ECE 4750 Computer Architecture, Fall 2022

Topic 10: Advanced Processors
Branch Prediction

School of Electrical and Computer Engineering
Cornell University

revision: 2022-11-21-13-12

1 Branch Prediction Overview

2 Software-Based Branch Prediction

2.1. StaticSoftwareHints
2.2. BranchDelaySlots
2.3. Predication

Hardware-Based Branch Prediction

3.1. Fixed Branch Predictor
3.2. Branch History Table (BHT) Predictor
3.3. Two-Level Predictor For Temporal Correlation
3.4. Two-Level Predictor For Spatial Correlation
3.5. Generalized Two-Level Predictors
3.6. Tournament Predictors

3.7. Branch Target Buffers (BTBs) Predictor

Copyright © 2022 Christopher Batten. All rights reserved. This handout was prepared by

Prof. Christopher Batten at Cornell University for ECE 4750 Computer Architecture.

Download and use of this handout is permitted for individual educational
non-commercial purposes only. Redistribution either in part or in whole via both
commercial or non-commercial means requires written permission.

1. Branch Prediction Overview

1. Branch Prediction Overview

Assume incorrect branch prediction in dual-issue I20L processor.

bne

opA

opB

opC

opD

opE

opF

opG

opTARG

Assume correct branch prediction in dual-issue I20L processor.

bne

opA

opTARG

opX

opY

opZ

Three critical pieces of information we need to predict control flow:

¢ (1) Is this instruction a control flow instruction?
* (2) What is the target of this control flow instruction?
* (3) Do we redirect control flow to the target or next instr?

Topic 10: Advanced Processors — Branch Prediction

2. Software-Based Branch Prediction

When do we know these critical pieces of information?

YOHHY1HHY2H{H Y3 rop

F i D L) aldalla

C

know if this instr is a jal, jr, bne know the target for jr
know the target for jal and bne know if bne is taken or not taken

.
o
[

.
>

(1) Is this instruction a control flow instruction?
(2) What is the target of this control flow instruction?
(3) Do we redirect ctrl flow to the target or next instr?

vlvlw

O xXUJ

x g9

What do we need to predict in F stage vs. D stage?

jal jr bne

Fstage predict1,2,3 predict1,2,3 predict1,2,3
D stage no prediction predict 2 predict 3

2. Software-Based Branch Prediction

e Static software hints
¢ Branch delay slots
e Predication

Topic 10: Advanced Processors — Branch Prediction

2. Software-Based Branch Prediction 2.1. Static Software Hints

2.1. Static Software Hints

Software provides hints about whether a control flow instruction is
likely to be taken or not taken. These hints are part of the instruction
and thus are available earlier in the pipeline (e.g., in the D stage).

bne.t

opA

opTARG

bne.nt

opY

opZ

What if the hint is wrong?

bne.t

opA

opTARG

bne.nt

opA

opB

Topic 10: Advanced Processors — Branch Prediction 4

2. Software-Based Branch Prediction 2.2. Branch Delay Slots

2.2. Branch Delay Slots

Without branch delay slots must squash fall through instructions if
branch is taken.

bne

opA

opB

targ

With branch delay slots compiler can put useful work in the slots.
Instructions in the delay slots are always executed regardless of branch
condition.

bne

opA

opB

targ

Topic 10: Advanced Processors — Branch Prediction 5

2. Software-Based Branch Prediction 2.3. Predication

2.3. Predication

Not really “prediction”. Idea is to turn control flow into dataflow
completely eliminating the control hazard.

Conditional move instructions conditionally move a source register to
a destination register.

movn rd, rsi, rs2 if (R[rs2] ' =0) R[rd] < R[rs1]
movz rd, rsl, rs2 if (R[rs2] ==0) R[rd] < R[rs1]

Pseudocode w /o Predication w/ Predication
if (a<b) slt =x1, x2, x3 slt x1, x2, x3
X = a beq x1, x0, L1 movz x4, x2, x1
else addi x4, x2, x0 movn x4, x3, x1
x=5b jal x0, L2
L1:
addi x4, x3, x0
L2:

Full predication enables almost all instructions toe be executed under a
predicate. If predicate is false, instruction should turn into a NOP.

