Virtual Memory

ECE 4750
Computer Architecture

[K. Bala, A. Bracy, E. Sirer, H. Weatherspoon, D. Zagieboylo]

Processor & Memory

CPU

1 Oxfff...f

S OX7ff...f

CPU address/data bus...
... routed through caches

... to main memory
Simple, fast, but...

0x000...0

Memory

Multiple Processes

Q: What happens when
another program is CPU
executed concurrently Oxfff..f
on another processor? 1

$ OX7ff...f

A: Addresses will conflict

Even if CPUs take
turns using memory bus

Solutions?
Can we relocate second
program?

0x000...0

Memory

Can we relocate second program?

Yes, but... how? Like this? or this?
= Split 50/507
= What if they don’t fit?
= What if not contiguous?
= Need to recompile/relink?

This is a problem even on a
single core machine (runs

multiple processes at a time)
(1990's programming & crashes)

Big Picture: (Virtual) Memory

Process 1 —>;

1
0

OJ|O|®m|>

Give each process an
illusion that it has
exclusive access to entire
main memory

-

O r NN W
TIOITM|m

But In Reality...

14

D 13

12
Process 1 : 11
10

C 9

8

B 7

G 6

H 5

Process 2 4
A 3

2

F 1

0

Physical Memory 6

How do we create the illusion?

Map virtual
address to D
physical address
Process 1 —>§ - E
1 C >~ .
0 D
B
G
H
3 E
[=
1[G <)
o[n N

Virtual Address

Disk U

Physical Address

O L N W & U1 O NN 0 O

Big Picture: (Virtual) Memory

Process perspective: Reality #1
Process 1 —>§ 2 %
1 C E S
0 D S
S

Virtual Memory Physical Memory

sees only virtual memory
v" Contiguous memory

v No need to recompile - only mappings need to
be updated

Big Picture: (Virtual) Memory

Process perspective:

Process 1 —>§

1
0

sees only virtual memory

Reality #2

O|®|>

N

D

Virtual Memory

v" Contiguous memory

v No need to recompile - on

be updated

from Process

Hidd

Physical Memory

Disk

y mappings need to

v When run out of memory, map data on disk in a

transparent manner

(1990's "would you like to enable virtual memory?)

Virtual Memory: a Solution for All Problems

Each process has its own virtual address space

* Program/CPU can access any address from 0...2N
* Aprocessis a program being executed
* Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access
» all accesses are indirect through a virtual address
* translate fake virtual address to a real physical address
* redirect load/store to the physical address

Provides Protection and Virtualization

10

Advantages of Virtual Memory

Easy relocation

* Loader puts code anywhere in physical memory

* Virtual mappings to give illusion of correct layout
Higher memory utilization

* Provide illusion of contiguous memory

* Use all physical memory, even physical address 0x0
Easy sharing

» Different mappings for different processes / cores

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory Work?
* Address Translation

* Overhead

* Performance

* Virtual Memory & Caches

12

Byte Array:

addr
OxXffffffff

0XxX00000000

Xaa

x00

x00

xef

xcd

xab

xff

x00

Segments:

OxFFFFFfC

0Xx80000000
Ox7FFFFfC

heap
0x10000000| data

text
0x00400000

0Xx00000000

Picture Memory as... ?

Page Array:

oxfff{ffooo

Oxffffe000
oxfff{fdoeo

each Segme;t
yses some

of pages

0x00004000

0x00003000

0XxX000020009| page 2

oxooo01000 P38E 1
@x@eeee@@@-

13

A Little More About Pages

Page Array:

oxfffffoeo

oxffffeo000
oxffffdoeo

0x00004000

0x00003000

0x00002000

0X@@@@1@@@‘
0x00000000

Suppose each page = 4KB

Anything in page 2 has address:
OX000O2 XXX

Lower 12 bits specify which byte

you are in the page:
0x00002200 0010 0000 0000

byte 512

upper bits = page number
lower bits = page offset

(should sound familiar)

14

Simple Address Translation

1111 1010 1111 060600 1111 0000 1111 0000

Virtual Page Number Page Offset

0000 1111 0000

Page Offset

Assuming each page = 4KB

15

Translations stored in the Page Table

0S-Managed Mapping of Virtual = Physical Pages
int page table[2%°] = {0,5,4,1, ..}

ppn = page _table[vpn];

9
8
7
Offset does not change: g -
VA 0x00001234 4 B
PA 0x00005234 - ;
both @ x234 in page C . [C) LA
Process’ Physical
Virtual Address Address
Space Space

Assuming each page = 4KB, lower 12 bits = offset

Simple Page Table Translation

OxOO0008FFF

0x9000000c
—»0x90000008
0x90000004
0x90000000

31

0x10045 |

OxC20A3

0x4123B

0x10044

0Xx00000

12 11

Notice: fetching an
instruction at address
Ox2ABC requires two
trips to memory

OxC20A3000

-
-
-
-

0x90000000

0

vaddr| 0x00002 |0xABC

paddr | 0x4123B [OxABC

Part of process state (like PC)

satp | 0x90000000 y~—__

Assuming each page = 4KB

0x4123B000

0x10045000

0x10044000

0x00000000

Memory

But Wait... There’s more!

