A + B; $display("8'd250 + 8'd15 = %d", C);
23 C = B - A; $display("8'd15 - 8'd250 = %d", C);
24

25 end
26

27 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-arith.v

Figure 5: Verilog Basics: Arithmetic Operators – Experimenting with arithmetic operators for addition and
subtraction.

13

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.5. Relational Operators

Figure 6 illustrates the relational operators used for comparing two multi-bit logic values. Create a
new Verilog source file named logic-relop.v and copy some or all of this code. Compile this source
file and run the resulting simulator.

Lines 28–33 illustrate what happens if some of the bits are Xs for these relational operators. Notice
that we can still determine two values are not equal even if some bits are unknown. If the bits we do
know are different then the unknown bits do not matter; we can guarantee that the full bit vectors
are not equal. So in this example, since we know that the top-two bits in 4’b1100 and 4’b10xx then
we can guarantee that the two values are not equal even though the bottom two bits of one operand
are unknown.

The <, >, <=, >= operators behave slightly differently than the == and != operators when considering
values with Xs. In this example, we should be able to guarantee that 4’b1100 is always greater than
4’b10xx (assuming these are unsigned values), since no matter what the bottom two bits are in the
second operand it cannot be greater than the first operand. However, if you run this simulation, then
you will see that the result is still X. This is not a bug and is correct according to the Verilog language
specification. This is a great example of how Verilog has relatively complicated and sometimes in-
consistent language semantics. Originally, there was no Verilog standard. The most common Verilog
simulator was the de-factor language standard. I imagine the reason there is this difference between
how == and < handle X values is simply because in the very first Verilog simulators it was the most
efficient solution. These kind of “simulator implementation issues” can be found throughout the
Verilog standard.

Lines 40–43 illustrates signed comparisons using the signed system task to to interpret the unsigned
input operands as signed values. To simplify our designs, we do not allow students to use signed
types. We should explicitly use the signed system task whenever we need to ensure signed compar-
isons.

H To-Do On Your Own: Try composing relational operators with the Boolean logic operators we
learned about earlier in this section to create more complicated expressions.

14

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module top;
2

3 // Declare multi-bit logic variables
4

5 logic a; // 1-bit logic variable
6 logic [3:0] A; // 4-bit logic variable
7 logic [3:0] B; // 4-bit logic variable
8

9 initial begin
10

11 // Relational operators
12

13 A = 4'd15; B = 4'd09;
14

15 a = (A == B); $display("(15 == 9) = %x", a);
16 a = (A != B); $display("(15 != 9) = %x", a);
17 a = (A > B); $display("(15 > 9) = %x", a);
18 a = (A >= B); $display("(15 >= 9) = %x", a);
19 a = (A < B); $display("(15 < 9) = %x", a);
20 a = (A <= B); $display("(15 <= 9) = %x", a);
21

22 // Relational operators when some bits are X
23

24 A = 4'b1100; B = 4'b10xx;
25

26 a = (A == B); $display("(4'b1100 == 4'b10xx) = %x", a);
27 a = (A != B); $display("(4'b1100 != 4'b10xx) = %x", a);
28 a = (A > B); $display("(4'b1100 > 4'b10xx) = %x", a);
29 a = (A < B); $display("(4'b1100 < 4'b10xx) = %x", a);
30

31 // Signed relational operators
32

33 A = 4'b1111; // -1 in twos complement
34 B = 4'd0001; // 1 in twos complement
35

36 a = (A > B); $display("(-1 > 1) = %x", a);
37 a = (A < B); $display("(-1 < 1) = %x", a);
38 a = ($signed(A) > $signed(B)); $display("(-1 > 1) = %x", a);
39 a = ($signed(A) < $signed(B)); $display("(-1 < 1) = %x", a);
40

41 end
42

43 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-relop.v

Figure 6: Verilog Basics: Relational Operators – Experimenting with relational operators.

15

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.6. Concatenation Operators

Figure 7 illustrates the concatenation operators used for creating larger bit vectors from multiple
smaller bit vectors. Create a new Verilog source file named logic-concat.v and copy some or all of
this code. Compile this source file and run the resulting simulator.

Lines 18–20 illustrate concatenating three four-bit logic variables and then assigning the result to a
12-bit logic variable. Lines 25–26 illustrate concatenating a four-bit logic variable with an eight-bit
logic variable. The repeat operator can be used to duplicate a given logic variable multiple times
when creating larger bit vectors. On Line 33, we replicate a four-bit logic value three times to create
a 12-bit logic value.

1 module top;
2

3 logic [3:0] A; // 4-bit logic variable
4 logic [3:0] B; // 4-bit logic variable
5 logic [3:0] C; // 4-bit logic variable
6 logic [7:0] D; // 18-bit logic variable
7 logic [11:0] E; // 12-bit logic variable
8

9 initial begin
10

11 // Basic concatenation
12

13 A = 4'ha;
14 B = 4'hb;
15 C = 4'hc;
16 D = 8'hde;
17

18 E = { A, B, C }; $display("{ 4'ha, 4'hb, 4'hc } = %x", E);
19 E = { C, A, B }; $display("{ 4'hc, 4'ha, 4'hb } = %x", E);
20 E = { B, C, A }; $display("{ 4'hb, 4'hc, 4'ha } = %x", E);
21

22 E = { A, D }; $display("{ 4'ha, 8'hde } = %x", E);
23 E = { D, A }; $display("{ 8'hde, 4'ha } = %x", E);
24

25 E = { A, 8'hf0 }; $display("{ 4'ha, 8'hf0 } = %x", E);
26 E = { 8'hf0, A }; $display("{ 8'hf0, 4'ha } = %x", E);
27

28 // Repeat operator
29

30 A = 4'ha;
31 B = 4'hb;
32

33 E = { 3{A} }; $display("{ 4'ha, 4'ha, 4'ha } = %x", E);
34 E = { A, {2{B}} }; $display("{ 4'ha, 4'hb, 4'hb } = %x", E);
35

36 end
37

38 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-logic-concat.v

Figure 7: Verilog Basics: Concatenation Operators – Experimenting with the basic concatenation operator and
the repeat operator.

16

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.7. Enum Data Types

The logic data type will be the most common data type we use in our synthesizable RTL since a
logic variable has a direct one-to-one correspondence with a bit vector in hardware. However, there
are certain cases where using a logic variable can be quite tedious and error prone. SystemVerilog
has introduced two new kinds of user-defined types that can greatly simplify some portions of our
designs. In this subsection, we introduce the enum type which enables declaring variables that can
only take on a predefined list of labels.

Figure 8 illustrates creating and using an enum type for holding a state variable which can take on
one of four labels. Create a new Verilog source file named enum.v and copy all of this code. Compile
this source file and run the resulting simulator.

Lines 3–8 declare a new enum type named state_t. Note that state_t is not a new variable but is
instead a new type. We will use the _t suffix to distinguish type names from variable names. Note
that after the enum keyword we have included a base type of logic [$clog2(4)-1:0]. This base type
specifies how we wish variables of this new type to be stored. In this case, we are specifying that
state_t variables should be encoded as a two-bit logic value. The clog2 system task calculates the
number of bits in the given argument; it is very useful when writing more parameterized code. So
in this situation we just need to pass in the number of labels in the enum to clog2. SystemVerilog
actually provides many different ways to create enum types including anonymous types, types where
we do not specify the base type, or types where we explicitly define the value for each label. In this
course, you should limit yourself to the exact syntax shown in this example.

Line 14 declares a new variable of type state_t. This is the first time we have seen a variable which
has a type other than logic. The ability to introduce new user-defined types is one of the more
powerful features of SystemVerilog. Lines 21–24 sets the state variable using the labels declared as
part of the new state_t type. Lines 28–40 compare the value of the state variable with these same
labels, and these comparisons can be used to take different action based on the current value.

There are several advantages to using an enum type compared to the basic logic type to represent
a variable that can hold one of several labels including: (1) more directly capturing the designer’s
intent to improve code quality; (2) preventing mistakes by eliminating the possibility of defining
labels with the same value or defining label values that are too large to fit in the underlying storage;
and (3) preventing mistakes when assigning variables of a different type to an enum variable.

H To-Do On Your Own: Create your own new enum type for the state variable we will use in the GCD
example later in this tutorial. The new enum type should be called state_t and it should support
three different labels: STATE_IDLE, STATE_CALC, STATE_DONE. Write some code to set and compare
the value of a corresponding state variable.

17

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 // Declare enum type
2

3 typedef enum logic [$clog2(4)-1:0] {
4 STATE_A,
5 STATE_B,
6 STATE_C,
7 STATE_D
8 } state_t;
9

10 module top;
11

12 // Declare variables
13

14 state_t state;
15 logic result;
16

17 initial begin
18

19 // Enum lable literals
20

21 state = STATE_A; $display("STATE_A = %d", state);
22 state = STATE_B; $display("STATE_B = %d", state);
23 state = STATE_C; $display("STATE_C = %d", state);
24 state = STATE_D; $display("STATE_D = %d", state);
25

26 // Comparisons
27

28 state = STATE_A;
29

30 result = (state == STATE_A);
31 $display("(STATE_A == STATE_A) = %x", result);
32

33 result = (state == STATE_B);
34 $display("(STATE_A == STATE_B) = %x", result);
35

36 result = (state != STATE_A);
37 $display("(STATE_A != STATE_A) = %x", result);
38

39 result = (state != STATE_B);
40 $display("(STATE_A != STATE_B) = %x", result);
41

42 end
43

44 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-enum.v

Figure 8: Verilog Basics: Enum Data Types – Experimenting with enum data types including setting the value
of an enum using a label and using the equality operator.

18

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.8. Struct Data Types

User-defined structures are now supported in SystemVerilog. Figure 9 illustrates creating and using a
struct type for holding a variable with predefined named bit fields. Create a new Verilog source file
named struct.v and copy all of this code. Compile this source file and run the resulting simulator.

Lines 3–7 declare a new struct type named point_t. Again note that point_t is not a new variable
but is instead a new type. As before we use the _t suffix to distinguish type names from variable
names. Note that after the struct keyword we have included the packed keyword which specifies
that variables of this type should have an equivalent underlying logic storage. SystemVerilog also
includes support for unpacked structs, but in this course, you should limit yourself to the exact
syntax shown in this example. In addition to declaring the name of the new struct type, we also
declare the named bit fields within the new struct type. The order of these bit fields is important;
the first field will go in the most significant position of the underlying logic storage, the second field
will go in the next position, and so on.

Lines 13–14 declare two new variables of type point_t. Line 18 declares a new logic variable with a
bitwidth large enough to hold a variable of type point_t. We can use the bits system task to easily
determine the total number of bits required to store a struct type. Lines 24–26 set the three fields of
the point variable and Lines 28–30 read these three fields in order to display them. Line 34 copies
one point variable into another point variable. Line 42 and 49 illustrate how to convert a point
variable to/from a basic logic variable.

There are several advantages to using a struct type compared to the basic logic type to represent
a variable with a predefined set of named bit fields including: (1) more directly capturing the de-
signer’s intent to improve code quality; (2) reducing the syntactic overhead of managing bit fields;
and (3) preventing mistakes in modifying bit fields and in accessing bit fields.

H To-Do On Your Own: Create a new struct type for holding the an RGB color pixel. The struct
should include three fields named red, green, and blue. Each field should be eight bits. Experi-
ment with reading and writing these named fields.

19

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 // Declare struct type
2

3 typedef struct packed { // Packed format:
4 logic [3:0] x; // 11 8 7 4 3 0
5 logic [3:0] y; // +----+----+----+
6 logic [3:0] z; // | x | y | z |
7 } point_t; // +----+----+----+
8

9 module top;
10

11 // Declare variables
12

13 point_t point_a;
14 point_t point_b;
15

16 // Declare other variables using $bits()
17

18 logic [$bits(point_t)-1:0] point_bits;
19

20 initial begin
21

22 // Reading and writing fields
23

24 point_a.x = 4'h3;
25 point_a.y = 4'h4;
26 point_a.z = 4'h5;
27

28 $display("point_a.x = %x", point_a.x);
29 $display("point_a.y = %x", point_a.y);
30 $display("point_a.z = %x", point_a.z);
31

32 // Assign structs
33

34 point_b = point_a;
35

36 $display("point_b.x = %x", point_b.x);
37 $display("point_b.y = %x", point_b.y);
38 $display("point_b.z = %x", point_b.z);
39

40 // Assign structs to bit vector
41

42 point_bits = point_a;
43

44 $display("point_bits = %x", point_bits);
45

46 // Assign bit vector to struct
47

48 point_bits = { 4'd13, 4'd9, 4'd3 };
49 point_a = point_bits;
50

51 $display("point_a.x = %x", point_a.x);
52 $display("point_a.y = %x", point_a.y);
53 $display("point_a.z = %x", point_a.z);
54

55 end
56

57 endmodule

Code at https://github.com/cbatten/x/blob/master/ex-basics-struct.v

Figure 9: Verilog Basics: Struct Data Types – Experimenting with struct data types including read/writing
fields and converting to/from logic bit vectors. 20

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

21

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.9. Ternary Operator

Figure 10 illustrates using the ternary operator for
conditional execution. Create a new Verilog source
file named ternary.v and copy some or all of this
code. Compile this source file and run the resulting
simulator.

Lines 12–19 illustrate using the ternary operator to
choose what value to assign to the logic variable
c. We can nest multiple ternary operators to com-
pactly create expressions with multiple conditions.
Lines 23–31 illustrate using four levels of nesting to
choose among four different values for assigning c.

Lines 35–53 illustrate how the ternary operator
functions if the conditional is unknown. In
lines 35–43, all bits of the conditional are unknown,
while in lines 45–53 only one bit of the conditional
is unknown. If you examine the output from this
simulator, you will see that Verilog semantics re-
quire any bits which can be guaranteed to be either
0 or 1 to be set as such, while the remaining bits are
set to X. Regardless of the condition, the upper five
bits of c are guaranteed to be 00001.

Note that the four ternary operators cover all pos-
sible combinations of the two-bit input, so the fi-
nal value (i.e., 8’h0e) will never be used. In other
words, if the conditionals contain unknowns this
does not mean the condition evaluates to false. This
is very different from the if statements described
in the next subsection.

Aside: For some reason, many students insist on
writing code like this:

a = (cond_a) ? 1’b1 : 1’b0;
b = (cond_b) ? 1’b0 : 1’b1;

This obfuscates the code and is not necessary. We
are using a ternary operator to simply choose be-
tween 0 or 1. You should just assign the result of
the conditional expression to a and b like this:

a = (cond_a);
b = !(cond_b);

H To-Do On Your Own: Experiment with different
uses of the ternary operator.

1 module top;
2

3 logic [7:0] a;
4 logic [7:0] b;
5 logic [7:0] c;
6 logic [1:0] sel;
7

8 initial begin
9

10 // ternary statement
11

12 a = 8'd30;
13 b = 8'd16;
14

15 c = (a < b) ? 15 : 14;
16 $display("c = %d", c);
17

18 c = (b < a) ? 15 : 14;
19 $display("c = %d", c);
20

21 // nested ternary statement
22

23 sel = 2'b01;
24

25 c = (sel == 2'b00) ? 8'h0a
26 : (sel == 2'b01) ? 8'h0b
27 : (sel == 2'b10) ? 8'h0c
28 : (sel == 2'b11) ? 8'h0d
29 : 8'h0e;
30

31 $display("sel = 1, c = %b", c);
32

33 // nested ternary statement w/ X
34

35 sel = 2'bxx;
36

37 c = (sel == 2'b00) ? 8'h0a
38 : (sel == 2'b01) ? 8'h0b
39 : (sel == 2'b10) ? 8'h0c
40 : (sel == 2'b11) ? 8'h0d
41 : 8'h0e;
42

43 $display("sel = x, c = %b", c);
44

45 sel = 2'bx0;
46

47 c = (sel == 2'b00) ? 8'h0a
48 : (sel == 2'b01) ? 8'h0b
49 : (sel == 2'b10) ? 8'h0c
50 : (sel == 2'b11) ? 8'h0d
51 : 8'h0e;
52

53 $display("sel = x, c = %b", c);
54

55 end
56

57 endmodule

Code at https://github.com/cbatten/x/blob/
master/ex-basics-ternary.v

Figure 10: Verilog Basics: Ternary Operator – Ex-
perimenting with the ternary operator including
nested statements and what happens if the condi-
tional includes an unknown.

22

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.10. If Statements

Figure 11 illustrates using if statements. Create a
new Verilog source file named if.v and copy some
or all of this code. Compile this source file and run
the resulting simulator.

The if statement resembles similar constructs in
many other programming languages. Lines 11–20
illustrate basic if statements and lines 24–33 illus-
trate if/else statements.

There are some subtle issues involved in how an
if statement handles X values in the conditional.
Lines 37–46 illustrate this issue. The sel value in
this example is a single-bit X. What would we ex-
pect the value of a to be after this if statement?
Since the conditional is unknown, we might expect
any variables that are written from within the if
statement to also be unknown. In other words, we
might expect the value of a to be X after this if
statement. If you run this example code, you will
see that the value of a is actually 8’h0b. This means
that an X value in the conditional for an if state-
ment is not treated as unknown but is instead sim-
ply treated as if the conditional evaluated to false!
This issue is called X optimism since unknowns are
essentially optimistically turned into known val-
ues. X optimism can cause subtle simulation/syn-
thesis mismatch issues. If you are interested, there
are several resources on the public course webpage
that go into much more detail. For this course, we
don’t need to worry too much about X optimism
since we are not actually synthesizing our designs.

H To-Do On Your Own: Experiment with different
if statements including nested if statements.
Experiment with what happens when the con-
ditional is unknown.