Pseudocode w/ Predication
if (a<b) slt.p pl, x2, x3
opA (p1) opA
opB (p1) opB
else (1p1) opC
opC (!p1) opD
opD

¢ What if both sides of branch have many instructions?
e What if one side of branch has many more than the other side?

Topic 10: Advanced Processors — Branch Prediction 6

3. Hardware-Based Branch Prediction 3.1. Fixed Branch Predictor

3. Hardware-Based Branch Prediction

¢ Fixed branch predictor

¢ Branch history table (BHT) predictor

¢ Two-level predictor for temporal correlation
* Two-level predictor for temporal correlation
¢ Generalized two-level predictors

¢ Tournament predictor

¢ Branch target buffer (BTB) predictor

3.1. Fixed Branch Predictor

¢ Always predict not taken

— What we have been assuming so far
- Simple to implement and can perform prediction in F
— Poor accuracy, especially on very important backwards branch in loops

¢ Always predict taken

Difficult to implement: we don’t know if this is a branch until D
Difficult to implement: we don’t know target until at least D

— Could predict not taken in F, and then adjust in D

— Poor accuracy, especially on if/then/else

¢ Predict taken for backward branches
and predict not taken for forward branches

Difficult to implement: we don’t know if this is a branch until D
— Difficult to implement: we don’t know target until at least D
Could predict not taken in F, and then adjust in D

Better accuracy

Topic 10: Advanced Processors — Branch Prediction 7

3. Hardware-Based Branch Prediction 3.1. Fixed Branch Predictor

loop: R e L e e .
1w x1, 0(x2) backward
v x3, 0(x4) branches

slt x5, x1, x3 taken on avg

beq x5, x0, L1 --. forward 90%
addi x6, x1, x0 | branches

jal x0, L2 | taken on avg
Li: <-? 50%

addi x6, x3, x0
L2:

sw x6, 0(x7)

addi x2, x2, 4

addi x4, x4, 4

addi x7, x7, 4

addi x8, x8, -1

bne x8, x0, loop ------------————-—-

 e— e e e —— —— —— — — — — — ——

* For now let’s focus on conditional branches as opposed to
unconditional jumps

* Let’s assume we always predict not-taken in the F stage

* In the D stage, we know if the instruction is a branch and we know
the target of the branch

* So key goal is to predict whether or not we need to redirect the
control flow, i.e., to predict the branch outcome in the D stage
instead of waiting until the X stage

* By doing this prediction in the D stage we can reduce the branch
misprediction penalty by several cycles although it is still not zero if
we predict the branch is taken

Topic 10: Advanced Processors — Branch Prediction 8

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

3.2. Branch History Table (BHT) Predictor

How can we do better? Exploit structure in the program, namely
temporal correlation: the outcomes of specific static branch in the past
may be a good indicator of the outcomes of future dynamic instances of
the same static branch.

One-Bit Saturating Counter

Remember the previous outcome of a specific static branch and predict
the outcome will be the same for the next dynamic instance of the same

branch.
£ NT &
T /
Py /
C@ : @ D =
_/
T

STary
BTATN

Consider how this saturating counter would behave for a backwards
branch in a loop with four iterations. Assume the entire loop is
executed several times.

Iteration Prediction Actual Mispredict?

1

B WP W]

Topic 10: Advanced Processors — Branch Prediction 9

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Exploiting temporal correlation works well, but a one-bit saturating
counter will always mispredicts the backwards branch in a loop twice.
Loops are very common!

Two-Bit Saturating Counter

Remember the last two outcomes of a specific static branch. Require two
consecutive “counter examples” before changing the prediction.

