ECE 4750 Computer Architecture, Fall 2024
Tutorial 1: Linux Development Environment

School of Electrical and Computer Engineering
Cornell University

revision: 2024-08-25-21-18

1 Introduction 3
2 ECE Computing Resources 3
2.1 The ecelinux Workstations in 314 PhillipsHall 3
2.2 The ecelinux SErvers o v v v v it i e e e e e e 3
2.3 Remote Login from CIT Windows Computing Lab in 318 Phillips Hall 4
2.4 Remote Login from Personal Windows Laptop/Workstation 4
2.5 Remote Login from Personal Mac Laptop/Workstation 4
2.6 Remote Login from Personal Linux Laptop/Workstation 5
2.7 Remote Login from Off-Campus Using the Cornell VPN 5
2.8 Testing X11 After Remote Login 6
2.9 Personal Computing Resources, 6
3 The Linux Command Line 6
3.1 HelloWorld 7
32 ManualPages e 7
3.3 Create, View,and ListFiles. 7
3.4 Create, Change, and List Directories 8
3.5 Copy, Move, and Remove Files and Directories 11
3.6 UsingwgettoDownload Files 13
3.7 UsinggreptoSearchFiles 13
3.8 UsingfindtoFindFiles 14
39 UsingtartoArchiveFiles 15
3.10 Using top to View Running Processes 15
3.11 Environment Variables 16
3.12 Command Output Redirection 16
3.13 Command Chaining 17
3.14 Command Pipelining 17
3.15 Aliases, Wildcards, Command History, and Tab Completion 18
4 Linux Text Editors 19
41 Nano oo e 19

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

42 Emacsand VIm 20
4.3 MobaTextEditor e 20
5 The Two-Window Linux Workflow 20
6 Course-Specific Linux Commands 20
6.1 CourseSetup Script 22
6.2 Using quota to Check Your SpaceUsage 22
6.3 Using trashto Safely RemoveFiles 22
7 Conclusion 23

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

1. Introduction

All the lab assignments for this course are designed assuming you will be using a Linux (or UNIX-
like) operating system for development. Basic Linux knowledge is essential to successfully complete
these lab assignments and a more in-depth understanding enhances productivity. This tutorial cov-
ers the computing resources to be used in the course and offers a brisk introduction to the Linux
operating system for first time users including some details specific to this course.

To follow along with the tutorial, type the commands without the % character. In addition to working
through the commands in the tutorial, you should also try the more open-ended tasks marked with
the % symbol.

2. ECE Computing Resources

We will be using ecelinux workstations and servers for all of the laboratory assignments. The
ecelinux machines all run the Red Hat Enterprise Linux 7 operating system, and they all use an
identical setup. You do not need to do anything special to create an ecelinux account. You will be
using your NetID and Cornell password to login, and an ecelinux account will be automatically
created for you when you first login. Any student enrolled in any ECE class should automatically
be granted access to the ecelinxu workstations and servers. Having said this, if you cannot login to
either the ecelinux workstations or the ecelinux servers, you should email the COE/CIS sysadmins
at itcoecis-help@cornell.edu.

There are three ways you can get access to the ecelinux workstations and servers: you can use the
ecelinux workstations in 314 Phillips, you can remotely login to the ecelinux servers from the CIT
Windows Computing Lab in 318 Phillips Hall, or you can remotely login to the ecelinux servers
from your own personal workstation. Since we use open-source tools in this course, it should also be
possible for you to directly work locally on your own workstation without logging into the ecelinux
servers. This would require you to setup your own local development environment, so we cannot
really provide too much support for this option.

2.1. The ecelinux Workstations in 314 Phillips Hall

You can use the 24 brand new ecelinux workstations in 314 Phillips Hall to work on your lab as-
signments. The ecelinux workstations are fast and have generous 27” monitors. You should be
able to access the lab using your keycard, although you might need to try swiping your card a few
times. You can login to the workstations using your NetID and Cornell password. Once you have
logged into an ecelinux workstation, you can open a terminal by choosing Applications > Favorites >
Terminal from the menu at the top of the desktop.

2.2. The ecelinux Servers

The department has a cluster of ecelinux servers dedicated for ECE instructional use. These servers
are setup in the exact same way as the ecelinux workstations in 314 Phillips Hall. There are two
servers named as follows:

® ecelinux-01.ece.cornell.edu
® ecelinux-02.ece.cornell.edu

If one of the two servers seems slow, students may want to try logging into the other server. Note
that there are actually two other servers named ecelinux-03 and ecelinux-04, and there is also
a load-balancer named ecelinux. We do not recommend students use any of these servers. The

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

ecelinux-01 and ecelinux-02 servers are significantly faster, which can make a big difference
when running long simulations and CAD tools. Students should always explicitly login to either
ecelinux-01 or ecelinux-02, unless these two faster servers are down.