1 module top;
2

3 logic [7:0] a;
4 logic [7:0] b;
5 logic sel;
6

7 initial begin
8

9 // if statement
10

11 a = 8'd30;
12 b = 8'd16;
13

14 if (a == b) begin
15 $display("30 == 16");
16 end
17

18 if (a != b) begin
19 $display("30 != 16");
20 end
21

22 // if else statement
23

24 sel = 1'b1;
25

26 if (sel == 1'b0) begin
27 a = 8'h0a;
28 end
29 else begin
30 a = 8'h0b;
31 end
32

33 $display("sel = 1, a = %x ", a);
34

35 // if else statement w/ X
36

37 sel = 1'bx;
38

39 if (sel == 1'b0) begin
40 a = 8'h0a;
41 end
42 else begin
43 a = 8'h0b;
44 end
45

46 $display("sel = x, a = %x ", a);
47

48 end
49

50 endmodule

Code at https://github.com/cbatten/x/blob/
master/ex-basics-if.v

Figure 11: Verilog Basics: If Statements – Exper-
imenting with if statements including what hap-
pens if the conditional includes an unknown.

23

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

24

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.11. Case Statements

Figure 12 illustrates using case statements. Create
a new Verilog source file named case.v and copy
some or all of this code. Compile this source file
and run the resulting simulator.

The case statement resembles similar constructs in
many other programming languages. Lines 12–
22 illustrate a basic case statement where a two-
bit sel variable is used to choose one of four case
items.

There are similar issues as with the if statement in
terms of how case statements handle X values in
the conditional. In lines 26–36, the sel variable is
set to all Xs. We might expect since the input to
the case statement is unknown the output should
also be unknown. However, if we look at the value
of a after executing this case statement it will be
8’h0e. In other words, if there is an X in the in-
put to the case statement, then the case statement
will fall through to the default case. In order to
avoid X optimism, we recommend students always
include a default case that sets all of the output
variables to Xs.

Notice that it is valid syntax to use X values in the
case items, as shown on lines 48–49. These will ac-
tually match Xs in the input condition, which is al-
most certainly not what you want. This does not
model any kind of real hardware; we cannot check
for Xs in hardware since in real hardware an un-
known must be known (i.e., all Xs will either be a
0 or a 1 in real hardware). Given this, you should
never use Xs in the case items for a case statement.

H To-Do On Your Own: Experiment with a larger
case statement for a sel variable with three in-
stead of two bits.

1 module top;
2

3 // Declaring Variables
4

5 logic [1:0] sel;
6 logic [7:0] a;
7

8 initial begin
9

10 // case statement
11

12 sel = 2'b01;
13

14 case (sel)
15 2'b00 : a = 8'h0a;
16 2'b01 : a = 8'h0b;
17 2'b10 : a = 8'h0c;
18 2'b11 : a = 8'h0d;
19 default : a = 8'h0e;
20 endcase
21

22 $display("sel = 01, a = %x", a);
23

24 // case statement w/ X
25

26 sel = 2'bxx;
27

28 case (sel)
29 2'b00 : a = 8'h0a;
30 2'b01 : a = 8'h0b;
31 2'b10 : a = 8'h0c;
32 2'b11 : a = 8'h0d;
33 default : a = 8'h0e;
34 endcase
35

36 $display("sel = xx, a = %x", a);
37

38 // Do not use x's in the case
39 // selection items
40

41 sel = 2'bx0;
42

43 case (sel)
44 2'b00 : a = 8'h0a;
45 2'b01 : a = 8'h0b;
46 2'b10 : a = 8'h0c;
47 2'b11 : a = 8'h0d;
48 2'bx0 : a = 8'h0e;
49 2'bxx : a = 8'h0f;
50 default : a = 8'h00;
51 endcase
52

53 $display("sel = x0, a = %x", a);
54

55 end
56

57 endmodule

Code at https://github.com/cbatten/x/blob/
master/ex-basics-case.v

Figure 12: Verilog Basics: Case Statements – Ex-
perimenting with case statements including what
happens if the selection expression and/or the case
expressions includes an unknown.

25

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

3.12. Casez Statements

Figure 13 illustrates using casez statements. Create
a new Verilog source file named casez.v and copy
some or all of this code. Compile this source file
and run the resulting simulator.

The casez statement is very different from what
you might find in other programming languages.
The casez statement is a powerful construct that
can enable very concise hardware models, but must
be used carefully. A casez statement enables a de-
signer to do “wildcard” matching on the input vari-
able. Lines 10–23 illustrate using a casez state-
ment to implement a “leading-one detector”. This
kind of logic outputs the bit position of the least-
significant one in the input variable. We can use
? characters in the case items as wildcards that
will match either a 0 or 1 in the input variable. So
both 4’b0100 and 4’b1100 will match the fourth
case item. Implementing similar functionality us-
ing a case statement would require 16 items. Be-
sides being more verbose, using a case statement
also opens up additional opportunities for errors.

A casez statement behaves similarly to a case
statement when there are Xs in the input. Lines 27–
40 illustrate a situation where two of the bits in the
input variable are unknown. This will match the
default case and the output will be Xs.

Aside: Verilog includes a casex statement which
you should never use. The reasoning is rather sub-
tle, but to be safe stick to using casez statement if
you need wildcard matching (and only if you need
wildcard matching).

H To-Do On Your Own: Experiment with a larger
casez statement to implement a leading-one
detector for an input variable with eight instead
of four bits. How many case items would we
need if we used a case statement to implement
the same functionality?

1 module top;
2

3 logic [3:0] a;
4 logic [7:0] b;
5

6 initial begin
7

8 // casez statement
9

10 a = 4'b0100;
11

12 casez (a)
13

14 4'b0000 : b = 8'd0;
15 4'b???1 : b = 8'd1;
16 4'b??10 : b = 8'd2;
17 4'b?100 : b = 8'd3;
18 4'b1000 : b = 8'd4;
19

20 default : b = 8'hxx;
21 endcase
22

23 $display("a = 4'b0100, b = %x", b);
24

25 // casez statement w/ Xs
26

27 a = 4'b01xx;
28

29 casez (a)
30

31 4'b0000 : b = 8'd0;
32 4'b???1 : b = 8'd1;
33 4'b??10 : b = 8'd2;
34 4'b?100 : b = 8'd3;
35 4'b1000 : b = 8'd4;
36

37 default : b = 8'hxx;
38 endcase
39

40 $display("a = 4'b01xx, b = %x", b);
41

42 end
43

44 endmodule

Code at https://github.com/cbatten/x/blob/
master/ex-basics-casez.v

Figure 13: Verilog Basics: Casez Statements –
Experimenting with casez statements to illustrate
their use as priority selectors with wildcards.

26

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

4. Registered Incrementer

In this section, we will create our very first Verilog hardware model and learn how to test this module
using ad-hoc testing, line tracing, waveforms, and a sophisticated Python-based unit testing frame-
work. It is good design practice to usually draw some kind of diagram of the hardware we wish to
model before starting to develop the corresponding Verilog model. This diagram might be a block-
level diagram, a datapath diagram, a finite-state-machine diagram, or even a control signal table; the
more we can structure our Verilog code to match this diagram the more confident we can be that our
model actually models what we think it does. In this section, we wish to model the eight-bit regis-
tered incrementer shown in Figure 14. In this section, you will be gradually adding code to what we
provide you in the tut3_verilog/regincr subdirectory.

4.1. Modeling a Registered Incrementer

Figure 15 shows the Verilog code which corresponds to the diagram in Figure 14. Every Verilog
file should begin with a header comment as shown on lines 1–9 in Figure 15. The header comment
should identify the primary module in the file, and include a brief description of what the module
does. Reserve discussion of the actual implementation for later in the file. In general, you should
attempt to keep lines in your Verilog source code to less than 74 characters. This will make your code
easier to read, enable printing on standard sized paper, and facilitate viewing two source files side-
by-side on a single monitor. Note that the code in Figure 15 is artificially narrow so we can display
two code listings side-by-side. Lines 11–12 create an “include guard” using the Verilog pre-processor.
An include guard ensures that even if we include this Verilog file multiple times the modules within
the file will only be declared once. Without include guards, the Verilog compiler will likely complain
that the same module has been declared multiple times. Make sure that you have the corresponding
end of the include guard at the bottom of your Verilog source file as shown on line 43.

Unlike many modern programming languages, Verilog does not have a clean way to manage names-
paces for macros and module names. This means that you use the same macro or module name
in two different files it will create a namespace collision which can potentially be very difficult to
debug. We will follow very specific naming conventions to eliminate any possibility of a names-
pace collision. Our convention will to use the subdirectory path as a prefix for all Verilog macro
and module names. Since the registered incrementer is in the directory tut3_verilog/regincr, we
will use TUT3_VERILOG_REGINCR_ as a prefix for all macro names and tut3_verilog_regincr_ as a
prefix for all module names. You can see this prefix being used for the macros on lines 11–12 and
for the module name on line 14. To reiterate, Verilog macro and module name must use the subdirectory
path as a prefix. While a bit tedious, this is essential to avoiding namespace collisions. As an aside,
SystemVerilog does include namespaces, but this feature is not supported by Verilator yet so we are
not using it in the course.

We begin by identifying the module’s interface which in this case will include an eight-bit input
port, eight-bit output port, and a clock input. Lines 15–20 in Figure 15 illustrate how we represent
this interface using Verilog. A common mistake is to forget the semicolon (;) on line 20. A couple
of comments about the coding conventions that we will be using in this course. All module names
should always include the subproject name as a prefix (e.g., ex_regincr_). The portion of the name
after this prefix should usually use CamelCaseNaming; each word begins with a capital letter without
any underscores (e.g., RegIncr). Port names (as well as variable and module instance names) should
use underscore_naming; all lowercase with underscores to separate words. As shown on lines 16–19,
ports should be listed one per line with a two space initial indentation. The bitwidth specifiers and
port names should all line up vertically. As shown on lines 15 and 20, the opening and closing paren-
thesis should be on their own separate lines. Carefully group ports to help the reader understand

27

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

in
8b 8b

out+1

Figure 14: Block Diagram for Registered Incrementer –
An eight-bit registered incrementer with an eight-bit input
port, an eight-bit output port, and an (implicit) clock input.

1 //======================================
2 // Registered Incrementer
3 //======================================
4 // This is a simple example of a module
5 // for a registered incrementer which
6 // combines a positive edge triggered
7 // register with a combinational +1
8 // incrementer. We use flat register-
9 // transfer-level modeling.

10

11 `ifndef TUT3_VERILOG_REGINCR_REG_INCR_V
12 `define TUT3_VERILOG_REGINCR_REG_INCR_V
13

14 module tut3_verilog_regincr_RegIncr
15 (
16 input logic clk,
17 input logic reset,
18 input logic [7:0] in_,
19 output logic [7:0] out
20);
21

22 // Sequential logic
23

24 logic [7:0] reg_out;
25 always_ff @(posedge clk) begin
26 if (reset)
27 reg_out <= '0;
28 else
29 reg_out <= in_;
30 end
31

32 // Combinational logic
33

34 logic [7:0] temp_wire;
35 always_comb begin
36 temp_wire = reg_out + 1;
37 end
38

39 assign out = temp_wire;
40

41 endmodule
42

43 `endif /* TUT3_VERILOG_REGINCR_REG_INCR_V */

Figure 15: Registered Incrementer – An eight-bit reg-
istered +1 incrementer corresponding to the diagram
in Figure 14.

1 //======================================
2 // Registered Incrementer
3 //======================================
4 // This is a simple example of a module
5 // for a registered incrementer which
6 // combines a positive edge triggered
7 // register with a combinational +1
8 // incrementer. We use flat register-
9 // transfer-level modeling.

10

11 `ifndef TUT3_VERILOG_REGINCR_REG_INCR_V
12 `define TUT3_VERILOG_REGINCR_REG_INCR_V
13

14 module tut3_verilog_regincr_RegIncr
15 (
16 input clk,
17 input reset,
18 input [7:0] in_,
19 output [7:0] out
20);
21

22 // Sequential logic
23

24 reg [7:0] reg_out;
25 always @(posedge clk) begin
26 if (reset)
27 reg_out <= 0;
28 else
29 reg_out <= in_;
30 end
31

32 // Combinational logic
33

34 reg [7:0] temp_wire;
35 always @(*) begin
36 temp_wire = reg_out + 1;
37 end
38

39 assign out = temp_wire;
40

41 endmodule
42

43 `endif /* TUT3_VERILOG_REGINCR_REG_INCR_V */

Figure 16: Registered Incrementer – An eight-bit reg-
istered +1 incrementer using Verilog-2001 constructs.

28

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

how these ports are related. Use port names (as well as variable and module instance names) that
are descriptive; prefer longer descriptive names (e.g., write_en) over shorter confusing names (e.g.,
wen).

Lines 22–39 model the internal behavior of the module. We usually prefer using two spaces for each
level of indentation; larger indentation can quickly result in significantly wasted horizontal space.
You should always use spaces and never insert any real tab characters into your source code. You must limit
yourself to synthesizable RTL for modeling your design. We will exclusively use two kinds of always
blocks: always_ff concurrent blocks to model sequential logic and always_comb concurrent blocks
to model combinational logic. We require students to clearly distinguishing between the portions
of your code that are meant to model sequential logic from those portions meant to model combi-
national logic. This simple guideline can save significant frustration by making it easy to see subtle
errors. For example, by convention we should only use non-blocking assignments in sequential logic
(e.g., the <= operator on line 27) and we should only use blocking assignments in combinational logic
(e.g., the = operator on line 36). We use the variable reg_out to hold the intermediate value between
the register and the incrementer, and we use the variable temp_wire to hold the intermediate value
between the incrementer and the output port. reg_out is modeling a register while temp_wire is
modeling a wire. Notice that both of these variables use the logic data type; what makes one model
a register while the other models a wire is how these variables are used. The sequential concurrent
block update to reg_out means it models a register. The combinational concurrent block update to
temp_wire means it models a wire.

The register incrementer illustrates the two fundamental ways to model combinational logic. We
have used an always_comb concurrent block to model the actual incrementer logic and a continuous
assignment statement (i.e., assign) to model connecting the temporary wire to the output port. We
could just have easily written logic as part of the assign statement. For example, we could have used
assign out = reg_out + 1 and skipped the always_comb concurrent block. In general, we pre-
fer continuous assignment statements over always @(*) concurrent blocks to model combinational
logic, since it is easier to model less-realistic hardware using always_comb concurrent blocks. There is
usually a more direct one-to-one mapping from continuous assignment statements to real hardware.
However, there are many cases where it is significantly more convenient to use always_comb con-
current blocks or just not possible to use continuous assignment statements. Students will need to
use their judgment to determine the most elegant way to represent the hardware they are modeling
while still ensuring there is a clear mapping from the model to the target hardware.

A small aside about synchronous versus asynchronous resets. In general, we want to avoid reading
the reset signal in an always_comb combinational block. If you need to factor the reset signal into
some combinational logic, you should instead use the reset signal to reset some state bit, and the
output of this state bit can be factored into some combinational logic. In other words, students
should only use synchronous and not asynchronous resets. There may be some subtle cases where
we need to factor the reset signal directly into combinational logic, but it should be rare.

Figure 15 illustrates a few new SystemVerilog constructs. Figure 16 illustrates the exact same regis-
tered incrementer implemented using the older Verilog-2001 hardware description language. Verilog-
2001 uses reg and wire to specify variables instead of logic. All ports are of type wire by default.
Determining when to use reg and wire is subtle and error prone. Note that reg is a misnomer; it
does not model a register! On line 34, we must declare temp_wire to be of type reg even though it is
modeling a wire. Verilog-2001 requires using reg for any variable written by an always concurrent
block. Verilog-2001 uses a generic always block for both sequential and combinational concurrent
blocks. While the always @(*) syntax is an improvement over the need in Verilog-1995 to explicitly
define sensitivity lists, always_ff and always_comb more directly capture designer intent and allow

29

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

automated tools to catch common errors. For example, a Verilog simulator can catch errors where a
designer accidentally uses a non-blocking assignment in an always_comb concurrent block, or where
a designer accidentally writes the same logic variable from two different always_comb concurrent
blocks. SystemVerilog is growing in popularity and increasingly becoming the de facto replacement
for Verilog-2001, so it is worthwhile to carefully adopt new SystemVerilog features that can improve
designer productivity.

Edit the Verilog source file named RegIncr.v in the tut3_verilog/regincr subdirectory using your
favorite text editor. Add the combinational logic shown on lines 34–39 in Figure 16 which models the
incrementer logic. We will be using iverilog to simulate this registered incrementer module, and
iverilog does not currently support always_ff and always_comb, which is why we are using the
Verilog-2001 construct for now.

4.2. Ad-Hoc Testing Using Verilog

Now that we have developed a new hardware model, our first thought should always turn to testing
that model. Figure 17 shows an ad-hoc test for our registered incrementer using non-synthesizable
Verilog. Note that we must explicitly include any Verilog files which contain modules that we want
to use; Line 5 includes the Verilog source file that contains the registered incrementer. Lines 11–12
setup a clock with a period of 10 time steps. Notice that we are assigning an initial value to the clk
net on line 11 and then modifying this net every five timesteps; setting initial values such as this is
not synthesizable and should only be used in test harnesses. If you need to set an initial value in
your design, you should use properly constructed reset logic.

Lines 20–26 instantiate the design under test. Notice that we use underscore_naming for the module
instance name (e.g., reg_incr). You should almost always use named port binding (as opposed to
positional port binding) to connect nets to the ports in a module instance. Lines 22–25 illustrate the
correct coding convention with one port binding per line and the ports/nets vertically aligned. As
shown on lines 21 and 26 the opening and closing parenthesis should be on their own separate lines.
Although this may seem verbose, this coding style can significantly reduce errors by making it much
easier to quickly visualize how ports are connected.

