
ECE 4750 Computer Architecture
Section 7: Open-Source Hardware

ECE 5745 Complex Digital ASIC Design, Spring 2022 Lab 1: ASIC Integer Multiplier

1 def imul_var_algo(a, b):
2

3 result = Bits(32, 0)
4 while b != 0:
5 if b[0] == 1:
6 result += a
7 shamt = calc_shamt(b)
8 a = a << shamt
9 b = b >> shamt

10

11 return result

Figure 5: Variable-Latency Iterative Multiplication Al-
gorithm – Assumes a and b are 32-bit Bits objects. Shifts
by more than one to skip over sequences of zeros in the b
operand. Various different calc_shift functions are pos-
sible. This is executable Python code.

b_reg
b_mux_sel

32b

a_reg
a_mux_sel

32b

result_
reg

result_
mux_sel

result_en

32b

32b

32b

>>

<<

add_
mux_sel

re
q_
m
sg
.are
q_
m
sg

32b re
sp
_m
sg

re
q_
m
sg
.b

b_lsb

0

calc
shamt

Figure 6: Datapath for Variable-Latency Iterative Integer
Multiplier – All datpath components are 32-bits wide except
for the shift amount signal to the variable shifters.

IDLE

CALC

DONE

!resp_rdy

!req_val

req_val

resp_rdy

b == 0

(b != 0)
&& (b[0] == 1)

/add,shift

(b != 0)
&& (b[0] == 0)
/shift

Figure 7: Control FSM for Variable-
Latency Iterative Integer Multiplier –
Hybrid Moore/Mealy FSM with Mealy
transitions in the CALC state.

Figure 8: Single-Cycle Integer Multiplier – We use reg-
istered inputs and combintionally connect the response
ready signal to the request ready and the input register
enable signals.

operands and the valid bit. If the response interface is not ready, then we stall the multiplier by
disabling the register enable signals and combinationally propagating the response ready signal to
the request ready signal. For the actual multiplier we simply use the * operator; we will rely on
the ASIC toolflow to choose the most appropriate multiplication hardware. The PyMTL and Verilog

5

ECE 5745 Complex Digital ASIC Design, Spring 2022 Lab 1: ASIC Integer Multiplier

b_reg
b_mux_sel

32b

a_reg
a_mux_sel

32b

result_
reg

result_
mux_sel

result_en

32b

32b

32b

>>

<<

add_
mux_sel

re
q_
m
sg
.are
q_
m
sg

32b re
sp
_m
sg

re
q_
m
sg
.b

b_lsb

0

Figure 3: Datapath for Fixed-Latency Iterative Integer Mul-
tiplier – All datpath components are 32-bits wide. Shifters
are constant one-bit shifters. We use registered inputs with a
minimal of logic before the registers.

IDLE

CALC

DONE

!resp_rdy

!req_val

req_val

resp_rdy

counter = 32

(counter < 32)

&& (b[0] == 1)

/add,shift

(counter < 32)

&& (b[0] == 0)

/shift

Figure 4: Control FSM for Fixed-
Latency Iterative Integer Multiplier –
Hybrid Moore/Mealy FSM with Mealy
transitions in the CALC state.

DONE states, fundamentally this algorithm is limited by the 32 cycles required for the iterative calcu-
lation. The variable-latency iterative multiplier takes advantage of the structure in some pairs of in-
put operands to improve performance and energy efficiency. Figure 5 illustrates the variable-latency
iterative multiplication algorithm using “pseudocode”. If the b operand has many consecutive ze-
ros we don’t need to shift one bit per cycle; instead we can shift the B register multiple bits in one
step and directly jump to the next required addition. The calc_shamt function calculates the shift
amount based on the number of trailing zeros in the b operand. Various different implementations
of calc_shamt are possible: considering more bits will improve the performance but likely increase
area and energy.

The variable-latency iterative multiplier RTL model is very similar to the fixed-latency RTL model
with a couple key differences. The datapath for the variable-latency design is shown in Figure 6. No-
tice that we have added a new model that takes the b operand and input and calculates the variable
shift amount for both the left and right shifters. The PyMTL and Verilog code for this new model is
in IntMulVarLatCalcShamtPRTL.py and IntMulVarLatCalcShamtVRTL.v respectively. Refactoring
this logic into a separate model enables unit testing the logic before integrating it into the overall
design. The control unit for the variable latency design uses the simple finite-state-machine shown
in Figure 7. The only difference from the fixed-latency design is that we finish the calculation when
the b operand is zero. The PyMTL and Verilog code for the variable-latency iterative multiplier RTL
model is in IntMulVarLatPRTL.py and IntMulVarLatVRTL.v respectively.

2.3. Single-Cycle Integer Multiplier

While the iterative multipliers will likely require minimal area, they also require many cycles to
calculate each result. As a point of comparison, we will also consider a simple single-cycle inte-
ger multiplier. Figure 8 shows the single-cycle RTL model. We use registered inputs for both the

4

Baseline Design Alternative Design

Total Area (um^2)

 - Counter

 - Left Shifter

 - Right Shifter

 - ResetReg

 - EnReg

 - Mux2

 - Reg

 - SimpleAdder

 - ZeroComparator

 - CalcShamt

Cycles/Transaction

Cycle Time (ns)

Time/Transaction (ns)

Power (mW)

Energy/Transaction (pJ)