2.3. Remote Login from CIT Windows Computing Lab in 318 Phillips Hall

Students can also use the 45 Windows workstations in 318 Phillips Hall to login to an ecelinux
server remotely. You should be able to access the lab using your keycard, and you can use your
NetID and Cornell password to login to the workstations. You can then use MobaXterm to login
to an ecelinux server. To start MobaXterm choose All Programs > Class Files > MobaXterm Personal
Edition > MobaXterm Personal Edition from the start menu. Once MobaXterm has loaded you will see
it has started a local terminal. Use the following command at the local terminal prompt to login to
an ecelinux server:

% ssh -X <netid>@ecelinux-01.ece.cornell.edu

Replace <netid> with your Cornell NetID in the command above, and feel free to use ecelinux-02
instead of ecelinux-01. Do not type the % character. We use the 7 character to indicate what com-
mands we should enter on the command line. Executing the command will prompt you to enter
your Cornell password, and then you should be connected to the ecelinux server. The -X command
line option enables X11 forwarding so that we can start a GUI application like gtkwave on the server
yet have the actual GUI displayed on our local machine.

After logging into an ecelinux server you will notice that a sidebar appears on the left that shows
you the files in your home directory. You can drag files to/from the sidebar and the desktop to easily
move files to/from the Windows workstation and an ecelinux server. To hide the sidebar choose
View > Show/hide sidebar from the menu.

2.4. Remote Login from Personal Windows Laptop/Workstation

You can also login to an ecelinux server from your own personal Windows workstation. You will
need to install MobaXterm on your workstation. Download the installer from here:

® http://mobaxterm.mobatek.net/MobaXterm_Setup_9.4.msi

Run the installer, click next to start the installation, agree to the EULA and click next, click next to
install in the default location, click install to start the installation, and click finish to finish the instal-
lation. Then start MobaXterm by choosing All Programs > MobaXterm Personal Edition > MobaXterm
Personal Edition from the start menu. You should agree if Windows asks to grant any additional
security permissions to MobaXterm. Then follow the directions in Section 2.3. Note that if your
connection to an ecelinux server seems to be dropping, you may need to set the SSH “keep alive
signal”. Choose Settings > Configuration and check the option to send a keep alive signal every 60
seconds.

2.5. Remote Login from Personal Mac Laptop/Workstation

To start, you need to open a local terminal by typing “terminal” into Spotlight. By default your
connection to an ecelinux server will be dropped if you are inactive for a certain amount of time. To
prevent this, you need to add some configuration information to a specific file. We will learn more
about the echo command and command output redirection later in the tutorial, but for now carefully
enter the following commands in the terminal.

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% echo "Host *.ece.cornell.edu" >> ~/.ssh/config
% echo " ServerAliveInterval 180" >> ~/.ssh/config

Do not type the % character. We use the % character to indicate what commands we should enter on
the command line. You will need to install X11, although some older versions of Mac OS X have X11
installed by default, or you may have previously installed X11. To see if you have X11 installed, enter
the following command in the terminal.

% xclock

Again, do not type the % character. If your system cannot find xclock then you need to install X11.
The specific X11 window system you will want to use is called XQuartz, and it is available from here:

® http://xquartz.macosforge.org/landing

Use the DMG to install XQuartz and then try running xclock again. Once xclock works locally, then
use SSH to login to an ecelinux server as follows:

% ssh -X <netid>@ecelinux-01.ece.cornell.edu

Replace <netid> with your Cornell NetID in the command above and do not type the % character.
Feel free to use ecelinux-02 instead of ecelinux-01.

2.6. Remote Login from Personal Linux Laptop/Workstation

If you are using Linux you will likely know how to open a local terminal. By default your connection
to the an ecelinux server will be dropped if you are inactive for a certain amount of time. To prevent
this, you need to add some configuration information to a specific file. We will learn more about the
echo command and command output redirection later in the tutorial, but for now carefully enter the
following commands in the terminal.

% echo "Host *.ece.cornell.edu" >> ~/.ssh/config
% echo " ServerAliveInterval 180" >> ~/.ssh/config
Then use SSH as follows:

% ssh -X <netid>@ecelinux-01.ece.cornell.edu

As mentioned above, replace <netid> with your Cornell NetID in the command above and do not
type the % character. Feel free to use ecelinux-02 instead of ecelinux-01.