Lines 30–67 illustrate an initial block which executes at the very beginning of the simulation.
initial blocks are not synthesizable and should only be used in test harnesses. Lines 34–35 in-
struct the simulator to dump waveforms for all nets. Line 39 is a delay statement that essentially
waits for 11 timesteps. Delay statements are not synthesizable and should only be used in test har-
nesses. Lines 44–46 set the input, wait for 10 timesteps, and then displays the input and output port
values.

Edit the Verilog simulation harness named regincr-adhoc-test.v in the tut3_verilog/regincr
subdirectory using your favorite text editor. Add the code on lines 20–26 in Figure 17 to instan-
tiate the registered incrementer model. Then use iverilog to compile this simulator and run the
simulation as follows:

% cd ${TUTROOT}/tut3_verilog/regincr
% iverilog -g2012 -o regincr-adhoc-test regincr-adhoc-test.v
% ./regincr-adhoc-test

30

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //==
2 // RegIncr Ad-Hoc Testing
3 //==
4

5 `include "../tut3_verilog/regincr/RegIncr.v"
6

7 module top;
8

9 // Clocking
10

11 logic clk = 1;
12 always #5 clk = ~clk;
13

14 // Instaniate the design under test
15

16 logic reset = 1;
17 logic [7:0] in_;
18 logic [7:0] out;
19

20 tut3_verilog_regincr_RegIncr reg_incr
21 (
22 .clk (clk),
23 .reset (reset),
24 .in_ (in_),
25 .out (out)
26);
27

28 // Verify functionality
29

30 initial begin
31

32 // Dump waveforms
33

34 $dumpfile("regincr-adhoc-test.vcd");
35 $dumpvars;
36

37 // Reset
38

39 #11;
40 reset = 1'b0;
41

42 // Cycle 1
43

44 in_ = 8'h01;
45 #10;
46 $display(" cycle = 1: in = %x, out = %x", in_, out);
47

48 // Cycle 2
49

50 in_ = 8'h13;
51 #10;
52 $display(" cycle = 1: in = %x, out = %x", in_, out);
53

54 // Cycle 3
55

56 in_ = 8'h25;
57 #10;
58 $display(" cycle = 1: in = %x, out = %x", in_, out);
59

60 // Cycle 4
61

62 in_ = 8'h37;
63 #10;
64 $display(" cycle = 1: in = %x, out = %x", in_, out);
65

66 $finish;
67 end
68

69 endmodule

Figure 17: Ad-Hoc Testing Using Verilog for Registered Incrementer – An ad-hoc test using Verilog for the
eight-bit registered incrementer in Figure 16.

31

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

H To-Do On Your Own: Edit the register incrementer so that it now increments by +2 instead of +1.
Use an assign statement instead of the always @(*) concurrent block to do the incrementer logic.
Recompile, rerun the ad-hoc test, and verify that the displayed output is as expected. When you
are finished, edit the register incrementer so that it again increments by +1.

4.3. Ad-Hoc Testing Using Python

Writing test harnesses in Verilog is very tedious. There are some industry standard verification
frameworks based on SystemVerilog, such as the Open Verification Methodology (OVM) and the
Universal Verification Methodology (UVM), but these frameworks are very heavyweight and are not
supported by open-source tools. In this course, we will be using Python to make sophisticated testing
easy. More specifically, we will be using the PyMTL3 framework to write test harnesses (including
using FL models as golden reference models) for our Verilog RTL models. PyMTL3 includes support
for Verilog import by writing a special PyMTL3 wrapper model. Once we have created this wrapper
model, we can use all of the power of Python for writing test harnesses.

Figure 18 illustrates such a PyMTL3 wrapper. On line 9, we import the Verilog backend related
passes. On line 11, we inherit from both VerilogPlaceholder and Component. This is how we tell
the VerilogPlaceholderPass that this is a special wrapper component. By default, the placeholder
pass assumes the Verilog file to import is the same as the PyMTL3 component class name. For ex-
ample, this RegIncr will import from RegIncr.v. In this tutorial, the Verilog models all have the
prefix tut3_verilog_<folder>_. The placeholder pass will browse sim/pymtl.ini to see if it has
auto_prefix = yes. If so, it will automatically append the folder prefix to the PyMTL3 compo-
nent name so that the Verilog model can be properly imported. Here, the placeholder pass will use
tut3_verilog_regincr_RegIncr as the Verilog model name. The PyMTL3 interface on lines 19–20
specifies all of the input and output ports for this component. We can use the s.set_metadata API
to configure specific variables for the placeholder pass, the import pass, and the translation pass. In
this example, we don’t need any metadata to import the RegIncr model. The comments shows how
to set the the port map and whether the Verilog model has clk or reset ports. It can be useful when
you work on your own Verilog designs. Finally, we will see later in this tutorial how we can use
line tracing within our Verilog modules. We will provide you an appropriate PyMTL3 wrapper for
almost all of the components in this course so you can focus on RTL design and testing.

Figure 19 shows an ad-hoc test for our registered incrementer using Python which is similar to the
ad-hoc test we saw in Figure 17. The Python script elaborates the registered incrementer model, cre-
ates a simulator, writes input values to the input ports, and displays the input/output ports. Line 13
uses a Python list comprehension to read all of the command line parameters from the argv vari-
able, convert each parameter into an integer, and store these integers in a list named input_values.
Line 17 adds three zero values to the end of the list so that our simulation will run for a few extra
cycles before stopping. Lines 21–22 construct and elaborate the new RegIncr model. Lines 26–27
uses the VerilogPlaceholderPass, VerilogTranslationImportPass, and the DefaultPassGroup to
add import the Verilog RTL model and add simulation facilities to the top-level component. We reset
the simulator on line 32 which will raise the implicit reset signal for two cycles. Lines 36–49 define a
loop that is used to iterate through the list of input values. For each input value, we write the value
to the model’s input port, display the values on the input/output ports, and tick the simulator. Note
that we must use @= attribute when writing ports in the test script.

Edit the ad-hoc test named regincr-adhoc-test.py. Add the code on lines 21–22 in Figure 19 to
construct and elaborate the model. Then run the simulator script as follows:

32

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # RegIncr
3 #===
4 # This is a simple model for a registered incrementer. An eight-bit value
5 # is read from the input port, registered, incremented by one, and
6 # finally written to the output port.
7

8 from pymtl3 import *
9 from pymtl3.passes.backends.verilog import *

10

11 class RegIncr(VerilogPlaceholder, Component):
12

13 # Constructor
14

15 def construct(s):
16

17 # Port-based interface
18

19 s.in_ = InPort (8)
20 s.out = OutPort(8)
21

22 # The port map by default uses the PyMTL3 port names
23 # s.set_metadata(VerilogPlaceholderPass.port_map, {
24 # s.in_: 'in_',
25 # s.out: 'out',
26 # })
27

28 # has_clk and has_reset are True by default
29 # s.set_metadata(VerilogPlaceholderPass.has_clk, True)
30 # s.set_metadata(VerilogPlaceholderPass.has_reset, True)

Figure 18: Registered Incrementer Wrapper – PyMTL wrapper for the Verilog module shown in Figure 14.

% cd ${TUTROOT}/build
% python ../tut3_verilog/regincr/regincr-adhoc-test.py 0x01 0x13 0x25 0x37

Note that we are now working within a separate build directory. The process of compiling and
running tests often creates extra temporary and/or output files, so keeping these generated files
in a separate build directory helps avoid creating generated files in the source tree and facilitates
performing a clean build.

You should see output from executing the ad-hoc test over several cycles. Note that the output starts
on cycle 3; this is because calling the simulator’s reset method raises the implicit reset signal for
the first two cycles. On every cycle, we see a new input value being written into the registered
incrementer, and on the next cycle we should see the corresponding incremented value being read
from the output port.

33

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # regincr-adhoc-test <input-values>
3 #===
4

5 from pymtl3 import *
6 from pymtl3.passes.backends.verilog import *
7

8 from sys import argv
9 from RegIncr import RegIncr

10

11 # Get list of input values from command line
12

13 input_values = [int(x,0) for x in argv[1:]]
14

15 # Add three zero values to end of list of input values
16

17 input_values.extend([0]*3)
18

19 # Instantiate and elaborate the model
20

21 model = RegIncr()
22 model.elaborate()
23

24 # Apply the Verilog import passes and the default pass group
25

26 model.apply(VerilogPlaceholderPass())
27 model = VerilogTranslationImportPass()(model)
28 model.apply(DefaultPassGroup())
29

30 # Reset simulator
31

32 model.sim_reset()
33

34 # Apply input values and display output values
35

36 for input_value in input_values:
37

38 # Write input value to input port
39

40 model.in_ @= input_value
41 model.sim_eval_combinational()
42

43 # Print input and output ports
44

45 print(f" cycle = {model.sim_cycle_count()}: in = {model.in_}, out = {model.out}")
46

47 # Tick simulator one cycle
48

49 model.sim_tick()

Figure 19: Ad-Hoc Testing Using Python for Registered Incrementer – Python script to elaborate the model,
apply PyMTL3 passes, write input values to the input ports, and display the input/output ports.

34

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

H To-Do On Your Own: Try running the ad-hoc test with a different list of input values specified
on the command line. Verify that the registered incrementer performs as expected when given
the input value 0xff. Instead of reading the input values from the command line on line 12,
experiment with generating a sequence of numbers automatically from within the script. You can
use Python’s range function to generate a sequence of numbers (potentially with a step greater
than one), and you can use the shuffle function from the standard Python random module to
randomly shuffle a sequence of numbers.

35

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

4.4. Visualizing a Model with Line Traces

While it is possible to visualize the execution of a model by manually inserting display statements
in the Verilog RTL design and/or inserting print statements in the Python ad-hoc test, this can be
quite tedious. Because this kind of visualization is so common, PyMTL3 includes built-in support
for line tracing. A line trace consists of plain-text trace output with each line corresponding to one
(and only one!) cycle. Fixed-width columns will correspond to either state at the beginning of the
corresponding cycle or the output of combinational logic during that cycle. Line traces will abstract
the detailed bit representations of signals in our design into useful character representations. So for
example, instead of visualizing messages as raw bits, we will visualize them as text strings. Line
traces can give designers a high-level view of how data is moving throughout the system.

To use line tracing, we need to add non-synthesizable Verilog to our RTL model that uses the Ver-
ilog macros and tasks provided in vc/trace.v. Figure 20 illustrates the registered incrementer
now including basic line tracing code. First, we must include vc/trace.v on line 11. The ac-
tual line tracing code is on lines 44–54. This code must start with the `VC_TRACE_BEGIN macro
(line 45) and end with the `VC_TRACE_END macro (line 50). Within the line tracing code, you can
use vc_trace.append_str(str) to append a string to the current cycle’s line trace. On line 47, we
use the standard $sformat system task to create a string that includes the output the value of the
input port, the value of the register output, and the value of the output port. On line 48, we append
this string to the current cycle’s line trace. Notice how the line tracing code uses `ifndef SYNTHESIS
(line 42) and `endif (line 52) to indicate that this is non-synthesizable Verilog.

Go ahead and uncomment this line tracing code in RegIncr.v. To actually display the line trace, we
also need to modify the regincr-adhoc-test.py script shown in Figure 19. First, remove the print
statement on line 45. Then add linetrace=True as a keyword argument to the DefaultPassGroup
on line 28 to enable the simulator to automatically display the line trace method.

model.apply(DefaultPassGroup(linetrace=True))

Make these modifications and rerun the ad-hoc test. You should see the value at the input port, the
current state of the register in the model, and the value at the output port:

1r 00 (00) 01
2r 00 (00) 01
3: 01 (00) 01
4: 13 (01) 02
5: 25 (13) 14
6: 37 (25) 26
7: 00 (37) 38
8: 00 (00) 01
9: 00 (00) 01

H To-Do On Your Own: Modify the line tracing code to show the port labels. After your modifica-
tions, the line trace might look something like this:

1r in:00 (00) out:01
2r in:00 (00) out:01
3: in:01 (00) out:01
4: in:13 (01) out:02

36

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //==
2 // Registered Incrementer
3 //==
4 // This is a simple example of a module for a registered incrementer
5 // which combines a positive edge triggered register with a combinational
6 // +1 incrementer. We use flat register-transfer-level modeling.
7

8 `ifndef TUT3_VERILOG_REGINCR_REG_INCR_V
9 `define TUT3_VERILOG_REGINCR_REG_INCR_V

10

11 `include "vc/trace.v"
12

13 module tut3_verilog_regincr_RegIncr
14 (
15 input clk,
16 input reset,
17 input [7:0] in_,
18 output [7:0] out
19);
20

21 // Sequential logic
22

23 reg [7:0] reg_out;
24 always @(posedge clk) begin
25 if (reset)
26 reg_out <= 0;
27 else
28 reg_out <= in_;
29 end
30

31 // Combinational logic
32

33 reg [7:0] temp_wire;
34 always @(*) begin
35 temp_wire = reg_out + 1;
36 end
37

38 assign out = temp_wire;
39

40 //--
41 // Line Tracing
42 //--
43

44 `ifndef SYNTHESIS
45

46 logic [`VC_TRACE_NBITS-1:0] str;
47 `VC_TRACE_BEGIN
48 begin
49 $sformat(str, "%x (%x) %x", in_, reg_out, out);
50 vc_trace.append_str(trace_str, str);
51 end
52 `VC_TRACE_END
53

54 `endif /* SYNTHESIS */
55

56 endmodule
57

58 `endif /* TUT3_VERILOG_REGINCR_REG_INCR_V */

Figure 20: Registered Incrementer with Line Tracing – Line tracing displays trace output with each line corre-
sponding to one (and only one!) cycle. 37

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Figure 21: Text-Based Waveforms – Text-based waveforms are being used to display signals directly in the
terminal associated with the registered incrementer shown in Figure 16.

4.5. Visualizing a Model with Text-Based Waveforms

Line tracing can be useful for initially debugging the high-level behavior of your design, but it can
also be useful to visualize various signals as waveforms. If you want to take a quick look at the
value changes of all the signals in a small design over just a few cycles, you can display a text-based
waveform inside the terminal.

To display the line trace, we need to modify the regincr-adhoc-test.py script shown in Figure 19.
First, add model.print_textwave() after the loop at the very end of the script. This is because
PyMTL3 doesn’t want to dump the text-based waveform when your simulation is still going, so
you need to call the print_textwave method explicitly when the simulation is finished. Then add
textwave=True as a keyword argument to the DefaultPassGroup on line 28 to enable the simulator
to automatically display the line trace method.

model.apply(DefaultPassGroup(textwave=True))

Make these modifications and rerun the ad-hoc test. Figure 21 shows screenshot of the terminal
displaying the text-based waveform.

4.6. Visualizing a Model with VCD Waveforms

Line tracing can be useful for initially visualizing the high-level behavior of your design, and text-
based waveforms is useful for visualizing very simple designs over just a few cycles. However, we
often need to visualize many more signals than can be easily captured either in a line trace or text-
based waveform. The PyMTL3 framework can output waveforms in the Value Change Dump (VCD)
format for every signal (i.e., ports and wires) in your design which can then be visualized using a
dedicated waveform viewer.

To generate VCD, we need to modify the regincr-adhoc-test.py script shown in Figure 19. Add
vcdwave="regincr-adhoc-test" as a keyword argument to the DefaultPassGroup on line 28 to
enable the simulator to write the VCD to a file named regincr-adhoc-test.vcd.

model.apply(DefaultPassGroup(vcdwave="regincr-adhoc-test"))

38

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Figure 22: GTKWave Waveform Viewer – GTKWave is being used to browse the signals associated with the
registered incrementer shown in Figure 16 and the ad-hoc test shown in Figure 23.

Make these modifications and rerun the ad-hoc test. Use the open-source GTKWave program to
browse the generated waveforms as follows:

% cd ${TUTROOT}/build
% python ../tut3_verilog/regincr/regincr-adhoc-test.py 0x01 0x13 0x25 0x37
% gtkwave regincr-adhoc-test.vcd &

You can browse the module hierarchy of your design in the upper-left panel, with the signals in any
given module being displayed in the lower-left panel. Select signals and use the Append or Insert
button to add them to the waveform panel on the right. You can drag-and-drop signals to arrange
them as desired. You can use the scrollbar at the bottom to scroll to the right through the waveform,
and you can use the Time > Zoom menu or the corresponding magnifying glass icons in the toolbar to
zoom in or out. To see the full hierarchical names of each signal choose Edit > Toggle Trace Hierarchy
or simply press the H key. Choose File > Reload Waveform (or click the blue circular arrow icon in the
toolbar) to update GTKWave after you have rerun a simulation. Organizing signals can sometimes
be quite time consuming, so you can save and load the current configuration using File > Write Save
File and File > Read Save File. Figure 22 illustrates using GTKWave to view the waveforms from
our ad-hoc test. GTKWave has many useful options which can make debugging your design more
productive, so feel free to explore the associated documentation.

H To-Do On Your Own: Edit the register incrementer so that it now increments by +2 instead of +1.
Rerun the simulator script and take another look the waveforms to see how they have changed.
When you are finished, edit the registered incrementer so that it again increments by +1.

39

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

4.7. Verifying a Model with Unit Testing

Students might be tempted to use the ad-hoc testing approach illustrated in the previous sections
as the primary way of testing their RTL designs. In other words, simply look at debug output, line
traces, and/or waveforms to determine if their design is working, but this kind of “verification by
inspection” is error prone and not reproducible. If you later make a change to your design, you
would have to take another look at the debug output and/or waveforms to ensure that your design
still works. If another member of your group wants to understand your design and verify that it is
working, he or she would also need to take a look at the debug output and/or waveforms. Ad-hoc
testing is usually verbose, which makes it error prone and more cumbersome to write tests. Ad-hoc
testing is difficult for others to read and understand since by definition it is ad-hoc. Ad-hoc testing
does not use any kind of standard test output, and does not provide support for controlling the
amount of test output. While using ad-hoc testing might be feasible for very simple designs, it is
obviously not a scalable approach when building the more complicated designs we will tackle in this
course.

