
Virtual Memory

ECE 4750
Computer Architecture

[K. Bala, A. Bracy, E. Sirer, H. Weatherspoon, D. Zagieboylo]

2

Processor & Memory

CPU address/data bus...
 … routed through caches
 … to main memory

Simple, fast, but…

CPU

Text

Data

Stack

Heap

Memory
0x000…0

0x7ff…f

0xfff…f

$

3

Multiple Processes
Q: What happens when
another program is
executed concurrently
on another processor?

A: Addresses will conflict
Even if CPUs take

turns using memory bus

Solutions?
Can we relocate second
program?

Text

Data

Stack

Heap

Memory

CPU
Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

CPU

$

$

Yes, but… how?
§ Split 50/50?
§ What if they don’t fit?
§ What if not contiguous?
§ Need to recompile/relink?
§ …

This is a problem even on a
single core machine (runs
multiple processes at a time)
(1990's programming & crashes)

Can we relocate second program?

4

Text

Data

Stack

Heap

Text

Data

Stack

Heap

Text

Data

Stack

Heap

Text

Data

Stack

Heap

Like this? or this?

5

Big Picture: (Virtual) Memory

Process 1 A
B
C
D

3
2
1
0

Process 2 E
F
G
H

3
2
1
0

Give each process an
illusion that it has
exclusive access to entire
main memory

6

But In Reality…

Process 1

Process 2

C

B

A

D

E

F

G
H

Physical Memory

0
1

2

3
4

5
6
7
8
9
10

11

12
13
14

7

How do we create the illusion?

Process 1 A
B
C
D

3
2
1
0

Process 2 E
F
G
H

3
2
1
0

Virtual Address

A F
Disk

Map virtual
address to

physical address

C

B

D

E

G
H

Physical Address

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

8

Big Picture: (Virtual) Memory
Process perspective:

sees only virtual memory
ü Contiguous memory
ü No need to recompile - only mappings need to

be updated

Process 1 A
B
C
D

3
2
1
0

Virtual Memory

C

Physical MemoryH
id

de
n

fr
om

 P
ro

ce
ss

Reality #1

9

Big Picture: (Virtual) Memory
Process perspective:

sees only virtual memory
ü Contiguous memory
ü No need to recompile - only mappings need to

be updated
ü When run out of memory, map data on disk in a

transparent manner
 (1990's "would you like to enable virtual memory?)

Process 1 A
B
C
D

3
2
1
0

Virtual Memory

C

Physical Memory

Disk

H
id

de
n

fr
om

 P
ro

ce
ss

Reality #2

Virtual Memory: a Solution for All Problems
Each process has its own virtual address space
• Program/CPU can access any address from 0…2N
• A process is a program being executed
• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access
• all accesses are indirect through a virtual address
• translate fake virtual address to a real physical address
• redirect load/store to the physical address

Provides Protection and Virtualization

10

Advantages of Virtual Memory
Easy relocation
• Loader puts code anywhere in physical memory
• Virtual mappings to give illusion of correct layout
Higher memory utilization
• Provide illusion of contiguous memory
• Use all physical memory, even physical address 0x0
Easy sharing
• Different mappings for different processes / cores

11

What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches

Virtual Memory Agenda

12

Picture Memory as… ?

addr data
0xffffffff xaa

…
…

x00

x00
xef
xcd
xab
xff

0x00000000 x00

Byte Array:
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page 0

Page Array:

page 1

page 2

. . .

. . .

page n

0x00002000

0x00004000

0xffffd000

each segment

uses some #

of pages

New!

13

A Little More About Pages
Suppose each page = 4KB

Anything in page 2 has address:
0x00002xxx

Lower 12 bits specify which byte
you are in the page:
 0x00002200 = 0010 0000 0000
 = byte 512

upper bits = page number
lower bits = page offset

(should sound familiar)
0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page Array:

…

4KB

0x00002000

0x00004000

0xffffd000

14

Simple Address Translation
1111 1010 1111 0000 1111 0000 1111 0000

Assuming each page = 4KB

Page OffsetVirtual Page Number

Lookup in Page Table

0000 0101 1100 0011 0000 0000 1111 0000

Physical Page Number Page Offset

15

Translations stored in the Page Table
OS-Managed Mapping of Virtual à Physical Pages
 int page_table[220] = { 0, 5, 4, 1, … };
. . .
 ppn = page_table[vpn];

Offset does not change:
VA 0x00001234
PA 0x00005234
both @ x234 in page C

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Process’
Virtual Address

Space

9
8
7
6
5
4
3
2
1
0

Assuming each page = 4KB, lower 12 bits à offset
16

Simple Page Table Translation

Memory
satp 0x90000000

Assuming each page = 4KB

0x10045

. . .

