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Processor & Memory

CPU address/data bus...
 … routed through caches
 … to main memory

Simple, fast, but…
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Multiple Processes 
Q: What happens when 
another program is 
executed concurrently 
on another processor?

A:  Addresses will conflict
Even if CPUs take 

turns using memory bus

Solutions?
Can we relocate second 
program?
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Yes, but…  how?
§ Split 50/50?
§ What if they don’t fit?
§ What if not contiguous?
§ Need to recompile/relink?
§ …

This is a problem even on a
single core machine (runs 
multiple processes at a time)
(1990's programming & crashes)

Can we relocate second program?
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Big Picture: (Virtual) Memory
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Give each process an 
illusion that it has 
exclusive access to entire 
main memory
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But In Reality…
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How do we create the illusion?
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Big Picture: (Virtual) Memory
Process perspective:

sees only virtual memory
ü Contiguous memory
ü No need to recompile - only mappings need to 

be updated
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Big Picture: (Virtual) Memory
Process perspective:

sees only virtual memory
ü Contiguous memory
ü No need to recompile - only mappings need to 

be updated
ü When run out of memory, map data on disk in a 

transparent manner  
     (1990's "would you like to enable virtual memory?)
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Virtual Memory: a Solution for All Problems
Each process has its own virtual address space
• Program/CPU can access any address from 0…2N
• A process is a program being executed
• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access
• all accesses are indirect through a virtual address
• translate fake virtual address to a real physical address
• redirect load/store to the physical address

Provides Protection and Virtualization
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Advantages of Virtual Memory
Easy relocation
• Loader puts code anywhere in physical memory
• Virtual mappings to give illusion of correct layout
Higher memory utilization
• Provide illusion of contiguous memory
• Use all physical memory, even physical address 0x0
Easy sharing
• Different mappings for different processes / cores
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What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches

Virtual Memory Agenda
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Picture Memory as… ?

addr data
0xffffffff xaa

… 
…

x00

x00
xef
xcd
xab
xff

0x00000000 x00

Byte Array:
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page 0

Page Array:

page 1

page 2

. . .

. . .

page n

0x00002000

0x00004000

0xffffd000

each segment 

uses some # 

of pages

New!
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A Little More About Pages
Suppose each page = 4KB

Anything in page 2 has address: 
0x00002xxx

Lower 12 bits specify which byte 
you are in the page:
   0x00002200 = 0010 0000 0000 
         = byte 512

upper bits = page number
lower bits =  page offset

(should sound familiar)
0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page Array:

…

4KB

0x00002000

0x00004000

0xffffd000
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Simple Address Translation
1111 1010 1111 0000 1111 0000 1111 0000

Assuming each page = 4KB

Page OffsetVirtual Page Number

Lookup in Page Table

0000 0101 1100 0011 0000 0000 1111 0000

Physical Page Number Page Offset
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Translations stored in  the Page Table
OS-Managed Mapping of Virtual à Physical Pages
 int page_table[220] = { 0, 5, 4, 1, … };
. . .
 ppn = page_table[vpn];

Offset does not change: 
VA 0x00001234 
PA 0x00005234
both @ x234 in page C

C
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Process’
Virtual Address

Space
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Assuming each page = 4KB, lower 12 bits à offset
16



Simple Page Table Translation

Memory
satp 0x90000000

Assuming each page = 4KB

0x10045

. . .

0xC20A3
0x4123B
0x10044
0x000000x90000000

0x90000004
0x90000008
0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABCpaddr
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Part of process state (like PC)

Notice:  fetching  an 
instruction at address 
0x2ABC requires two 
trips to memory



But Wait... There’s more!
• Page Table Entry won’t be just an integer
• Meta-Data

§ Valid Bits
• What PPN means “not mapped”?   No such number…
• At first: not all virtual pages will be in physical memory
• Later: might not have enough physical memory to map 

all virtual pages
§ Page Permissions

• R/W/X permission bits for each PTE
• Code: read-only, executable
• Data: writeable, not executable
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Less Simple Page Table
V R W X D PPN
0
1 1 0 1 0 0xC20A3
0
0 1 1 0 1 0x10045
0
1 1 1 1 1 0x4123B
1 1 1 0 1 0x10044
0

Text

Data

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

Stack
0x10044000

Process tries to access a page without 
proper permissions
  Segmentation Fault
Examples:
Write to read-only? à process killed
Execute non-executable? à process killed
Read non-existant page? à process killed
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Page Fault
Valid bit in Page Table = 0  (page is not in memory)
 Why? Maybe the page…

§ wasn't needed yet (still part of the Text section)
§ didn't exist before (growing Stack or Heap)
§ was sent to disk (OS swapped it out b/c it 

needed room)

OS takes over, solves the problem, updates Page Table

Performance-wise page faults are really bad!
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches
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Cost of Page Tables
• How large is a Page Table?
• Virtual address space (for each process):

Given: total virtual memory: 232 bytes = 4GB
Given: page size: 212 bytes = 4KB
§ # PT entries?
§ Size of each entry? 
§ size of Page Table?

What if we have 10 processes?

helloworld.c has a 4MB page table??

220 = 1 million entries

4B x 220 = 4MB

10 x 4MB = 40 MB of Page Tables…. L 
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PTE size = 4B
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+ Allocate only PTEs in use
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables to the Rescue!
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches
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Watch Your Performance Tank!
For every instruction:
1. Translate address
2. Fetch the instruction using physical address

§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
1.  Translate address
2.  Now you perform the load/store

Best case? 1-2 memory accesses
• Go to memory to access Page Table
• Instructions & Data in Cache
Worst case? 4+ memory accesses
• everything in memory
• even worse for multi-level PT
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Translation Lookaside Buffer (TLB)

CPU

VA

PA

VA
MMU TLB

VPN PPN
VPN PPN
VPN PPN

“tag” “data”

PA

VA
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• Small, fast cache 
• Holds VPNàPPN translations
• Exploits temporal locality in pagetable
• TLB Hit: huge performance savings
• TLB Miss: puts translation in TLB

§ Handled in software (exception: OS walks Page Table)
§ Handled in hardware (MMU walks Page Table)



TLB Parameters
Typical
• very small (64 – 256 entries) à very fast
• fully associative, or at least set associative
• tiny block size: why?

Example: Intel Nehalem TLB
• 128-entry L1 Instruction TLB, 4-way LRU
• 64-entry L1 Data TLB, 4-way LRU
• 512-entry L2 Unified TLB, 4-way LRU
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Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches
• Caches use physical addresses
• Prevents sharing except when intended
• Works beautifully!
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yes

Translation in Action
Virtual Address

TLB Access

TLB 
Hit?

no

Physical 
Address

$ Access

$
Hit?

yes

no

deliver 
Data back 

to CPU

DRAM 
Access

TLB miss 

handler

(HW or OS)

DRAM
Hit?

yes
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