In this course, we will be using the powerful pytest unit testing framework. The pytest framework
is popular in the Python programming community with many features that make it well-suited for
test-driven hardware development including: no-boilerplate testing with the standard assert state-
ment; automatic test discovery; helpful traceback and failing assertion reporting; standard output
capture; sophisticated parameterized testing; test marking for skipping certain tests; distributed test-
ing; and many third-party plugins. More information is available at http://www.pytest.org.

Figure 23 illustrates a simple unit testing Python script for our registered incrementer. Notice at a
high-level the test code is very straight-forward; the pytest framework enables unit testing to be
as simple or as complex as necessary. The pytest framework includes automatic test discovery,
which means that it will look through the unit test script and assume that any function that begins
with test_ is a test case. In this example, pytest will discover a single test case named test_basic
corresponding to the function declared on lines 16–59. To test our registered incrementer, we need
to instantiate and elaborate the model, use the default pass group to add simulation facilities, write
values to the input ports of the model, and finally verify that the values read from the output ports
of the model are correct.

Lines 20–24 instantiate and configure the model using the command line options. Lines 33–50 define
a simple helper function that is responsible for verifying one cycle of execution. The helper function
takes the desired test input and the reference test output as arguments. Line 37 writes the test input to
the in_ port of the registered incrementer. Note that it is important to use @= operator to write ports
in the test harness. Line 41 tells the simulator to make sure any combinational blocks are executed if
their input values have changed. Lines 45–46 read the out port and compare it to the reference output
to ensure that the registered incrementer is functioning correctly. Notice that we check to make sure
the reference output is not set to a question mark character. This gives us a simple way to indicate that
we do not care what the output value is on that cycle. Also notice that the pytest framework does
not need special assertion checking functions, and instead hooks into the standard assert statement
provided in Python. This means the pytest framework can carefully track the assert statement
on line 46, and on an assertion error will display the context of the assert statement including the
sequence of function calls that lead to the assertion and the values of the variables used in the assert
statement.

Lines 54–59 use our helper function to test the registered incrementer over six cycles. These test
cases are an example of directed cycle-by-cycle gray-box testing. It is directed since we are explicitly
creating directed tests as opposed to using some kind of random testing. It is cycle-by-cycle since we

40

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # RegIncr_simple_test
3 #===
4

5 from pymtl3 import *
6 from pymtl3.stdlib.test_utils import config_model_with_cmdline_opts
7

8 from ..RegIncr import RegIncr
9

10 # In pytest, unit tests are simply functions that begin with a "test_"
11 # prefix. PyMTL3 is setup to collect command line options. Simply specify
12 # "cmdline_opts" as an argument to your unit test source code,
13 # and then you can dump VCD by adding --dump-vcd option to pytest
14 # invocation from the command line.
15

16 def test_basic(cmdline_opts):
17

18 # Create the model
19

20 model = RegIncr()
21

22 # Configure the model
23

24 model = config_model_with_cmdline_opts(model, cmdline_opts, duts=[])
25

26 # Create and reset simulator
27

28 model.apply(DefaultPassGroup(linetrace=True))
29 model.sim_reset()
30

31 # Helper function
32

33 def t(in_, out):
34

35 # Write input value to input port
36

37 model.in_ @= in_
38

39 # Ensure that all combinational concurrent blocks are called
40

41 sim.sim_eval_combinational()
42

43 # If reference output is not '?', verify value read from output port
44

45 if out != '?':
46 assert model.out == out
47

48 # Tick simulator one cycle
49

50 sim.sim_cycle()
51

52 # Cycle-by-cycle tests
53

54 t(0x00, '?')
55 t(0x13, 0x01)
56 t(0x27, 0x14)
57 t(0x00, 0x28)
58 t(0x00, 0x01)
59 t(0x00, 0x01)

Figure 23: Unit Test Script for Registered Incrementer – A unit test for the eight-bit registered incrementer in
Figure 16, which uses the pytest unit testing framework.

41

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

========================== test session starts ===========================
...
collected 1 items

../tut3_pymtl/regincr/test/RegIncr_test.py .

======================== 1 passed in 0.04 seconds ========================

Figure 24: pytest Output – Each line corresponds to one test script, and each dot corresponds to one passing
test case. Failing test cases are shown with an F character.

are explicitly setting the inputs and verifying the outputs every cycle. Black-box testing describes a
testing strategy where the test cases depend only on the interface and not the specific implementation
of the DUT (i.e., they should be valid for any correct implementation). White-box testing describes a
testing strategy where the test cases depend on the specific implementation of the DUT (i.e., they may
not be valid for every correct implementation). The test cases in Figure 23 are black-box with respect
to the functional behavior of the DUT, but they are white-box with respect to the timing behavior of
the device. The test cases rely on the fact that the registered incrementer includes exactly one edge
and they would fail if we pipelined the incrementer such that each transaction took two edges. In
Section 6, we will see how we can use latency-insensitive interfaces to create true black-box unit tests.

Edit the test script named RegIncr_simple_test.py. Note that it is important that all test script
file names end in _test.py, since this suffix is used by the pytest framework for automatic test
discovery. Add the tests cases shown on lines 54–59 in Figure 23. We can run the test script using
pytest as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_simple_test.py

Again, notice that we run our unit test scripts from within a separate build directory to keep all
generated files separate from the source tree. The pytest framework automatically discovers the
test_basic test case. The output from running pytest should look similar to what is shown in
Figure 24; pytest will display the name of the test script and a single dot indicating that the cor-
responding test case has passed. If we ran multiple test scripts, then each test script would have a
separate line in the output. If we had multiple test_ functions in RegIncr_simple_test.py, then
each test case would have its own dot. Failing test cases are shown with an F character.

Note that our test script prints the line trace, yet the line trace is not included in the output shown in
Figure 24. This is because by default, the pytest framework “captures” the standard output from a
test script instead of displaying this output. The output is only displayed when a test case fails, or
if the users explicitly disables capturing the standard output. So to generate a line trace for this test,
we simply use the --capture=no (or -s) command line option as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_simple_test.py -s

Note that by default, pytest will not show much detail on an error. This enables a designer to
quickly get an overview of which tests are passing and which tests are failing. If some of your tests
are failing, then you will want to produce more detailed error output using the --tb command line
options.

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_simple_test.py --tb=short

42

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

% pytest ../tut3_verilog/regincr/test/RegIncr_simple_test.py --tb=long

The --tb command line option specifies the level of “trace-back” output, and there are a couple of
different options you might want to use including: long, short, and line. To generate waveforms
for this test, we simply use the --dump-vcd command line option as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_simple_test.py --dump-vcd
% gtkwave tut3_pymtl.regincr.test.RegIncr_test__test_basic_top.verilator1.vcd &

Note that PyMTL3 will actually create two different VCD files. You always want to open the one with
the verilator1.vcd suffix.

H To-Do On Your Own: Edit the register incrementer so that it now increments by +2 instead of
+1. Rerun the unit test and verify that the tests no longer pass. Use the --tb=long command
line option to display more detailed error output. Study the output carefully to understand the
corresponding error messages. You should see: (1) a sequence of two function calls that lead to
the assertion failure; (2) the exact assertion that is failing; (3) the value of the output port and the
reference output in the failing assertion; and (4) the captured standard output which usually a line
trace. Modify the unit test so that it includes the correct reference outputs for a +2 incrementer,
rerun the unit test, and verify that the test now passes. When you are finished, edit the registered
incrementer so that it again increments by +1.

4.8. Verifying a Model with Test Vectors

The unit test shown in Figure 23 requires quite a bit of setup code. Usually we want to include many
directed test cases in a test script; each test case focuses on testing a different specific aspect of our
design. If we simply extend the approach shown in Figure 23, then each test case would need to
duplicate lines 16–50. We could refactor this code into a separate helper function that can be reused
across all test cases in a given test script. However, since this kind of testing is so common, PyMTL3
includes a flexible helper function for unit testing any model using test vectors. This function is
named run_test_vector_sim and it is part of PyMTL3 Standard Library (pymtl3.stdlib).

Test vectors are essentially a table of test inputs and reference outputs. Figure 25 shows an extra
test script that uses the run_test_vector_sim helper function provided by the PyMTL3 framework.
There are three test cases for testing small input values, large input values, and the registered in-
crementer’s overflow condition. The run_test_vector_sim helper function takes three arguments:
an instantiated model, a test vector table, and the command line options. The function elaborates
a model, uses the simulation tool to create a simulator, resets the simulator, writes the input values
provided in the test vector table to the model’s input ports, reads the values from the model’s output
ports, and compares the values to the reference values provided by the test vector table. The test
vector table is a list of lists and is written so as to look like a table. Each column corresponds to either
an input value or a reference output value, and each row corresponds to one cycle of the simulation.
Question marks are allowed for reference output values when we don’t care what the output is on
that cycle. The first row of the test vector table is always a special “header string” that specifies the
name of the model’s input/output port for that column. Output ports are denoted with an asterisk
suffix. Note how compact this test script is compared to the test script in Figure 23. This sophisti-
cated helper function demonstrates the power of using a general-purpose dynamic language such as
Python to write test harnesses.

43

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # RegIncr_test
3 #===
4

5 from pymtl3 import *
6 from pymtl3.stdlib.test_utils import run_test_vector_sim
7 from ..RegIncr import RegIncr
8

9 #---
10 # test_small
11 #---
12

13 def test_small(cmdline_opts):
14 run_test_vector_sim(RegIncr(), [
15 ('in_ out*'),
16 [0x00, '?'],
17 [0x03, 0x01],
18 [0x06, 0x04],
19 [0x00, 0x07],
20], cmdline_opts)
21

22 #---
23 # test_large
24 #---
25

26 def test_large(cmdline_opts):
27 run_test_vector_sim(RegIncr(), [
28 ('in_ out*'),
29 [0xa0, '?'],
30 [0xb3, 0xa1],
31 [0xc6, 0xb4],
32 [0x00, 0xc7],
33], cmdline_opts)
34

35 #---
36 # test_overflow
37 #---
38

39 def test_overflow(cmdline_opts):
40 run_test_vector_sim(RegIncr(), [
41 ('in_ out*'),
42 [0x00, '?'],
43 [0xfe, 0x01],
44 [0xff, 0xff],
45 [0x00, 0x00],
46], cmdline_opts)

Figure 25: Unit Test Script using Test Vectors for Registered Incrementer – A unit test for the eight-bit regis-
tered incrementer in Figure 16, which uses test vectors and the pytest unit testing framework.

44

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

========================== test session starts ===========================
...
collected 21 items

../tut3_verilog/regincr/test/RegIncr2stage_test.py::test_small FAILED

../tut3_verilog/regincr/test/RegIncr2stage_test.py::test_large FAILED

../tut3_verilog/regincr/test/RegIncr2stage_test.py::test_overflow FAILED

../tut3_verilog/regincr/test/RegIncr2stage_test.py::test_random FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_small] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_large] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_overflow] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_random] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_small] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_large] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_overflow] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_random] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[1] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[2] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[3] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[4] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[5] FAILED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[6] FAILED

../tut3_verilog/regincr/test/RegIncr_simple_test.py::test_basic PASSED

../tut3_verilog/regincr/test/RegIncr_test.py::test_small PASSED

../tut3_verilog/regincr/test/RegIncr_test.py::test_large PASSED

=================== 17 failed, 4 passed in 0.36 seconds ==================

Figure 26: pytest Verbose Output – Each line corresponds to one test case. Passing test cases are marked with
PASSED and failing test cases are marked with FAILED.

Edit the test script named RegIncr_test.py. Add the code on lines 35–46 in Figure 25 which tests
for overflow. Run this test script using pytest as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_test.py

The output should show the name of the test script and three dots corresponding to the three test
cases in Figure 25. The pytest framework can automatically discover test scripts in addition to
automatically discovering the test cases within a test script. If the argument to pytest is a directory,
then pytest will search that directory for any files ending in _test.py and assume that these files are
test scripts. The pytest framework also provides a more verbose output where each test case is listed
on a separate line; passing test cases are marked with PASSED and failing test cases are marked with
FAILED. Run both of the test scripts using the --verbose (or -v) command line option as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test -v

The verbose output should look similar to what is shown in Figure 26. Some test cases are passing
for those models which we have completed, while other test cases are failing because we will work
on them later in the tutorial. We can use the -k command line option to select just a few test cases to
run and debug in more detail. For example to run just the test case for testing small input values, we
can use the following:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test -k small

45

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

We can use the -x command line option to have pytest stop after the very first failing test case:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr -x

When testing an entire directory, we often use an iterative process to “zoom” in on a failing test case.
We start by running all tests in the directory to see an overview of which tests are passing and which
tests are failing. We then explicitly run a single test script with the -v command line option to see
which specific test cases are failing. Finally, we use the -k or -x command line options with --tb, -s,
and/or --dump-vcd command line option to generate error output, line traces, and/or waveforms
for the failing test case. Here is an example of this three-step process to “zoom” in on a failing test
case:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py -v
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py -v -x --tb=short
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py -v -x --tb=long

H To-Do On Your Own: Add another directed test case for the registered incrementer which tests
another arbitrary set of input values. Rerun the test script, and verify that the output matches
your expectations.

4.9. Verifying a Model with Random Testing

So far we used a directed cycle-by-cycle gray-box testing strategy. Once we have finished writing
hand-crafted directed tests, we almost always want to leverage randomized testing to further im-
prove our confidence in the correct functionality of the design. Generating random test vectors in
Python is relatively straight forward, especially if we make use of the standard Python random mod-
ule. Figure 27 illustrates a random test case for the registered incrementer. We are using the PyMTL3
Bits class which provides support for fixed-bitwidth values to ensure a random value that results
in modulo arithmetic is handled correctly. Note that the random test vector generation must care-
fully take into account the latency of the registered incrementer in order to ensure that each reference
output is placed in the correct row of the test vector table.

Add this test case to the RegIncr_test.py test script, and run the new test case with line tracing
enabled as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr_test.py -k random -s

H To-Do On Your Own: Add another random test case for the registered incrementer where the
input values are always less than 16 (i.e., small numbers). Rerun the test script, and verify that
the output matches your expectations.

46

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #---
2 # test_random
3 #---
4

5 import random
6

7 def test_random(cmdline_opts):
8

9 test_vector_table = [('in_', 'out*')]
10 last_result = '?'
11 for i in range(20):
12 rand_value = Bits8(random.randint(0,0xff))
13 test_vector_table.append([rand_value, last_result])
14 last_result = Bits8(rand_value + 1, trunc_int=True)
15

16 run_test_vector_sim(RegIncr(), test_vector_table, cmdline_opts)

Figure 27: Random Test Case for Registered Incrementer – Random input values and the corresponding incre-
mented output value are added to a test vector table for random testing.

4.10. Reusing a Model with Structural Composition

We will use modularity and hierarchy to structurally compose small, simple models into large, com-
plex models. This incremental approach allows us to first design and test the small models, and thus
ensure they are working, before integrating them and testing the larger models. Figure 28 shows a
two-stage registered incrementer that uses structural composition to instantiate and connect two in-
stances of a single-stage registered incrementer. Figure 29 shows the corresponding Verilog module.
Line 11 uses a `include to include the child model that we will be reusing. Notice how we must use
the full path (from the root of the project) to the Verilog file we want to include.

Lines 25–31 instantiate the first registered incrementer and lines 35–41 instantiate the second reg-
istered incrementer. As mentioned above, we should almost always used named port binding to
connect nets to the ports in a module instance. Lines 27–30 illustrate the correct coding convention
with one port binding per line and the ports/nets vertically aligned. As shown on lines 26 and 31 the
opening and closing parenthesis should be on their own separate lines. We usually declare signals
that will be connected to output ports immediately before instantiating the module.

We need to write a new PyMTL3 wrapper for our two-stage registered incrementer, although it will
be essentially the same as the wrapper shown in Figure 18 except with a different class name. This
illustrates a key point: the PyMTL3 wrapper simply captures the Verilog interface and is largely
unconcerned with the implementation.

47

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

in
8b

outRegIncr
8b

RegIncr

Figure 28: Block Diagram for Two-Stage Regis-
tered Incrementer – An eight-bit two-stage regis-
tered incrementer that reuses the registered incre-
menter in Figure 14 through structural composition.

1 //==
2 // RegIncr2stage
3 //==
4 // Two-stage registered incrementer that uses structural composition to
5 // instantitate and connect two instances of the single-stage registered
6 // incrementer.
7

8 `ifndef TUT3_VERILOG_REGINCR_REG_INCR_2STAGE_V
9 `define TUT3_VERILOG_REGINCR_REG_INCR_2STAGE_V

10

11 `include "tut3_verilog/regincr/RegIncr.v"
12

13 module tut3_verilog_regincr_RegIncr2stage
14 (
15 input logic clk,
16 input logic reset,
17 input logic [7:0] in_,
18 output logic [7:0] out
19);
20

21 // First stage
22

23 logic [7:0] reg_incr_0_out;
24

25 tut3_verilog_regincr_RegIncr reg_incr_0
26 (
27 .clk (clk),
28 .reset (reset),
29 .in_ (in_),
30 .out (reg_incr_0_out)
31);
32

33 // Second stage
34

35 tut3_verilog_regincr_RegIncr reg_incr_1
36 (
37 .clk (clk),
38 .reset (reset),
39 .in_ (reg_incr_0_out),
40 .out (out)
41);
42

43 endmodule
44

45 `endif /* TUT3_VERILOG_REGINCR_REG_INCR_2STAGE_V */

Figure 29: Two-Stage Registered Incrementer – An eight-bit two-stage registered incrementer corresponding
to Figure 28. This model is implemented using structural composition to instantiate and connect two instances
of the single-stage register incrementer.