Sreeog AL AL STy
ol FAkeD P2F gl POT T fhjenm
@w\'\" Bt PM/’H-T N3 PMI)\M f—\ ~
T ‘r /" ‘, /, R‘/
SrerT
5T4TS

Consider how this saturating counter would be have for a backwards
branch in a loop with four iterations. Assume the entire loop is
executed several times.

Iteration Prediction Actual Mispredict? ST WT WNT SNT

1 o O O O
2 o O O O
3 o O ©) @)
4 o O ©) @)
1 o O O @)
2 o O O @)
3 o O O @)
4 o O O O

What if start state is strongly taken?

Topic 10: Advanced Processors — Branch Prediction 10

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Other Two-Bit FSM Branch Predictors

T
TN STres
Mmufj ‘_;‘“9‘ JUMP Dmu/rt»l Ho
Irreny frem sl
Ve T
/‘1’
weaw | oum ,O/umur\ [RE S
0 e \ \ NT) o A

~ &
NT
5oy \ r,,r

POT THKLD

,q-r
+

7 BVASED TOwAN)S

/ U

e prediomnse BAs~ CuE)

7. \l‘ M TH
T Py
O~tatr /’—N/(’@
b L)
N ~T
\ /1—
L
rw-%
LT
¥

@)

NT

T2 ch $8 w Jugd + L\Pesyy '(*C’/'v oM. ALTEArATING]

Topic 10: Advanced Processors — Branch Prediction 11

3. Hardware-Based Branch Prediction

3.2. Branch History Table (BHT) Predictor

Branch History Table

* So far we have focused on a simple FSM that exploits temporal
correlation to make a prediction for a specific static branch

¢ To make predictions for many different static branches, we need to
keep track of a dedicated FSM per static branch

* A branch history table (BHT) is a table where each entry is the state
of the FSM for a different static branch.

!
e fur o 2 ‘uwu,;

[[|

Two PC’s can “alias” to the same entry
in BHT

Aliasing is similar to a cache conflict

We could store the PC as a tag along
with the FSM state to make sure we
don’t mix up the FSM state across two
static branches

Storing the PC is too expensive though,
so we can just let branches alias and
this just reduces the branch prediction
accuracy

Can reduce aliasing with larger BHT

BHT with 4k entries and 2bits/entry = 80-90% accuracy

How do we continue to improve prediction accuracy? Exploit even
more complicated temporal correlation.

Topic 10: Advanced Processors — Branch Prediction 12

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Mor. Comflicatety Teulrgl Corre A1)

CFred A TIANGA XM TITS Mor o Mpliedied (ape-sd Thas
SouT VAAYs Takes' OF VAl ays pea Tales PV Tevtiof
A Mort Compucdred L FSA BoT meac pATIONT VAL fen 4rana,
W Rt Pen THARLA LosTomMile)y (5SS,

Vory Gopvorve (w1 8CY e ALT wr s) &
for Liwr (=T, U< S~ (sv)
-(o,\. (1T y=o; J <s; _)4—4_)

5 /'nﬁu—(z»j)jx/;[c‘]r*cosﬂ[j]

AR W (A eT aunT eue| FIFA NSAAIC INSTAACE OF Mt
Bockomos leop Framnw wil Re o TA1es 7

Topic 10: Advanced Processors — Branch Prediction 13

3. Hardware-Based Branch Prediction 3.3. Two-Level Predictor For Temporal Correlation

3.3. Two-Level Predictor For Temporal Correlation

BHSLT QwT
PC A 2 Gd%vv-w vf 1.“0—35‘?\65

7 0 I R

BwsT
L l . | = frasca Mufrw.-\{ SUIFT
| fu—lblﬁ'rm T 0 e

PuT
r \ z (ATIUR nMugend TH RV

; Ff")\ ot @t 1 STau 0Ardd

\oufnwr\ G-bur £5A paspicron_
4 l.leL

V\\slﬁ

1
v

Tler?