0xC20A3
0x4123B
0x10044
0x000000x90000000

0x90000004
0x90000008
0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABCpaddr

17

Part of process state (like PC)

Notice: fetching an
instruction at address
0x2ABC requires two
trips to memory

But Wait... There’s more!
• Page Table Entry won’t be just an integer
• Meta-Data

§ Valid Bits
• What PPN means “not mapped”? No such number…
• At first: not all virtual pages will be in physical memory
• Later: might not have enough physical memory to map

all virtual pages
§ Page Permissions

• R/W/X permission bits for each PTE
• Code: read-only, executable
• Data: writeable, not executable

18

Less Simple Page Table
V R W X D PPN
0
1 1 0 1 0 0xC20A3
0
0 1 1 0 1 0x10045
0
1 1 1 1 1 0x4123B
1 1 1 0 1 0x10044
0

Text

Data

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

Stack
0x10044000

Process tries to access a page without
proper permissions
 Segmentation Fault
Examples:
Write to read-only? à process killed
Execute non-executable? à process killed
Read non-existant page? à process killed

19

Page Fault
Valid bit in Page Table = 0 (page is not in memory)
 Why? Maybe the page…

§ wasn't needed yet (still part of the Text section)
§ didn't exist before (growing Stack or Heap)
§ was sent to disk (OS swapped it out b/c it

needed room)

OS takes over, solves the problem, updates Page Table

Performance-wise page faults are really bad!
20

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches

21

Cost of Page Tables
• How large is a Page Table?
• Virtual address space (for each process):

Given: total virtual memory: 232 bytes = 4GB
Given: page size: 212 bytes = 4KB
§ # PT entries?
§ Size of each entry?
§ size of Page Table?

What if we have 10 processes?

helloworld.c has a 4MB page table??

220 = 1 million entries

4B x 220 = 4MB

10 x 4MB = 40 MB of Page Tables…. L

22

PTE size = 4B

23

+ Allocate only PTEs in use
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables to the Rescue!

off

L2 Page Tables

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

L1 Page Table

p1 p2

Physical
Page

p2

p2

p2

p1

Virtual Address

Page in PMem

Page not allocated

PT Base Reg

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

off

L2 Page Tables

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

L1 Page Table

p1 p2

Physical
Page

p2

p2

p2

p1

Virtual Address

Page in PMem

Page not allocated

PT Base Reg

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches

24

Watch Your Performance Tank!
For every instruction:
1. Translate address
2. Fetch the instruction using physical address

§ Access Memory Hierarchy (I$ à L2 à Memory)

• Repeat at Memory stage for load/store insns
1. Translate address
2. Now you perform the load/store

Best case? 1-2 memory accesses
• Go to memory to access Page Table
• Instructions & Data in Cache
Worst case? 4+ memory accesses
• everything in memory
• even worse for multi-level PT

25

Translation Lookaside Buffer (TLB)

CPU

VA

PA

VA
MMU TLB

VPN PPN
VPN PPN
VPN PPN

“tag” “data”

PA

VA

26

• Small, fast cache
• Holds VPNàPPN translations
• Exploits temporal locality in pagetable
• TLB Hit: huge performance savings
• TLB Miss: puts translation in TLB

§ Handled in software (exception: OS walks Page Table)
§ Handled in hardware (MMU walks Page Table)

TLB Parameters
Typical
• very small (64 – 256 entries) à very fast
• fully associative, or at least set associative
• tiny block size: why?

Example: Intel Nehalem TLB
• 128-entry L1 Instruction TLB, 4-way LRU
• 64-entry L1 Data TLB, 4-way LRU
• 512-entry L2 Unified TLB, 4-way LRU

27

Virtual Memory Agenda
What is Virtual Memory?
How does Virtual memory Work?
• Address Translation
• Overhead
• Performance
• Virtual Memory & Caches
• Caches use physical addresses
• Prevents sharing except when intended
• Works beautifully!

28

yes

Translation in Action
Virtual Address

TLB Access

TLB
Hit?

no

Physical
Address

$ Access

$
Hit?

yes

no

deliver
Data back

to CPU

DRAM
Access

TLB miss

handler

(HW or OS)

DRAM
Hit?

yes
29