48

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

reg_incr_0 reg_incr_1
----------- -----------

cycle in in reg out in reg out out

...
3: 00 (00 (00) 01|01 (00) 01) 01
4: 03 (03 (00) 01|01 (01) 02) 02
5: 06 (06 (03) 04|04 (01) 02) 02
6: 00 (00 (06) 07|07 (04) 05) 05
7: 00 (00 (00) 01|01 (07) 08) 08
...

Figure 30: Line Trace Output for Two-Stage
Registered Incrementer – This line trace is
for the test_small test case and is annotated
to show what each column corresponds to in
the model. The data flow for the input value
0x03 is highlighted.

As always, once we create a new hardware model, we should immediately write a unit test to verify
its functionality. Figure 31 shows a test script using test vectors to verify our two-stage registered
incrementer. Notice how we must carefully take into account the two-cycle latency of the registered
incrementer in order to ensure that each reference output is placed in the correct row of the test vector
table. This is because we are using a cycle-by-cycle gray-box testing strategy.

Edit the Verilog source file named RegIncr2stage.v. Add lines 33-41 from Figure 29 to instantiate
and connect the second stage of the two-stage registered incrementer. Then run all of the test scripts
as well as a subset of the test cases as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py -v

You can generate the line trace for just the first test case for our two-stage registered incrementer as
follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py -k test_small -s

The line trace should look similar to what is shown in Figure 30. The line trace in the figure has been
annotated to show what each column corresponds to in the model. If you look closely, you can see
the input data propagating through both stages of the two-stage registered incrementer. Remember
you can generate waveforms for all of the test cases in our new test script as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/regincr/test/RegIncr2stage_test.py --dump-vcd
% ls *.vcd

H To-Do On Your Own: Create a three-stage registered incrementer similar in spirit to the two-stage
registered incrementer in Figure 28. Verify your design by writing a test script that uses test
vectors.

49

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # Regincr2stage_test
3 #===
4

5 from pymtl3 import *
6 from pymtl3.stdlib.test_utils import run_test_vector_sim
7 from ..RegIncr2stage import RegIncr2stage
8

9 #---
10 # test_small
11 #---
12

13 def test_small(cmdline_opts):
14 run_test_vector_sim(RegIncr2stage(), [
15 ('in_ out*'),
16 [0x00, '?'],
17 [0x03, '?'],
18 [0x06, 0x02],
19 [0x00, 0x05],
20 [0x00, 0x08],
21], cmdline_opts)
22

23 #---
24 # test_large
25 #---
26

27 def test_large(cmdline_opts):
28 run_test_vector_sim(RegIncr2stage(), [
29 ('in_ out*'),
30 [0xa0, '?'],
31 [0xb3, '?'],
32 [0xc6, 0xa2],
33 [0x00, 0xb5],
34 [0x00, 0xc8],
35], cmdline_opts)
36

37 #---
38 # test_overflow
39 #---
40

41 def test_overflow(cmdline_opts):
42 run_test_vector_sim(RegIncr2stage(), [
43 ('in_ out*'),
44 [0x00, '?'],
45 [0xfe, '?'],
46 [0xff, 0x02],
47 [0x00, 0x00],
48 [0x00, 0x01],
49], cmdline_opts)
50

51 #---
52 # test_random
53 #---
54

55 import random
56

57 def test_random(cmdline_opts):
58

59 test_vector_table = [('in_', 'out*')]
60 last_result_0 = '?'
61 last_result_1 = '?'
62 for i in range(20):
63 rand_value = Bits8(random.randint(0,0xff))
64 test_vector_table.append([rand_value, last_result_1])
65 last_result_1 = last_result_0
66 last_result_0 = Bits8(rand_value + 2, trunc_int=True)
67

68 run_test_vector_sim(RegIncr2stage(), test_vector_table, cmdline_opts)

Figure 31: Unit Test Script for Two-Stage Registered Incrementer – A unit test for the two-stage registered
incrementer shown in Figure 29 that uses test vectors and the py.test unit testing framework.

50

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

4.11. Parameterizing a Model with Static Elaboration

To facilitate model reuse and productive design-space exploration, we often want to implement pa-
rameterized models. A common example is to parameterize models by the bitwidth of various input
and output ports. The registered incrementer in Figure 16 is designed for only 8-bit input values, but
we may want to reuse this model in a different context with 4-bit input values or 16-bit input val-
ues. We can use Verilog parameters to parameterize the port bitwidth for the registered incrementer
shown in Figure 16; we would replace references to the constant 7 with a reference to nbits-1. Now
we can specify the port bitwidth for our register incrementer when we construct the model. We have
included a library of parameterized Verilog RTL models in the vc subdirectory. Figure 32 shows
a combinational incrementer from vc that is parameterized by both the port bitwidth and the in-
crementer amount. The parameters are specified using the special syntax shown on lines 2–5. By
convention, we use a p_ prefix when naming parameters.

Verilog-2001 provides generate statements which are meant for static elaboration. Static elaboration
happens at compile time, not runtime. We can use static elaboration to generate hardware which is
fundamentally different from modeling hardware. Figure 33 illustrates using generate statements
to create a multi-stage registered incrementer that is parameterized by the number of stages. The
number of stages is specified using the the p_nstages parameter shown on line 13. We create a array
of signals to hold the intermediate values between stages (line 25), and then we use a generate for
loop to instantiate and connect the stages. Using generate statements is one of the more advanced
parts of Verilog, so we will not go into more detail within this tutorial.

Since we want to instantiate the Verilog RegIncrNstage model with a p_nstages parameter, we
cannot directly reuse the previous wrapper for RegIncr which does not have parameters. Figure 34
shows now to create a PyMTL3 wrapper for a Verilog module that includes parameters. As long
as the names match, the constructor arguments in the PyMTL3 wrapper directly correspond to the
Verilog parameters.

One challenge with highly parameterized models is that they can require more complicated verifica-
tion to test all of the various parameter combinations. The pytest framework includes sophisticated
support for parameterized testing that can simplify verifying highly parameterized models. Fig-
ure 35 shows a test script for the multi-stage registered incrementer model. Because we are using
a cycle-by-cycle gray-box testing strategy, the test vectors vary depending on the number of stages.
Lines 23–33 define an advanced helper function that takes as input the number of stages and a list

1 module vc_Incrementer
2 #(
3 parameter p_nbits = 1,
4 parameter p_inc_value = 1
5)(
6 input logic [p_nbits-1:0] in,
7 output logic [p_nbits-1:0] out
8);
9

10 assign out = in + p_inc_value;
11

12 endmodule

Figure 32: Parameterized Incrementer from vc –
A combinational incrementer from vc that is pa-
rameterized by both the port bitwidth and the in-
crementer amount.

51

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //==
2 // RegIncrNstage
3 //==
4 // Registered incrementer that is parameterized by the number of stages.
5

6 `ifndef TUT3_VERILOG_REGINCR_REG_INCR_NSTAGE_V
7 `define TUT3_VERILOG_REGINCR_REG_INCR_NSTAGE_V
8

9 `include "tut3_verilog/regincr/RegIncr.v"
10

11 module tut3_verilog_regincr_RegIncrNstage
12 #(
13 parameter p_nstages = 2
14)(
15 input logic clk,
16 input logic reset,
17 input logic [7:0] in_,
18 output logic [7:0] out
19);
20

21 // This defines an _array_ of signals. There are p_nstages+1 signals
22 // and each signal is 8 bits wide. We will use this array of signals to
23 // hold the output of each registered incrementer stage.
24

25 logic [7:0] reg_incr_out [p_nstages+1];
26

27 // Connect the input port of the module to the first signal in the
28 // reg_incr_out signal array.
29

30 assign reg_incr_out[0] = in_;
31

32 // Instantiate the registered incrementers and make the connections
33 // between them using a generate block.
34

35 genvar i;
36 generate
37 for (i = 0; i < p_nstages; i = i + 1) begin: gen
38

39 tut3_verilog_regincr_RegIncr reg_incr
40 (
41 .clk (clk),
42 .reset (reset),
43 .in_ (reg_incr_out[i]),
44 .out (reg_incr_out[i+1])
45);
46

47 end
48 endgenerate
49

50 // Connect the last signal in the reg_incr_out signal array to the
51 // output port of the module.
52

53 assign out = reg_incr_out[p_nstages];
54

55 endmodule
56

57 `endif /* TUT3_VERILOG_REGINCR_REG_INCR_NSTAGE_V */

Figure 33: N-Stage Registered Incrementer – A parameterized registered incrementer where the number of
stages is specified using a Verilog parameter.

52

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # RegIncrNstage
3 #===
4 # Registered incrementer that is parameterized by the number of stages.
5

6 from pymtl3 import *
7 from pymtl3.passes.backends.verilog import *
8

9 class RegIncrNstage(VerilogPlaceholder, Component):
10 def construct(s, p_nstages=2):
11 s.in_ = InPort (8)
12 s.out = OutPort(8)

Figure 34: Registered Incrementer Wrapper Parameterized by the Number of Stages – PyMTL3 wrapper for
the RegIncrNstage Verilog module.

of input values and generates the corresponding test vector table. This helper function makes use of
Python’s standard deque container for carefully tracking how to set the reference outputs based on
the latency of the multi-stage registered incrementer. Notice that we also use the trunc argument to
the Bits constructor when creating the reference output to ensure the proper modular arithmetic.

The test script in Figure 35 uses this helper function in combination with the pytest.mark.parametrize
decorator to create parameterized test cases. The pytest.mark.parametrize decorator (notice that it
is parametrize not parameterize) takes two arguments: a string containing the names of arguments
for the test case function and a list of values to use for those arguments. The pytest framework will
automatically generate a set of test cases for each set of argument values.

On lines 39–55, we use pytest.mark.parametrize to succinctly generate eight test cases that test
both two- and three-stage registered incrementers with small, large, overflow, and random input
values. We use another helper function (named mk_test_case_table) which is provided by the
PyMTL3 framework to create a test case table. A test case table compactly represents a set of test
cases. Each row corresponds to a test case, and the first column is always the name of the test case.
The remaining columns correspond to the test parameters. The first row of the test case table is
always a special “header string” that specifies the name of each test parameter. In this example,
there are two test parameters: the number of stages (nstages) and the test inputs (inputs). Notice
how we use the sample function from the standard Python random module to generate a random
sequence of input values. The mk_test_case_table creates a data structure suitable for passing
into pytest.mark.parametrize. For technical reasons, we need to use the ** operator to pass this
data structure into pytest.mark.parametrize, as shown on line 50. The test function on lines 51–55
includes a test_params argument that will contain the test parameters corresponding to one row of
the test case table. On lines 52–53, we read these test parameters, and then on lines 54–55 we use the
run_test_vector_sim and the mk_test_vector_table helper functions to actually run a test.

On lines 61–64, we use pytest.mark.parametrize without a test case table to succinctly generate six
test cases that test our multi-stage registered incrementer with one to six stages and random input
values. As mentioned above, pytest.mark.parametrize takes two arguments: a string containing
the names of arguments for the test case function (i.e., "n") and a list of values to use for those
arguments (i.e., [1,2,3,4,5,6]). The pytest framework generates a separate test case for each value
of n and calls the test_random function with that value of n. Our mk_test_vector_table helper
function enables us to make test vector tables from random input values for any number of stages.

Let’s run all of the test cases for our multi-stage registered incrementer.

53

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # RegincrNstage_test
3 #===
4

5 import collections
6 import pytest
7

8 from random import sample, seed
9

10 from pymtl3 import *
11

12 from pymtl3.stdlib.test_utils import run_test_vector_sim, mk_test_case_table
13 from ..RegIncrNstage import RegIncrNstage
14

15 # To ensure reproducible testing
16

17 seed(0xdeadbeef)
18

19 #---
20 # mk_test_vector_table
21 #---
22

23 def mk_test_vector_table(nstages, inputs):
24

25 inputs.extend([0]*nstages)
26

27 test_vector_table = [('in_ out*')]
28 last_results = collections.deque(['?']*nstages)
29 for input_ in inputs:
30 test_vector_table.append([input_, last_results.popleft()])
31 last_results.append(Bits8(input_ + nstages, trunc_int=True))
32

33 return test_vector_table
34

35 #---
36 # Parameterized Testing with Test Case Table
37 #---
38

39 test_case_table = mk_test_case_table([
40 ("nstages inputs "),
41 ["2stage_small", 2, [0x00, 0x03, 0x06]],
42 ["2stage_large", 2, [0xa0, 0xb3, 0xc6]],
43 ["2stage_overflow", 2, [0x00, 0xfe, 0xff]],
44 ["2stage_random", 2, sample(range(0xff),20)],
45 ["3stage_small", 3, [0x00, 0x03, 0x06]],
46 ["3stage_large", 3, [0xa0, 0xb3, 0xc6]],
47 ["3stage_overflow", 3, [0x00, 0xfe, 0xff]],
48 ["3stage_random", 3, sample(range(0xff),20)],
49])
50 @pytest.mark.parametrize(**test_case_table)
51 def test(test_params, cmdline_opts):
52 nstages = test_params.nstages
53 inputs = test_params.inputs
54 run_test_vector_sim(RegIncrNstage(nstages),
55 mk_test_vector_table(nstages, inputs), cmdline_opts)
56

57 #---
58 # Parameterized Testing of With nstages = [1, 2, 3, 4, 5, 6]
59 #---
60

61 @pytest.mark.parametrize("n", [1, 2, 3, 4, 5, 6])
62 def test_random(n, cmdline_opts):
63 run_test_vector_sim(RegIncrNstage(p_nstages=n),
64 mk_test_vector_table(n, sample(range(0xff),20)), cmdline_opts)

Figure 35: Unit Test Script for Parameterized Registered Incrementer – A unit test for the parameterized
registered incrementer shown in Figure 33.

54

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

========================== test session starts ===========================
...
collected 14 items

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_small] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_large] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_overflow] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[2stage_random] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_small] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_large] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_overflow] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test[3stage_random] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[1] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[2] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[3] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[4] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[5] PASSED

../tut3_verilog/regincr/test/RegIncrNstage_test.py::test_random[6] PASSED

======================= 14 passed in 0.17 seconds ========================

Figure 36: pytest Parameterized Output – Each line corresponds to one test case. Test cases generated using
pytest.mark.parametrize use square brackets to denote each generated test case.

% cd ${TUTROOT}/build
% pytest ../tut3_pymtl/regincr/test/RegIncrNstage_test.py -v

The output should look similar to what is shown in Figure 36. Notice how the pytest framework
names the generated test cases. When using a test case table, the pytest framework puts the test case
name in square brackets after the test function name (e.g., test[2stage_small]). When not using a
test case table, the pytest framework uses the arguments to the test function in square brackets after
the test function name (e.g., test_random[2]).

As before, you can use the -k, -s, and --dump-vcd command line options to pytest to run a subset
of the test cases, display a line trace, and generate waveforms. For example, the following command
will run just the tests for the three-stage registered incrementer and also display a line trace.

% cd ${TUTROOT}/build
% pytest ../tut3_pymtl/regincr/test/RegIncrNstage_test.py -k 3stage -sv

H To-Do On Your Own: Parameterize the input/output port bitwidth for the basic registered
incrementer in Figure 16. Set the default bitwidth to be eight so that the rest of our code
will still function correctly. Create a new test script named RegIncr_param_test.py that uses
pytest.mark.parameterize to test various bitwidths on random input values.

55

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

5. Sort Unit

The previous section introduces the key Verilog concepts and primitives that we will use to imple-
ment more complex RTL models including: declaring a port-based module interface; declaring in-
ternal state and wires using logic variables; declaring always @(posedge clk) concurrent blocks
to model logic that executes on every rising clock edge; declaring always @(*) concurrent blocks
to model combinational logic that executes one or more times within a clock cycle; and creating
PyMTL3 wrappers. In addition, the previous section also introduced how to visualize designs with
line tracing and waveforms, and how to verify designs with unit testing. In this section, we will
apply what we have learned to incrementally refine a simple sort unit from an initial FL model to an
RTL model. We will also learn how to use a simulator to evaluate a design. Most of the code for this
section is provided for you in the tut3_verilog/sort subdirectory.

5.1. FL Model of Sort Unit

We begin by designing an FL model of our target sort unit. Keep in mind that we will almost always
provide students with an appropriate FL model. Students will not need to develop their own FL models from
scratch! Recall that FL models implement the functionality but not the timing of the hardware target.
Figure 37 illustrates the FL model using a cloud diagram where the “clouds” abstractly represent how
logic interacts with ports and child models. Our sort unit will have four input ports for the values
we want to sort and four output ports for the sorted values; all ports should used parameterized
bitwidths. The sort unit should sort the values on the in_ ports such that out[0] has the smallest
value, out[1] has the second smallest value, and so on. Input/output valid bits indicate when the
input/output values are valid.

Figure 38 shows how to implement an FL model for the sort unit in PyMTL3. On lines 17 and 20, we
use Python list comprehensions to create lists of four input and output ports. On lines 32 and 36, we
use the standard Python map function to easily convert all input/output values into strings for line
tracing. Notice how our line tracing code checks the input/output valid bit, and if the input/output
is invalid then we clear the corresponding string to all spaces. This means the line trace will show
spaces when the input/output values are invalid, but the line trace is still always a fixed width to
ensure the columns stay aligned. We generally use this idea of displaying spaces in the line trace
when “nothing is happening”; this makes it easy to see true activity in the line trace.