When a branch is taken or not taken we shift in either a one (taken) or a
zero (not taken) into the least significant bit of the corresponding BHSR.

Index Value * BHSR captures temporal pattern for that branch

e We use the BHSR to index into the PHT. A BHT
0111 ST has an entry per branch, but a PHT has an entry

1000 WT per branch pattern.

1001 WT ¢ The PHT says for a given pattern over the pastn
executions of a branch, should I take or not take

1010 WT the next execution of this branch?
1011 ST

¢ Once the two-level predictor is warmed up for
1100 Wt previous nested loop example, the state of the
1101 ST PHT would be what is shown on the left
1110 ST * Need at least four bits of “history” to learn this
1111 SNT pattern and perfectly predict this branch

Topic 10: Advanced Processors — Branch Prediction 14

3. Hardware-Based Branch Prediction 3.3. Two-Level Predictor For Temporal Correlation

Prosert: Motnima B7ASGUAMY wWim SAME Hisren Mg Meen
DV e~ T PaapriaiomS: 1N Sneen oAy ALV’“W:)
I Mt P A foue N |

Tolumiest ABD Molbiple fuTs , Lic Sits frod P 7o Cuoeia
Wuwewn PUT g usE-

"
Vo mer P — Two
VikFeerm Wiy §
of Yrav A
| Samk. TiTo-leeal
| STruas
L

[

=

Dusa

(o
[worous)
\.-_)\S-r‘)

|

Topic 10: Advanced Processors — Branch Predideon 15

3. Hardware-Based Branch Prediction 3.4. Two-Level Predictor For Spatial Correlation

MW Topred: EXPoITIAY SpaTial Corre HTI> ~

T wad ode Draden 15 Alioiwey MAY TRe Axoo (0 e ToAL

OF - vpy A WTen (DibberenT) Bramen wi) Jo L

i (x e SV,
N ++ bel 7, ¢l brasenn ¢
W o(x «5) poto 3,3, 1
T+ e
s+ r—L| rl,S
bel 7, L broven |
ADDIWO M et
L

Wb Srsnen s TaRew (@ X 2F)
Fined bradua | 15 aluayy Takew (u_ X MUsF e >/§)

So wiemtn Sigden G s Talkes of moT TAlked O Te Yl
> pragicr b e Swovy Tate Brasow |

TInsr PuT

I \ \ sraeomrd 0T B pmegreren

L—/—» iv i/olJc o TINSAL. So WiTon
= L__.‘__] ~ \ b |

o P;\l N ramtats A ~D
| o v A Jlr’j\,_ ijr\—*[SuitT /u.‘)uk\,
|

T 17
Fon A Sou ex/z)»/-\,)\q,‘ DBusa v-l‘“ UPTorsr MuTIn — To we w\((
lvous Lved FusT e U Te\ed | 4un AT v lwe () of

e DA vl paio T o A e oy W e PUT Mgt PAID I LTS
TAKeS.

Topic 10: Advanced Processors — Branch Prediction 16

3. Hardware-Based Branch Prediction 3.4. Two-Level Predictor For Spatial Correlation

As fakenn | Mo\l furs AN wey uvend /.)L\/_\.S,,o:) W PnT

190 morpure

Topic 10: Advanced Processors — Branch Prediction 17

3. Hardware-Based Branch Prediction 3.5. Generalized Two-Level Predictors

QE» RAACIZTED Two-level T15uT1S

CoM BIPeDd pAPlroscu T =Rxfls T Tdom CompP\r X Temporac Corfetinand
AAD SPAMAL Corre gt

, Vkbtres frem
e Discos=d o
1 | [| Coaparx Tepara
I | Correamneed 'S
1 \ s T W (3700 Setf
g [| | Cuwosge- A S/“VJ—“‘?/\«
M 1o wusa A\\As-—j