* Page Table Entry won’t be just an integer

* Meta-Data
= Valid Bits

* What PPN means “not mapped”? No such number...

* At first: not all virtual pages will be in physical memory

* Later: might not have enough physical memory to map
all virtual pages

= Page Permissions

* R/W/X permission bits for each PTE
* Code: read-only, executable
* Data: writeable, not executable

Less Simple Page Table

VRWXD PPN

1(0(1]/0| 0OxC20A3 |

1{1|1|1| Ox4123B

1/1|0|1| 0x10044

OkRr|IFkLIO|IO0|O|r|O
[N
[N
o
[N

Process tries to access a page without
proper permissions
Segmentation Fault
Examples:
Write to read-only? = process killed

Execute non-executable? = process kille

0xC20A3000 -

0x90000000

0x4123B000

0x10045000

d 0x10044000

0x00000000

Data

19

Page Fault

Valid bit in Page Table =0 (page is not in memory)
Why? Maybe the page...
= wasn't needed yet (still part of the Text section)
= didn't exist before (growing Stack or Heap)

= was sent to disk (OS swapped it out b/c it
needed room)

OS takes over, solves the problem, updates Page Table

Performance-wise page faults are really bad!

20

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory Work?
Address Translation
Overhead
Performance

Virtual Memory & Caches

Cost of Page Tables

 How large is a Page Table?

 Virtual address space (for each process):

Given: total virtual memory: 23 bytes = 4GB
Given: page size: 2'? bytes = 4KB

» # PT entries? 2°° = 1 million entries

= Size of each entry? PTE size =4B

= size of Page Table? 4B x 220=4MB

What if we have 10 processes?
10 x 4MB = 40 MB of Page Tables.... ®

helloworld.c has a 4MB page table??

22

Multi-Level Page

+ Allocate only PTEs in use
+ Simple memory allocation
—more lookups per memory reference

Virtual Address L2 Page Tables
(ot [p2 [off | Ll
_
p2)| 1///
L1 Page Table
~ }\ / -
4 //
pl | \PZ‘I [/
i
///
Page in PMem J
///

2
VIIII‘ Page not allocated P

Physical
Address
Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Physical
Page

PT Base Reg

e

"ables to the Rescue!

Physical
Address
Space

[/

/L

[/

/L

[/

.\

L/

Physical
Page

Physical
Page

Physical
Page

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory Work?
Address Translation
Overhead
Performance

Virtual Memory & Caches

Watch Your Performance Tank! ™

For every instruction:
1. Translate address

2. Fetch the instruction using physical address
= Access Memory Hierarchy (IS 2 L2 2 Memory)

* Repeat at Memory stage for load/store insns
1. Translate address
2. Now you perform the load/store

Best case? 1-2 memory accesses

* Go to memory to access Page Table
* Instructions & Data in Cache

Worst case? 4+ memory accesses

* everything in memory

e even worse for multi-level PT

Translation Lookaside Buffer (TLB)

CPU VAl lltagll lldatall
VPN PPN
VAl VPN PPN
VA VPN PPN
—
MMU || TLB 1
PA PA

Small, fast cache

Holds VPN—>PPN translations

Exploits temporal locality in pagetable
TLB Hit: huge performance savings

TLB Miss: puts translation in TLB

= Handled in software (exception: OS walks Page Table)
= Handled in hardware (MMU walks Page Table)

TLB Parameters
Typical
* very small (64 — 256 entries) = very fast
* fully associative, or at least set associative
* tiny block size: why?

Example: Intel Nehalem TLB

 128-entry L1 Instruction TLB, 4-way LRU
* 64-entry L1 Data TLB, 4-way LRU
 512-entry L2 Unified TLB, 4-way LRU

Virtual Memory Agenda

What is Virtual Memory?

How does Virtual memory Work?
- Address Translation

« QOverhead

« Performance

Virtual Memory & Caches

* Caches use physical addresses

* Prevents sharing except when intended
 Works beautifully!

Translation in Action

Virtual Address

TLB Access
TLB MIsS yes
nandler — — $ Access
(HW Of 0S) Physical
Address

ves

deliver
Data back
to CPU

nol

DRAM
Access

yes

29