The update_ff concurrent block on lines 22–26 defines the actual functional-level behavior. There
are many kinds of FL models, and here we create an FL model by using RTL interfaces but “magic”
sorting. The update concurrent block in our sort unit FL model uses the standard Python sorted
function and then uses a loop to write the sorted values to the output ports. The valid bit from the
in_val port is written directly to the out_val port.

in_[0]
n

sort

n

n

n

n

n

n

n

in_[1]

in_[2]

in_[3]

out[0]

out[1]

out[2]

out[3]

in_val out_val
Figure 37: Cloud Diagram for Sort Unit FL
Model – Cloud diagrams use “clouds” to ab-
stractly represent logic without worry about the
actual implementation details. The sort unit
FL model takes four input values and sorts
them such that the out[0] port has the small-
est value and the out[3] port has the largest
value. Input/output valid bits indicate when the
input/output values are valid.

56

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # Sort Unit FL Model
3 #===
4 # Models the functional behavior of the target hardware but not the
5 # timing.
6

7 from copy import deepcopy
8 from pymtl3 import *
9

10 class SortUnitFL(Component):
11

12 # Constructor
13

14 def construct(s, p_nbits=8):
15

16 s.in_val = InPort ()
17 s.in_ = [InPort (p_nbits) for _ in range(4)]
18

19 s.out_val = OutPort()
20 s.out = [OutPort(p_nbits) for _ in range(4)]
21

22 @update_ff
23 def block():
24 s.out_val <<= s.in_val
25 for i, v in enumerate(sorted(s.in_)):
26 s.out[i] <<= v
27

28 # Line tracing
29

30 def line_trace(s):
31

32 in_str = '{' + ','.join(map(str,s.in_)) + '}'
33 if not s.in_val:
34 in_str = ' '*len(in_str)
35

36 out_str = '{' + ','.join(map(str,s.out)) + '}'
37 if not s.out_val:
38 out_str = ' '*len(out_str)
39

40 return f"{in_str}|{out_str}"

Figure 38: Sort Unit FL Model – FL model of four-element sort unit corresponding to Figure 37.

Notice that although this model in no way attempts to capture any timing of the hardware target, it is
still a “single-cycle” model. This is due to the PyMTL3 semantics of update_ff concurrent blocks and
non-blocking assignments, and this is why we show input registers in the cloud diagram in Figure 37.
Although it is also possible to implement FL models using update concurrent blocks, we have found
using update_ff concurrent blocks to be significantly easier. Using update concurrent blocks means
the block can be called multiple times in a cycle, increases the likelihood of creating combinational
loops when composing FL models, and complicates incrementally refining an FL model into an RTL
model.

We do not explicitly handle resetting the valid bit, but we instead rely on the PyMTL3 framework,
which guarantees that signals are reset to zero by default. Leveraging this guarantee simplifies our
FL models, but keep in mind that RTL models must still explicitly handle resetting state.

57

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

The PyMTL3 model is in SortUnitFL.py and the corresponding test script is in SortUnitFL_test.py.
This test script uses test vector tables similar in spirit to the unit testing for the registered incrementer
in Figure 31. The test script for SortUnitFL includes a variety of directed and random test cases. Note
that we usually try to ensure that the very first test case is always the simplest possible test case we
can imagine. For this model, our first test case simply sorts a single set of four input values. You can
run all of the tests and display the line trace for the basic test case as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/sort/test/SortUnitFL_test.py -v
% pytest ../tut3_verilog/sort/test/SortUnitFL_test.py -k test_basic -s

Once we have implemented a FL model, we can then use this model to enable early verification
work. We can write and check tests using the FL model, and then gradually these same tests can be
used with the RTL model. Using the FL model to write tests also ensures if the RTL model fails a test,
it is more likely due to the RTL implementation itself as opposed to an incorrect test case.

H To-Do On Your Own: Add another directed test case that specifically tests for when the inputs are
already sorted in increasing and then decreasing order. Add another random test case for a sort
unit with 12-bit input/output values.

5.2. Flat RTL Model of Sort Unit

Now that we have a behavioral FL model, we can develop an RTL model. Recall that RTL models are
cycle-accurate, resource-accurate, and bit-accurate representations of hardware. Although RTL models
are usually more tedious to construct, they are also the most accurate with respect to the target
hardware. Figure 39 illustrates the RTL model using a block diagram. Each min/max unit compares
its inputs and sends the smaller value to the top output port and the larger value to the bottom
output. This specific implementation is pipelined into three stages, such that the critical path should
be through a single min/max unit. Input and output valid signals indicate when the input and
output elements are valid. We are essentially implementing a pipelined bitonic sorting network.

Notice that we register the inputs but we do not register the outputs. In other words, we register
the inputs as soon as possible, but there is almost a full cycle’s worth of work before the outputs are
stable. When working with larger blocks we usually need to decide whether to use registered inputs
or registered outputs, and it is important that we adopt a uniform policy. When some blocks use
registered inputs and others use registered outputs, composing them can create either long critical
paths or “dead cycles” where very little work happens beyond simply transferring data. In this

in0
n

in1
n

in2
n

in3
n

min
max

min
max

min
max

min
max

min
max

n

n

n

n

out0

out1

out2

out3

in_val out_val
Stage S1 Stage S2 Stage S3

Figure 39: Block Diagram for Sort
Unit RTL Model – The RTL model
implements a three-stage pipelined,
bitonic sorting network.

58

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module tut3_verilog_sort_SortUnitFlat
2 #(
3 parameter p_nbits = 1
4)(
5 input logic clk,
6 input logic reset,
7

8 input logic in_val,
9 input logic [p_nbits-1:0] in0,

10 input logic [p_nbits-1:0] in1,
11 input logic [p_nbits-1:0] in2,
12 input logic [p_nbits-1:0] in3,
13

14 output logic out_val,
15 output logic [p_nbits-1:0] out0,
16 output logic [p_nbits-1:0] out1,
17 output logic [p_nbits-1:0] out2,
18 output logic [p_nbits-1:0] out3
19);

Figure 40: Interface for the Four-Element Sorter
– The interface corresponds to the diagram in Fig-
ure 39 and is parameterized by the bitwidth of each
element.

course, we will adopt the general policy of using registered inputs for larger blocks. As long as all
modules roughly adhere to this policy then we can focus on the critical path of each larger module
in isolation and be confident that composing these blocks should not cause significant timing issues.

Figure 40 illustrates the Verilog code that describes the interface for the sort unit. Notice how we
have parameterized the interface by the bitwidth of each element. Lines 2–4 declare a parameter
named p_nbits and give it a default value of one bit. We use this parameter when declaring the
bitwidth of the input and output ports, and we will also use this parameter in the implementation.

Figure 41 shows how to implement a flat RTL model for the sort unit in Verilog. We say this model
is “flat” because it does not instantiate any additional child models. For simplicity, only the first
pipeline stage of the sort unit RTL model is shown. We cleanly separate the sequential logic (modeled
with always_comb blocks) from the combinational logic (modeled with always_ff blocks). We use
comments and explicit suffixes to make it clear what pipeline stage we are modeling.

Since RTL models are meant to model real hardware, we must explicitly reset state. Line 31 uses
the reset signal to reset the valid bit register to zero in the first stage of the pipeline. Lines 36–47
correspond to the first stage in Figure 39 with two min/max units.

The RTL model is in SortUnitFlat.v, the PyMTL3 wrapper is in SortUnitFlat.py, and the corre-
sponding test script is in SortUnitFlat_test.py. The test script includes four directed tests and one
random test. Take a closer look at this test script before continuing. Notice how the test script is
able to import a helper function (mk_test_vector_table) from SortUnitFL_test.py. This ability to
share test vectors, cases, and/or harnesses across many different test scripts is a significant benefit of
the pytest framework. You can run all of the tests and display the line trace for the basic test case as
follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/sort/test/SortUnitFlat_test.py -v
% pytest ../tut3_verilog/sort/test/SortUnitFlat_test.py -k test_basic -s

The line trace for the sort unit RTL model is shown in Figure 42. Cycle 1 and cycle 2 are during
the reset phase. Cycle 3 doesn’t have a valid input. On cycle 4, there is a valid set of four input

59

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //--
2 // Stage S0->S1 pipeline registers
3 //--
4

5 logic val_S1;
6 logic [p_nbits-1:0] elm0_S1;
7 logic [p_nbits-1:0] elm1_S1;
8 logic [p_nbits-1:0] elm2_S1;
9 logic [p_nbits-1:0] elm3_S1;

10

11 always_ff @(posedge clk) begin
12 val_S1 <= (reset) ? 0 : in_val;
13 elm0_S1 <= in0;
14 elm1_S1 <= in1;
15 elm2_S1 <= in2;
16 elm3_S1 <= in3;
17 end
18

19 //--
20 // Stage S1 combinational logic
21 //--
22 // Note that we explicitly catch the case where the elements contain
23 // X's and propagate X's appropriately. We would not need to do this if
24 // we used a continuous assignment statement with a ternary conditional
25 // operator.
26

27 logic [p_nbits-1:0] elm0_next_S1;
28 logic [p_nbits-1:0] elm1_next_S1;
29 logic [p_nbits-1:0] elm2_next_S1;
30 logic [p_nbits-1:0] elm3_next_S1;
31

32 always_comb begin
33

34 // Sort elms 0 and 1
35

36 if (elm0_S1 <= elm1_S1) begin
37 elm0_next_S1 = elm0_S1;
38 elm1_next_S1 = elm1_S1;
39 end
40 else if (elm0_S1 > elm1_S1) begin
41 elm0_next_S1 = elm1_S1;
42 elm1_next_S1 = elm0_S1;
43 end
44 else begin
45 elm0_next_S1 = 'x;
46 elm1_next_S1 = 'x;
47 end
48

49 // Sort elms 2 and 3
50

51 if (elm2_S1 <= elm3_S1) begin
52 elm2_next_S1 = elm2_S1;
53 elm3_next_S1 = elm3_S1;
54 end
55 else if (elm2_S1 > elm3_S1) begin
56 elm2_next_S1 = elm3_S1;
57 elm3_next_S1 = elm2_S1;
58 end
59 else begin
60 elm2_next_S1 = 'x;
61 elm3_next_S1 = 'x;
62 end
63

64 end

Figure 41: First Stage of the Flat Sorter Implementation – First pipeline stage of the sorter using a flat imple-
mentation corresponding to the diagram in Figure 39.

60

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

cycle input ports stage S1 stage S2 stage S3 output ports

2: | | | |
3: {04,02,03,01}| | | |
4: |{04,02,03,01}| | |
5: | |{02,04,01,03}| |
6: | | |{01,03,02,04}|{01,02,03,04}
7: | | | |

Figure 42: Line Trace Output for Sort Unit RTL Model – This line trace is for the test_basic test case and is
annotated to show what each column corresponds to in the model. Each line corresponds to one (and only one!)
cycle, and the fixed-width columns correspond to either the state at the beginning of the corresponding cycle
or the output of combinational logic during that cycle. If the valid bit is not set, then the corresponding list of
values is not shown.

values available on the input ports, and on cycle 5, we can see that this set of four values is now
in the first set of pipeline registers. Recall that our line trace shows the state at the beginning of
the corresponding cycle. During cycle 5, pipeline stage S1 swaps elements 0 and 1, and also swaps
elements 2 and 3. We can see the result of these swaps by looking at the four values on cycle 5 at the
beginning of pipeline stage S2. During cycle 6, pipeline stage S2 swaps elements 0 and 2, and also
swaps elements 1 and 3. During cycle 7, pipeline stage S1 swaps elements 1 and 2 before writing the
results to the output ports.

H To-Do On Your Own: Make a copy of the sort unit implementation file so you can put things
back to the way they were when you are finished. The sort unit currently sorts the four input
numbers from smallest to largest. Change to the sort unit implementation so it sorts the numbers
from largest to smallest. Recompile and rerun the unit test and verify that the tests are no longer
passing. Modify the tests so that they correctly capture the new expected behavior. You might
want to make use of the optional reverse argument to the standard Python sorted function.

% cd ${TUTROOT}/build
% python
>>> sorted([3, 1, 7, 5])
[1, 3, 5, 7]
>>> sorted([3, 1, 7, 5], reverse=True)
[7, 5, 3, 1]

5.3. Structural RTL Model of Sort Unit

The flat implementation in SortUnitFlat.v is complex and monolithic and it fails to really exploit
the structure inherent in the sort unit. We can use modularity and hierarchy to divide complicated
designs into smaller more manageable units; these smaller units are easier to design and can be tested
independently before integrating them into larger, more complicated designs.

Figure 43 shows how to implement a structural RTL model for the sort unit in Verilog. We say this
model is “structural” because it only instantiates other child models. For simplicity, only the first
pipeline stage of the sort unit RTL model is shown. Our design instantiates three kinds of modules:
vc_ResetReg, vc_Reg, and tut3_verilog_sort_MinMaxUnit. The register modules are provided in
the VC library. Notice how we still use the parameter p_nbits to declare various internal variables,
but in addition, we use this parameter when instantiating parameterized sub-modules. For example,
the vc_Reg module is parameterized, and this allows us to easily create pipeline registers of any

61

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //--
2 // Stage S0->S1 pipeline registers
3 //--
4

5 logic val_S1;
6

7 vc_ResetReg#(1) val_S0S1
8 (
9 .clk (clk),

10 .reset (reset),
11 .d (in_val),
12 .q (val_S1)
13);
14

15 // This is probably the only place where it might be acceptable to use
16 // positional port binding since (a) it is so common and (b) there are
17 // very few ports to bind.
18

19 logic [p_nbits-1:0] elm0_S1;
20 logic [p_nbits-1:0] elm1_S1;
21 logic [p_nbits-1:0] elm2_S1;
22 logic [p_nbits-1:0] elm3_S1;
23

24 vc_Reg#(p_nbits) elm0_S0S1(clk, elm0_S1, in0);
25 vc_Reg#(p_nbits) elm1_S0S1(clk, elm1_S1, in1);
26 vc_Reg#(p_nbits) elm2_S0S1(clk, elm2_S1, in2);
27 vc_Reg#(p_nbits) elm3_S0S1(clk, elm3_S1, in3);
28

29 //--
30 // Stage S1 combinational logic
31 //--
32

33 logic [p_nbits-1:0] mmuA_out_min_S1;
34 logic [p_nbits-1:0] mmuA_out_max_S1;
35

36 tut3_verilog_sort_MinMaxUnit#(p_nbits) mmuA_S1
37 (
38 .in0 (elm0_S1),
39 .in1 (elm1_S1),
40 .out_min (mmuA_out_min_S1),
41 .out_max (mmuA_out_max_S1)
42);
43

44 logic [p_nbits-1:0] mmuB_out_min_S1;
45 logic [p_nbits-1:0] mmuB_out_max_S1;
46

47 tut3_verilog_sort_MinMaxUnit#(p_nbits) mmuB_S1
48 (
49 .in0 (elm2_S1),
50 .in1 (elm3_S1),
51 .out_min (mmuB_out_min_S1),
52 .out_max (mmuB_out_max_S1)
53);

Figure 43: First Stage of the Structural Sorter Implementation – First pipeline stage of the sorter using a
structural implementation corresponding to the diagram in Figure 39.

62

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

bitwidth. Even though we are using a structural implementation strategy, we still cleanly separate
the sequential logic from the combinational logic. We still use comments and explicit suffixes to make
it clear what pipeline stage we are modeling.

The RTL model is in SortUnitStruct.v, the PyMTL3 wrapper is in SortUnitStruct.py, and the
corresponding test script is in SortUnitStruct_test.py. The test script includes four directed tests
and one random test. Take a closer look at this test script before continuing. You can run all of the
tests and display the line trace for the basic test case as follows:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/sort/test/SortUnitStruct_test.py -v
% pytest ../tut3_verilog/sort/test/SortUnitStruct_test.py -k test_basic -s

The structural implementation is incomplete because the actual implementation of the min/max unit
in MinMaxUnit.v is not finished. You should go ahead and implement the min/max unit, and then
as always you should write a unit test to verify the functionality of your MinMax unit! Add some line
tracing for the min/max unit. You should have enough experience based on the previous sections
to be able to create a unit test from scratch and run it using pytest. You should name the new test
script MinMaxUnit_test.py. You can use the registered incrementer model as an example for both
implementing the min/max unit and for writing the corresponding test script. Note that the line
trace for the sort unit structural RTL model should be the same as in Figure 42, since these are really
just two different implementations of the sort unit RTL.

5.4. Evaluating the Sort Unit Using a Simulator

So far we have focused on implementing and verifying our design, but our ultimate goal is to actually
evaluate a design. We do not use unit tests for evaluation; instead we use a simulator script which has
been designed for quantitatively measuring the cycle-level performance of a specific implementation
on a given input dataset. For this tutorial, we will create a simulator to compare the various models
of our sort unit when executing various input datasets.