=\ -/ P paae BusaT
» Sl nans Q\\&:w:)
R Alaus us =
FsM
[oupe-g) CAPTVAR. S PATIAL
N e / CorcecqmsA
Ty 1 (cv‘“"' s
"M oy)
prr for eaca
| O E Pt o

k=o ockedo| k=%

ort B m=o GASP GAs GAe

eemits PAS.'_? (P/&s) . PAe

osg SR | |/l/ |
for eacm mofo SAS /1 SAs SAe

(X% hee i

9417, Acconacy

Topic 10: Advanced Processors — Branch Prediction 18

3. Hardware-Based Branch Prediction

3.5. Generalized Two-Level Predictors

%'sgu,c—r
\90 MRPHIC T2 Qreviss s F\-]wv
(e
L el
-k
Busat } PV\‘rlGV\‘\’
r \ Co
|
T

</

n

el |
b
JESM Y

\o.rrﬂur\f‘
e

Timr?

2»?\/«4“«

Pur] Bur

! \

F5M
oAlvT }\
Loyie

|

T e

(kt+n)
e hrus

[2

Wsrens of con chaesnmL
Yo bbby from P wim
TBUSA, Reds Av=Dd
ALase 10 ae paT| bur
3—(&,@1\\!&\.1

Mona

-
T o

Topic 10: Advanced Processors — Branch Prediction

19

3. Hardware-Based Branch Prediction 3.6. Tournament Predictors

ToormaMENT Pazgrerons

it Paorns Aan Sl s praremasy Dikfered
TiEes of TToran oned

— oRe-awee LT TAwm—y-,-J Courrin — loops

- Te-lewe\ ‘5;\,\6,\9 - lers\'rW (o

Broson Pasdioron. T2CTOA TH B~
— PADILTS wullvm BIANCA O eTOA e SWeUWd Vil

Topic 10: Advanced Processors — Branch Prediction 20

3. Hardware-Based Branch Prediction

3.7. Branch Target Buffers (BTBs) Predictor

W Beard » Pawdieridg TACQET ADILSY

fved wim ZesT Pessidle Prbicrisd ofF TR/ AMeM 0uT oM
STIW PReA To Wb \ T Fore ’I’Af?ﬁ ADD,RSs TS e VeTemint) |

VSansen Tarass Dok

Or2p 2D M
ThroaT IT4T—

I
\
l

NEew PC = QaxgL4ed 'r/,y.ry’.r P
L SN W oreTed Takes)

CHD PoT VT 10 FeTen STHNFE-
= Prgiemady (= (C PoaT D A d/as
- Paraiem TArﬁr,-r of D/arsea

— Pru\{)u/ruu\s 1 Wlrosca 15 TAkeo.

o AETIMES Jo‘—ol \j\' Vi s AfSumip fasdieT Takes)

Topic 10: Advanced Processors — Branch Prediction

21

3. Hardware-Based Branch Prediction 3.7. Branch Target Buffers (BTBs) Predictor

(omBuie T3T Q3 AND BuT
/ Q’B‘FD F

St D uposre B0 fon T [Brasones

P05 Mo Mone /l,/

exfes sxswe Mg Y}W\'l

Bev B0 earle

WoPise L+ A x oPonre Bur for 8o o
Alceiannr 5 T UPOH v ﬁ‘r@ {‘OA_ I

Combmt 01a | feo /\/\
CuTres psum Du T
o vy eatres

W

UeTurs ABPASS STacuc Padcron

HTH ort e wonss o T '("""‘-"’7'0—0 (La\\ rvTorny (F
Alwos call dmQmen From sami Puhue (moT Acalyme)

STACK prad TN

= Posn Targer ADNAesS of STaciL on TAL—/TALTL
— Pop ofF Thrans ADDSS for TR T presier TAC T

Movt STauc (asgletoas VAR fFeTen ANQ PADILT wuien
pC's pmal .

USE 4OVripAMAT (upleqone N2 buoosE TleTweed TITR A~ND
STHcle fanD ICTOA .

Topic 10: Advanced Processors — Branch Prediction : 22