The simulator script is in sort-sim. A simplified version of the main function in the script is shown
in Figure 44. The simulator script is responsible for handling command line arguments, creating
input datasets, instantiating and elaborating the design, ticking the simulator until the evaluation is
finished, and reporting various statistics. Lines 8–10 create an input pattern based on the --input
command line parameter. Simulator scripts can use standard Python to flexible generate a wide va-
riety of different input patterns. Lines 16–19 define a standard Python dictionary that maps strings
to model types. Then on line 21, we can simply use this dictionary to instantiate the correct model
based on the --impl command line option. The simulator will take care of conditionally generat-
ing waveforms based on the --dump-vcd command line option by crafting a dictionary to pass to a
stdlib test utility function. Line 33 turn on line tracing based on the --trace command line option.
The main simulator loop on lines 40–59 iterates through the input dataset and sets the correspond-
ing input ports. The simulator loops keeps a counter to track how many valid outputs have been
received, and thus to determine when to stop the simulation. A key difference between a simulator
and a unit test is that the simulator should also report various statistics that help us evaluate our
design. The --stats command line option will display the number of cycles to finish processing the
input dataset, and the average number of cycles per sort. You can run the simulator script for the
two sort unit RTL models as follows:

% cd ${TUTROOT}/build
% ../tut3_verilog/sort/sort-sim --stats --impl rtl-flat

63

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 opts = parse_cmdline()
2

3 # Create input datasets
4

5 ninputs = 100
6 inputs = []
7

8 if opts.input == "random":
9 for i in range(ninputs):

10 inputs.append([randint(0,0xff) for _ in range(4)])
11

12 ...
13

14 # Instantiate and elaborate the design
15

16 model_impl_dict = {
17 'rtl-flat' : SortUnitFlatRTL,
18 'rtl-struct' : SortUnitStructRTL,
19 }
20

21 model = model_impl_dict[opts.impl]()
22

23 ...
24

25 unique_name = f"sort-{opts.impl}-{opts.input}"
26

27 cmdline_opts = {
28 'dump_vcd': f"{unique_name}" if opts.dump_vcd else '',
29 'test_verilog': 'zeros' if opts.translate else '',
30 }
31

32 model = config_model_with_cmdline_opts(model, cmdline_opts, duts=[])
33 model.apply(DefaultPassGroup(linetrace=opts.trace))
34

35 model.sim_reset()
36

37 # Tick simulator until evaluation is finished
38

39 counter = 0
40 while counter < ninputs:
41

42 if model.out_val:
43 counter += 1
44

45 if inputs:
46 model.in_val @= 1
47 for i,v in enumerate(inputs.pop()):
48 model.in_[i] @= v
49

50 else:
51 model.in_val @= 0
52 for i in range(4):
53 model.in_[i] @= 0
54

55 model.sim_eval_combinational()
56 if opts.trace:
57 model.print_line_trace()
58

59 model.sim_tick()
60

61 # Report various statistics
62

63 if opts.stats:
64 print("num_cycles = {}".format(sim.ncycles))
65 print("num_cycles_per_sort = {:1.2f}".format(sim.ncycles/(1.0*ninputs)))

Figure 44: Simplified Simulator Script for Sort Unit – The simulator script is responsible for handling com-
mand line arguments, creating input datasets, instantiating and elaborating the design, ticking the simulator
until the evaluation is finished, and reporting various statistics.

64

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

% ../tut3_verilog/sort/sort-sim --stats --impl rtl-struct

Not surprisingly, it should take one cycle on average since our RTL model is fully pipelined. The
number of cycles per sort is slightly greater than one due to pipeline startup overhead.

You can experiment with other input datasets like this:

% cd ${TUTROOT}/build
% ../tut3_verilog/sort/sort-sim --stats --impl rtl-flat --input random
% ../tut3_verilog/sort/sort-sim --stats --impl rtl-flat --input sorted-fwd
% ../tut3_verilog/sort/sort-sim --stats --impl rtl-flat --input sorted-rev

You can display a line trace and generate waveforms like this:

% cd ${TUTROOT}/build
% ../tut3_verilog/sort/sort-sim --stats --impl rtl-struct --trace --dump-vcd

Note that the simulator does absolutely no verification! If you have not actually completed the real
implementation of the min/max unit, the rtl-struct implementation will still run and actually the
simulator will report what looks to be reasonable performance results; even though the structural im-
plementation is not at all functionally correct. The take-away here is that you should not use a simulator
script for verification; your testing strategy should be comprehensive enough that once you get to
the evaluation you are confident that your design is fully functional.

H To-Do On Your Own: Add a fourth random input dataset where all of the input values are less
than 16. Add a new choice to the --input command line option corresponding to this new
input dataset. Use the simulator and line tracing to experiment with this new dataset on various
implementations of the sort unit.

6. Greatest Common Divisor

The previous section introduced the process of refining a design from an initial FL model to an RTL
model. In this section, we will apply what we have learned to study a more complicated hardware
unit that calculates the greatest common divisor (GCD) of two input operands. We will gain experi-
ence with latency-insensitive stream interfaces that implement a val/rdy microprotocol, unit testing
with stream sources/sinks, and using a control/datapath split to implement RTL models. The code
for this section is provided for you in the tut3_verilog/gcd subdirectory.

6.1. FL Model of GCD Unit

As before, we begin by designing an FL model of our target GCD unit. Keep in mind that we will almost
always provide students with an appropriate FL model. Students will not need to develop their own FL models
from scratch! Even so, it can be useful to understand how these FL models work. Figure 45 shows
a cloud diagram for the GCD unit FL model, and Figure 46 shows the approach we will use in our
RTL models based on Euclid’s algorithm. The GCD unit will take two 16-bit operands and produce
a 16-bit result. A key feature of the GCD unit is its use of latency-insensitive stream interfaces to
manage flow control for the requests and responses. The interface for the registered incrementer in
Section 4 included no extra control signals. A module that wants to use the registered incrementer
must explicitly handle the fact that the unit always takes exactly one cycle. The interface for the sort

65

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

istream_msg

istream_val

isream_rdy

32 16
ostream_msg

ostream_val

ostream_rdy
GCD

Figure 45: Functional-Level Implementation of GCD Unit – In-
put and output use latency-insensitive stream/rdy interfaces. The
input message includes two 16-bit operands; output message is an
16-bit result. Clock and reset signals are not shown.

def gcd(a, b):
while True:
if a < b:

a,b = b,a
elif b != 0:
a = a - b

else:
return a

Figure 46: Euclid’s GCD Algorithm – Iter-
atively subtract the smaller value from the
larger value until one of them is zero, at
which time the GCD is the non-zero value.
This is executable Python code.

unit in Section 5 included an extra valid signal. A module that wants to use the sort unit could be
carefully constructed so as to be agnostic to the latency of the sort unit; this would enable flexibly
trying out different sorting algorithms each with different latencies by using the valid signal to know
when the result is valid. One issue with including just a valid signal is that there is no way to know if
the sort unit is busy, and there is no way to tell the sort unit that we are not ready to accept the result.
In other words, there is no provision for back pressure. As shown in Figure 45, our GCD design will
use a fully latency-insensitive stream interface implemented through a val/rdy microprotocol which
involves an extra valid signal and ready signal. These signals will allow additional flexibility: the
GCD unit can indicate it is not ready to accept a new GCD input, and another module can indicate
that it is not ready to accept the GCD output.

Assume we have a producer that wishes to send a message to a consumer using the val/rdy micro-
protocol. At the beginning of the cycle, the producer determines if it has a new message to send to
the consumer. If so, it sets the message bits appropriately and then sets the valid signal high. Also
at the beginning of the cycle, the consumer determines if it is able to accept a new message from the
producer. If so, it sets the ready signal high. At the end of the cycle, the producer and consumer can
independently AND the valid and ready signals together; if both signals are true then the message
is considered to have been sent from the producer to the consumer and both sides can update their
internal state appropriately. Otherwise, we will try again on the next cycle. To avoid long combina-
tional paths and/or combinational loops, we should avoid making the valid signal depend on the
ready signal or the ready signal depend on the valid signal. If you absolutely must, you can make
the ready signal depend on the valid signal (e.g., in an arbiter) but it is considered very bad practice
to make the valid signal depend on the ready signal. As long as you adhere to this val/rdy micro-
protocol, composing modules via the stream interfaces should not cause significant timing issues.

Based on the discussion so far, the benefit of a latency-insensitive stream interface should be obvious.
This interface will allow true black-box testing and will allow flexibly composing modules without
regards for the detailed timing properties of each module. For example, if we use the GCD unit in
a larger design we can later decide to try a different GCD implementation (with potentially a very
different latency), and the larger design should need no modifications! We will use these latency-
insensitive stream interfaces extensively throughout the course.

In Figure 45, we can see that we often use stream queue adapters to simplify designing FL models
that interact with stream interfaces. Figure 47 shows how to implement an FL model for the GCD unit
in PyMTL3. The actual work of the FL model takes place on line 40. We use the gcd function from

66

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # GCD Unit FL Model
3 #===
4

5 from math import gcd
6

7 from pymtl3 import *
8 from pymtl3.stdlib.stream.ifcs import IStreamIfc, OStreamIfc
9 from pymtl3.stdlib.stream import IStreamDeqAdapterFL, OStreamEnqAdapterFL

10

11 #---
12 # GcdUnitFL
13 #---
14

15 class GcdUnitFL(Component):
16

17 # Constructor
18

19 def construct(s):
20

21 # Interface
22

23 s.istream = IStreamIfc(Bits32)
24 s.ostream = OStreamIfc(Bits16)
25

26 # Queue Adapters
27

28 s.istream_q = IStreamDeqAdapterFL(Bits32)
29 s.ostream_q = OStreamEnqAdapterFL(Bits16)
30

31 s.istream //= s.istream_q.istream
32 s.ostream //= s.ostream_q.ostream
33

34 # FL block
35

36 @update_once
37 def block():
38 if s.istream_q.deq.rdy() and s.ostream_q.enq.rdy():
39 msg = s.istream_q.deq()
40 s.ostream_q.enq(gcd(msg[16:32], msg[0:16]))
41

42 # Line tracing
43

44 def line_trace(s):
45 return f"{s.istream}(){s.ostream}"

Figure 47: Gcd Unit FL Model – FL model of greatest-common divisor unit corresponding to Figure 45.

the standard Python math module to calculate the GCD of the two input operands. This example
illustrates two important PyMTL3 features: interfaces and interface adapters.

Lines 23–24 of Figure 47 use interfaces instead of ports as the interface for our GCD unit. An RTL
interface is simply a collection of logically related ports (potentially in different directions), which
can then be connected in a single statement. For our GCD unit, we are using the IStreamIfc and
OStreamIfc from stdlib.stream which implement the aforementioned val/rdy microprotocol. This
RTL interface groups together the valid, ready, and message ports.

67

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #---
2 # TestHarness
3 #---
4

5 class TestHarness(Component):
6

7 def construct(s, gcd):
8

9 # Instantiate models
10

11 s.src = StreamSourceFL(Bits32)
12 s.sink = StreamSinkFL(Bits16)
13 s.gcd = gcd
14

15 # Connect
16

17 s.src.ostream //= s.gcd.istream
18 s.gcd.ostream //= s.sink.istream
19

20 def done(s):
21 return s.src.done() and s.sink.done()
22

23 def line_trace(s):
24 return s.src.line_trace() + " > " + \
25 s.gcd.line_trace() + " > " + \
26 s.sink.line_trace()

Figure 48: Excerpt from Unit Test Script for GCD Unit FL Model – Latency insensitive interfaces enable us to
use generic sources and sinks for testing.

Lines 28–29 of Figure 47 instantiate two stream queue adapters provided by the PyMTL3 standard
library. Interface adapters take the data type as constructor arguments, and then enable the logic
within the component to interact with these ports through methods. In this example, we are using
IStreamDeqAdapterFL and OStreamEnqAdapterFL from stdlib.stream. A IStreamDeqAdapterFL
connects to an IStreamIfc and provides a standard Python deq method for the FL model to use. A
OStreamEnqAdapterFL connects to an OStreamIfc and provides a standard Python enq method for
the FL model to use. We also make use of the update_once blocks that are meant to be only called
once in each clock cycle. update_once blocks are supposed to call methods and modify signals using
@= blocking assignments. The update_once block first invokes deq.rdy() method to check if the
input stream queue adapter has a message to pop and enq.rdy() to check if the output stream queue
adapter has available slots to accept a message. If both are ready, we can dequeue a message from the
input stream queue adapter (line 39) and enqueue the result using the output stream queue adapter
(line 40). These queue adapters significantly simplify implementing FL models, since we only need
to implement the functionality using method calls without explicitly managing the low-level RTL
ports.

The PyMTL3 FL model is in GcdUnitFL.py and the corresponding test script is in GcdUnitFL_test.py
in the test subdirectory. One of the nice features of using a latency-insensitive stream interface
is that it enables us to use a common framework for sending messages into the device-under-test
(DUT) and then verifying that the correct messages come out of the DUT. stdlib.stream includes
the StreamSourceFL and StreamSinkFL models for this purpose. Figure 48 illustrates the test harness
included in the GCD unit test script. We instantiate a test source and attach it to the GCD unit’s input
stream interface, and then we instantiate a test sink and attach it to the GCD unit’s output stream

68

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

GCD Unit
msg

val

rdy

msg

val

rdyStream
Source

Stream
Sink

Figure 49: Verifying GCD Using Stream Sources and Sinks – Parameterized stream sources send messages
over a stream interface, and parameterized stream sinks receive messages over a stream interface and compare
each message to a previously specified reference message.

interface. Figure 49 illustrates the overall connectivity in the test harness. Notice how interfaces en-
able us to connect three ports with a single connect statement (lines 17–18). The test source includes
the ability to delay the messages going into the DUT and the test sink includes the ability to apply
back-pressure to the DUT. More specifically we can set an initial delay (i.e., how many cycles to delay
a message after reset) and an interval delay (i.e., how many cycles after receiving a message to delay
the next message). By using various combinations of these delays we can more robustly ensure that
our flow-control logic is working correctly. Note that these test cases illustrate both directed black-box
and randomized black-box testing strategies. The test cases are black-box since they do not depend on
the timing within the DUT.

A common testing strategy is for the very first test-case to use directed source/sink messages with
no delays. For example, the first test case for our GCD unit FL model creates a couple of source
messages along with the correct sink messages. We can run just this test case like this:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/gcd/test/GcdUnitFL_test.py -k basic_0x0 -s

Once we know that our design works without any delays, we continue to use directed source/sink
messages but then add source delays and sink delays. For example, the second test case for our GCD
unit FL model sets the test source to delay the input messages by five cycles. We can also try using
no delays on the source, but adding delays to the sink, and finally add delays to both the source and
the sink. If we see that our design passes the tests with no delays but fails with delays this is a good
indicator that there is an issue with our val/rdy logic.

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/gcd/test/GcdUnitFL_test.py -k basic -s

After additional directed testing with delays, we can start to use randomly generated source/sink
messages for even greater test coverage.

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/gcd/test/GcdUnitFL_test.py -k random -s

Figure 50 illustrates a portion of the line trace for the randomized testing. Notice that the line trace
tells something about what is going on with each val/rdy interface. A period (.) indicates that the
interface is not ready but also not valid; a hash (#) indicates that the interface is valid but not ready;
a space indicates that the interface is ready but not valid. The actual message is displayed when it is
transferred from the producer to the consumer. We can see a message being sent from the test source
into the GCD unit on cycle 7 and although the result is valid on cycle 8 the test sink is not ready until
cycle 13 to accept the result. On cycles 8–10 the test source does not have a new message to send to
the GCD unit. On cycle 12 it does indeed have a new message, but the GCD unit is not ready because

69

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

cycle src A B out sink

7: 09cb:da5d > 09cb:da5d()# > #
8: > ()# > #
9: > ()# > #

10: > ()# > #
11: f073:da28 > f073:da28()# > #
12: . > . ()# > #
13: . > . ()0001 > 0001
14: . > . ()# > #
15: c159:ee21 > c159:ee21()# > #
16: . > . ()# > #
17: . > . ()# > #
18: . > . ()# > #
19: # > # ()# > #
20: # > # ()# > #
21: # > # ()# > #
22: # > # ()# > #

Figure 50: Line Trace for GCD Unit FL Model – Var-
ious characters indicate the status of the val/rdy in-
terface: . = val/rdy interface is not valid and not
ready; # = val/rdy interface is valid but not ready;
space = val/rdy interface is not valid and ready;
message is shown when it is actually transferred
across interface.

it is still waiting on the test sink. Finally, on cycle 13 the test sink is ready and the GCD unit is able
to send the result and accept a new input.

H To-Do On Your Own: Write a new test case for the GCD unit FL model. First create a new list
of messages named coprime_msgs which includes a few sets of relatively prime numbers. Two
numbers are relatively prime (or coprime) if their greatest common divisor is one. Then add two
new test cases to the test case table. Both test cases should use coprime_msgs. The first new test
case should have no delays, and the second new test case should have delays.

6.2. RTL Model of GCD Unit

When implementing more complicated RTL models, we will often divide the design into two parts:
the datapath and the control unit. The datapath contains the arithmetic operators, muxes, and regis-
ters that work on the data, while the control unit is responsible for controlling these components to
achieve the desired functionality. The control unit sends control signals to the datapath and the data-
path sends status signals back to the control unit. Figure 51 illustrates the datapath for the GCD unit
and Figure 52 illustrates the corresponding finite-state-machine (FSM) control unit. The Verilog code
for the datapath, control unit, and the top-level module which composes the datapath and control
unit is in GcdUnit.v.

Take a look at the datapath interface which is also shown in Figure 53. We cleanly identify the data
signals, control signals, and status signals. Figure 53 also shows the first two datapath components,
but take a look in GcdUnit.v to see the entire datapath. Notice how we use a very structural imple-
mentation that exactly matches the datapath diagram in Figure 51. We leverage several modules from
the VC library (e.g., vc_Mux2, vc_ZeroComparator, vc_Subtractor). You should use a similar struc-
tural approach when building your own datapaths for this course. For a net that moves data from
left to right in the datapath diagram, we usually declare a dedicated wire right before the module
instance (e.g., a_mux_out and a_reg_out). For a net that moves data from right to left in the datapath
diagram, we need to declare a dedicated wire right before it is used as an input (e.g., b_reg_out and
b_sub_out).

Take a look at the control unit and notice the stylized way we write FSMs. An FSM-based control
unit should have three parts: a sequential concurrent block for the state, a combinational concurrent
block for the state transitions, and a combinational concurrent block for the state outputs. We often

70

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

is_a_lt_b

b_reg

zero?

re
q
_m
sg
.are
q
_m
sg

re
sp
_m
sgre
q
_m
sg
.b

less
than?

a_mux_sel

sub
a_reg

b_reg
_en

a_reg_en

is_b_zero

b_mux
_sel

Figure 51: Datapath Diagram for GCD – Datapath includes
two state registers and required muxing and arithmetic units
to iteratively implement Euclid’s algorithm.

IDLE

CALC

DONE!resp_rdy

!req_val

req_val

resp_rdy

a < b
/swap

b != 0
/sub

b == 0

Figure 52: FSM Diagram for GCD – A hy-
brid Moore/Mealy FSM for controlling the
datapath in Figure 51. Mealy transitions in
the calc state determine whether to swap or
subtract.

use case statements to compactly represent the state transitions and outputs. Figure 54 shows the
portion of the FSM responsible for setting the output signals. We use a Verilog function or a Verilog
task to set all of the control signals in a single line. In general, you should prefer Verilog functions
vs. Verilog tasks since Verilog tasks can include non-synthesizable constructs while Verilog functions
are much more likely to be synthesizable. Essentially, we have created a “control signal table” in our
Verilog code which exactly matches what we might draw on a piece of paper. There is one row for
each state or Mealy transition and one column for each control signal. These compact control signal
tables simplify coding complicated FSMs (or indeed other kinds of control logic) and can enable a
designer to quickly catch bugs (e.g., are the enable signals always set to either zero or one?).

Figure 55 shows a portion of the top-level module that connects the datapath and control unit to-
gether. Lines 35 and 42 use the new implicit connection operator (.*) provided by SystemVerilog.
Using the implicit connection operator during module instantiation means to connect every port to a
signal with the same name. So these two lines take care of connecting all of the control and status sig-
nals. This is a powerful way to write more compact code which avoids connectivity bugs, especially
when connecting the datapath and control unit.

71

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module tut3_verilog_gcd_GcdUnitDpath
2 (
3 input logic clk,
4 input logic reset,
5

6 // Data signals
7

8 input logic [31:0] istream_msg,
9 output logic [15:0] ostream_msg,

10

11 // Control signals
12

13 input logic a_reg_en, // Enable for A register
14 input logic b_reg_en, // Enable for B register
15 input logic [1:0] a_mux_sel, // Sel for mux in front of A reg
16 input logic b_mux_sel, // sel for mux in front of B reg
17

18 // Status signals
19

20 output logic is_b_zero, // Output of zero comparator
21 output logic is_a_lt_b // Output of less-than comparator
22);
23

24 localparam c_nbits = 16;
25

26 // Split out the a and b operands
27

28 logic [c_nbits-1:0] istream_msg_a;
29 assign istream_msg_a = istream_msg[31:16];
30

31 logic [c_nbits-1:0] istream_msg_b;
32 assign istream_msg_b = istream_msg[15:0];
33

34 // A Mux
35

36 logic [c_nbits-1:0] b_reg_out;
37 logic [c_nbits-1:0] sub_out;
38 logic [c_nbits-1:0] a_mux_out;
39

40 vc_Mux3#(c_nbits) a_mux
41 (
42 .sel (a_mux_sel),
43 .in0 (istream_msg_a),
44 .in1 (b_reg_out),
45 .in2 (sub_out),
46 .out (a_mux_out)
47);
48

49 // A register
50

51 logic [c_nbits-1:0] a_reg_out;
52

53 vc_EnReg#(c_nbits) a_reg
54 (
55 .clk (clk),
56 .reset (reset),
57 .en (a_reg_en),
58 .d (a_mux_out),
59 .q (a_reg_out)
60);

Figure 53: Portion of GCD Datapath Unit – We use struct types to encapsulate both control and status sig-
nals and we use a preprocessor macro from the GCD message struct to determine how to size the datapath
components.

72

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 //--
2 // State Outputs
3 //--
4

5 localparam a_x = 2'dx;
6 localparam a_ld = 2'd0;
7 localparam a_b = 2'd1;
8 localparam a_sub = 2'd2;
9

10 localparam b_x = 1'dx;
11 localparam b_ld = 1'd0;
12 localparam b_a = 1'd1;
13

14 function void cs
15 (
16 input logic cs_istream_rdy,
17 input logic cs_ostream_val,
18 input logic [1:0] cs_a_mux_sel,
19 input logic cs_a_reg_en,
20 input logic cs_b_mux_sel,
21 input logic cs_b_reg_en
22);
23 begin
24 istream_rdy = cs_istream_rdy;
25 ostream_val = cs_ostream_val;
26 a_reg_en = cs_a_reg_en;
27 b_reg_en = cs_b_reg_en;
28 a_mux_sel = cs_a_mux_sel;
29 b_mux_sel = cs_b_mux_sel;
30 end
31 endfunction
32

33 // Labels for Mealy transistions
34

35 logic do_swap;
36 logic do_sub;
37

38 assign do_swap = is_a_lt_b;
39 assign do_sub = !is_b_zero;
40

41 // Set outputs using a control signal "table"
42

43 always_comb begin
44

45 set_cs(0, 0, a_x, 0, b_x, 0);
46 case (state_reg)
47 // recv send a mux a b mux b
48 // rdy val sel en sel en
49 STATE_IDLE: cs(1, 0, a_ld, 1, b_ld, 1);
50 STATE_CALC: if (do_swap) cs(0, 0, a_b, 1, b_a, 1);
51 else if (do_sub) cs(0, 0, a_sub, 1, b_x, 0);
52 STATE_DONE: cs(0, 1, a_x, 0, b_x, 0);
53 default cs('x, 'x, a_x, 'x, b_x, 'x);
54

55 endcase
56

57 end

Figure 54: Portion of GCD FSM-based Control Unit for State Outputs – We can use a task to create a “control
signal table” with one row per state or Mealy transition and one column per control signal. Local parameters
can help compactly encode various control signal values.

73

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 module tut3_verilog_gcd_GcdUnitRTL
2 (
3 input logic clk,
4 input logic reset,
5

6 input logic istream_val,
7 output logic istream_rdy,
8 input logic [31:0] istream_msg,
9

10 output logic ostream_val,
11 input logic ostream_rdy,
12 output logic [15:0] ostream_msg
13);
14

15 //--
16 // Connect Control Unit and Datapath
17 //--
18

19 // Control signals
20

21 logic a_reg_en;
22 logic b_reg_en;
23 logic [1:0] a_mux_sel;
24 logic b_mux_sel;
25

26 // Data signals
27

28 logic is_b_zero;
29 logic is_a_lt_b;
30

31 // Control unit
32

33 tut3_verilog_gcd_GcdUnitCtrl ctrl
34 (
35 .*
36);
37

38 // Datapath
39

40 tut3_verilog_gcd_GcdUnitDpath dpath
41 (
42 .*
43);
44

45 endmodule

Figure 55: Portion of GCD Top-Level Module – We use the new implicit connection operator (.*) to automati-
cally connect all of the control and status signals to both the control unit and datapath.

74

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

1 #===
2 # GCD Unit RTL Model
3 #===
4

5 from pymtl3 import *
6 from pymtl3.passes.backends.verilog import *
7 from pymtl3.stdlib.stream import IStreamIfc, OStreamIfc
8

9 class GcdUnit(VerilogPlaceholder, Component):
10 def construct(s):
11 s.istream = IStreamIfc(Bits32)
12 s.ostream = OStreamIfc(Bits16)

Figure 56: GCD Unit Wrapper – PyMTL3 wrapper for the Verilog RTL implementation of the gcd unit.

Figure 56 shows how we can use PyMTL3 to create a Python wrapper for the GCD unit. We can use
the PyMTL3 IStreamIfc and OStreamIfc interfaces which directly correspond to the val/rdy/msg
ports in the Verilog RTL. The test script is in GcdUnit_test.py. The RTL model is able use the exact
same test setup as the GCD unit FL model, even though the FL and RTL models all take different
amounts of time to calculate the GCD. This illustrates the power of using latency-insensitive stream
interfaces. We can run all of the tests and display the line trace for the basic test case with delays in
the test sink like this:

% cd ${TUTROOT}/build
% pytest ../tut3_verilog/gcd/test/GcdUnit_test.py -v
% pytest ../tut3_verilog/gcd/test/GcdUnit_test.py -sv -k basic_0x0

Figure 57 illustrates a portion of the line trace for the randomized testing. We use the line trace to
show the state of the A and B registers at the beginning of each cycle and use specific characters to
indicate which state we are in (i.e., I = idle, Cs = calc with swap, C- = calc with subtract, D = done).
We can see that the test source sends a new message into the GCD unit on cycle 296. The GCD unit
is in the idle state and transitions into the calc state. It does five subtractions and a final swap before
transitioning into the done state on cycle 304. The result is valid but the test sink is not ready, so the
GCD unit waits in the done state until cycle 310 when it is able to send the result to the test sink. On
cycle 311 the GCD unit accepts a new input message to work on. This is a great example of how an
effective line trace can enable you to quickly visualize how a design is actually working.

75

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

cycle src A B Areg Breg ST out sink

296: 002d00e1 > 00e1:002d(0002 0000 I) >
297: # > # (00e1 002d C-) >
298: # > # (00b4 002d C-) >
299: # > # (0087 002d C-) >
300: # > # (005a 002d C-) >
301: # > # (002d 002d C-). > .
302: # > # (0000 002d Cs) >
303: # > # (002d 0000 C) >
304: # > # (002d 0000 D)# > #
305: # > # (002d 0000 D)# > #
306: # > # (002d 0000 D)# > #
307: # > # (002d 0000 D)# > #
308: # > # (002d 0000 D)# > #
309: # > # (002d 0000 D)# > #
310: # > # (002d 0000 D)002d > 002d
311: 002200cc > 00cc:0022(002d 0000 I) >
312: # > # (00cc 0022 C-) >
313: # > # (00aa 0022 C-) >
314: # > # (0088 0022 C-) >

Figure 57: Line Trace for RTL Implementation
of GCD – State of A and B registers at the be-
ginning of the cycle is shown, along with the
current state of the FSM. I = idle, Cs = calc with
swap, C- = calc with subtract, D = done.

H To-Do On Your Own: Optimize the GCD implementation to improve the performance on the given
input datasets.

A first optimization would be to transition into the done state if either a or b are zero. If a is zero
and b is greater than zero, we will swap a and b and then end the calculation on the next cycle
anyways. You will need to carefully modify the datapath and control so that the response can
come from either the a or b register.

A second optimization would be to avoid the bubbles caused by the IDLE and DONE states.
First, add an edge from the CALC state directly back to the IDLE state when the calculation is
complete and the response interface is ready. You will need to carefully manage the response
valid bit. Second, add an edge from the CALC state back to the CALC state when the calculation
is complete, the response interface is ready, and the request interface is valid. These optimizations
should eliminate any bubbles and improve the performance of back-to-back GCD transactions.

A third optimization would be to perform a swap and subtraction in the same cycle. This will
require modifying both the datapath and the control unit, but should have a significant impact
on the overall performance.

76

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

6.3. Evaluating the GCD Unit using a Simulator

As with the previous section, we have provided a simulator for evaluating the performance of the
GCD implementation. In this case, we are focusing on a single implementation with two different
input datasets. You can run the simulator and look at the average number of cycles to compute a
GCD for each input dataset on the FL model like this:

% cd ${TUTROOT}/build
% ../tut3_verilog/gcd/gcd-sim --stats --impl fl --input small
% ../tut3_verilog/gcd/gcd-sim --stats --impl fl --input random

Not surprisingly since the FL model is just a functional-level model with no timing information, the
number of cycles per GCD transaction is always about one. You can run the simulator and look at
the average number of cycles to compute a GCD for each input dataset on the RTL model like this:

% cd ${TUTROOT}/build
% ../tut3_verilog/gcd/gcd-sim --stats --impl rtl --input small
% ../tut3_verilog/gcd/gcd-sim --stats --impl rtl --input random

Here we can see that on average it takes fewer cycles per GCD transaction when operating on small
integers versus large random integers. You can generate and view a waveform for the simulation
like this:

% cd ${TUTROOT}/build
% ../tut3_verilog/gcd/gcd-sim --impl rtl --input random --dump-vcd
% gtkwave gcd-rtl-random_top_gcd.verilator1.vcd

Acknowledgments

This tutorial was developed for the ECE 4750 Computer Architecture and ECE 5745 Complex Digital
ASIC Design courses at Cornell University by Christopher Batten. The PyMTL hardware modeling
framework was developed primarily by Derek Lockhart at Cornell University, and this development
was supported in part by NSF CAREER Award #1149464, a DARPA Young Faculty Award, and
donations from Intel Corporation and Synopsys, Inc. The PyMTL3 hardware modeling framework
was developed by Shunning Jiang, Peitian Pan, and Yanghui Ou. This work was supported in part
by NSF CRI Award #1512937, DARPA POSH Award #FA8650-18-2-7852, a research gift from Xilinx,
Inc., and the Center for Applications Driving Architectures (ADA), one of six centers of JUMP, a
Semiconductor Research Corporation program co-sponsored by DARPA, as well as equipment, tool,
and/or physical IP donations from Intel, Xilinx, Synopsys, Cadence, and ARM.

77

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

Appendix A: Constructs Allowed in Synthesizable RTL

Allowed in Explicitly
Always Allowed in Synthesizable RTL Not Allowed in
Synthesizable RTL With Limitations Synthesizable RTL

logic always1 wire, reg15

logic [N-1:0] enum2 integer, real, time, realtime
& | ^ ^~ ~ (bitwise) struct3 signed16

&& || ! casez, endcase4 ===, !==
& ~& | ~| ^ ^~ (reduction) task, endtask5 * / % **
+ - function, endfunction5 #N (delay statements)
>> << >>> = (blocking assignment)6 inout17

== != > <= < <= <= (non-blocking assignment)7 initial
{} typedef8 variable initialization18

{N{}} (repeat) packed9 negedge19

?: $clog2()10 casex, endcase
always_ff, always_comb $bits()10 for, while, repeat, forever20

if else $signed()11 fork, join
case, endcase read-modify-write signal12 deassign, force, release
begin, end *13 specify, endspecify
module, endmodule for14 nmos, pmos, cmos
input, output rnmos, rpmos, rcmos
assign tran, tranif0, tranif1
parameter rtran, rtranif0, rtranif1
localparam supply0, supply1
genvar strong0, strong1
generate, endgenerate weak0, weak1
generate for primitive, endprimitive
generate if else defparam
generate case unnamed port connections21

named port connections unnamed parameter passing22

named parameter passing all other keywords
all other system tasks

1 Students should prefer using always_ff and always_comb instead of always. If students insist on using
always, then it can only be used in one of the following two constructs: always @(posedge clk) for se-
quential logic, and always @(*) for combinational logic. Students are not allowed to trigger sequential
blocks off of the negative edge of the clock or create asynchronous resets, nor use explicit sensitivity lists.

2 enum can only be used with an explicit base type of logic and explicitly setting the bitwidth using the fol-
lowing syntax: typedef enum logic [$clog2(N)-1:0] { ... } type_t; where N is the number of labels
in the enum. Anonymous enums are not allowed.

3 struct can only be used with the packed qualifier (i.e., unpacked structs are not allowed) using the follow-
ing syntax: typedef struct packed { ... } type_t; Anonymous structs are not allowed.

4 casez can only be used in very specific situations to compactly implement priority encoder style hardware
structures.

5 task and function blocks must themselves contain only synthesizable RTL.

6 Blocking assignments should only be used in always_comb blocks and are explicitly not allowed in
always_ff blocks.

78

ECE 4750 Computer Architecture Tutorial 3: Verilog Hardware Description Language

7 Non-blocking assignments should only be used in always_ff blocks and are explicitly not allowed in
always_comb blocks.

8 typedef should only be used in conjunction with enum and struct.

9 packed should only be used in conjunction with struct.

10 The input to $clog2/$bits must be a static-elaboration-time constant. The input to $clog2/$bits cannot
be a signal (i.e., a wire or a port). In other words, $clog2/$bits can only be used for static elaboration and
cannot be used to model actual hardware.

11 $signed() can only be used around the operands to >>>, >, >=, <, <= to ensure that these operators perform
the signed equivalents.

12 Reading a signal, performing some arithmetic on the corresponding value, and then writing this value back
to the same signal (i.e., read-modify-write) is not allowed within an always_comb concurrent block. This is
a combinational loop and does not model valid hardware. Read-modify-write is allowed in an always_ff
concurrent block with a non-blocking assignment, although we urge students to consider separating the
sequential and combinational logic. Students can use an always_comb concurrent block to read the sig-
nal, perform some arithmetic on the corresponding value, and then write a temporary wire; and use an
always_ff concurrent block to flop the temporary wire into the destination signal.

13 Be careful using the * operator since it can synthesize into quite a bit of logic.

14 for loops with statically known bounds may be synthesizable, although students should use great care and
clearly understand what hardware they are modeling.

15 wire and reg are perfectly valid, synthesizable constructs, but logic is much cleaner. So we would like
students to avoid using wire and reg.

16 signed types can sometimes be synthesized, but we do not allow this construct in the course.

17 Ports with inout can be used to create tri-state buses, but tools often have trouble synthesizing hardware
from these kinds of models.

18 Variable initialization means assigning an initial value to a logic variable when you declare the variable.
This is not synthesizable; it is not modeling real hardware. If you need to set some state to an initial
condition, you must explicitly use the reset signal.

19 Triggering a sequential block off of the negedge of a signal is certainly synthesizable, but we will be exclu-
sively using a positive-edge-triggered flip-flop-based design style.

20 If you would like to generate hardware using loops, then you should use generate blocks.

21 In very specific, rare cases unnamed port connections might make sense, usually when there are just one or
two ports and there purpose is obvious from the context.

22 In very specific, rare cases unnamed parameter passing might make sense, usually when there are just one
or two parameters and their purpose is obvious from the context.

79