2.7. Remote Login from Off-Campus Using the Cornell VPN

Logging in remotely from your own personal laptop /workstation will work fine if you are connected
to the wired or wireless (e.g., RedRover) campus network. If you are off-campus, then you will need
to use the Cornell virtual private network (VPN) to access an ecelinux server. Simply follow the
instructions at the following link to install the Cisco VPN software for the appropriate operating
system running on your laptop /workstation.

® https://it.cornell.edu/cuvpn
® https://it.cornell.edu/landing-page-kba/2605/5273

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

Then follow the instructions at the following link to connect to the Cornell VPN using the Cisco VPN
software for the appropriate operating system running on your laptop/workstation.

® https://it.cornell.edu/cuvpn
® https://it.cornell.edu/landing-page-kba/2605/823

After connecting to the VPN, you can follow the above instructions to SSH into an ecelinux server.
2.8. Testing X11 After Remote Login

After remotely logging into an ecelinux server remotely using any of the above approaches, you
can verify that a GUI application (e.g., gtkwave) will work by running the following command.

% xclock

Just to be very explicit, you want to execute the xclock command remotely after logging into an
ecelinux server via SSH (i.e., not locally on your Mac/Linux laptop/workstation). If you cannot
see the analog clock, there there is likely an issue with your X11 setup. You can also try the more
interesting xeyes.

% xeyes
2.9. Personal Computing Resources

While we strongly encourage students to use the ecelinux workstations and servers, more advanced
students are welcome to work directly on their own workstations without logging into an ecelinux
server. This is not too much work if your are using a UNIX-like system (e.g., Mac OS X, Linux). It
will require the student to install the PyMTL hardware modeling framework and gtkave. For some
laboratory assignments, students might have to install the RISC-V cross-compiler as well. More
information about installing these tools is available at the following links:

® http://gtkwave.sourceforge.net
® https://github.com/cornell-brg/pymtl
® https://github.com/riscv/riscv-tools (follow instructions for GCC/Newlib toolchain)

The course staff cannot offer too much support for this, and please remember that all lab submissions
must work on the ecelinux workstations and servers, since that is where the course staff will be
doing the assessment.

3. The Linux Command Line

In this section, we introduce the basics of working at the Linux command line. Please note that this
Linux tutorial is obviously not comprehensive and cannot replace the extensive amount of documen-
tation available online or elsewhere. The goal is to get you comfortable with commands required to
complete the lab assignments. Before trying the commands listed in this section, you will need to get
access to the ECE computing resources as described in the previous section.

The shell is the original Linux user interface which is a text-based command-line interpreter. The
default shell on the ecelinux machines is Bash. While there are other shells such as sh, csh, and
tcsh, for this course we will always be assuming you are using Bash. As mentioned above, we use
the % character to indicate commands that should be entered at the Linux command line, but you
should not include the actual % character when typing in the commands on your own. To make it

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

easier to cut-and-paste commands from this tutorial document onto the command line, you can tell
Bash to ignore the "%’ character using the following command:

% alias %=""

Now you can cut-and-paste a sequence of commands from this tutorial document and Bash will not
get confused by the "%’ character which begins each line.

3.1. Hello World

We begin with the ubiquitous “Hello, World” example. To display the message “Hello, World” we
will use the echo command. The echo command simply “echos” its input to the console.

% echo "Hello, World"

The string we provide to the echo command is called a command line argument. We use command line
arguments to tell commands what they should operate on. Although simple, the echo command can
very useful for creating simple text files, displaying environment variables, and general debugging.

To-Do On Your Own: Experiment with using the echo command to display different messages.

3.2. Manual Pages

You can learn more about any Linux command by using the man command. Try using this to learn
more about the echo command.

% man echo

You can use the up/down keys to scroll the manual one line at a time, the space bar to scroll down
one page at a time, and the q key to quit viewing the manual. You can even learn about the man
command itself by using man man. As you follow the tutorial, feel free to use the man command to
learn more about the commands we cover.

To-Do On Your Own: Use the man command to learn more about the cat command.

3.3. Create, View, and List Files

We can use the echo command and a feature called command output redirection to create simple text
files. We will discuss command output redirection in more detail later in the tutorial. Command
output redirection uses the > operator to take the output from one command and “redirect” it to a
file. The following commands will create a new file named ece4750-tut1l.txt that simply contains
the text “Computer Architecture”.

% echo "Computer Architecture" > ece4750-tutl.txt
We can use the cat command to quickly display the contents of a file.

% cat ece4750-tutl.txt

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

For larger files, cat will output the entire file to the console so it may be hard to read the file as it
streams past. We can use the less command to show one screen-full of text at a time. You can use
the up/down keys to scroll the file one line at a time, the space bar to scroll down one page at a time,
and the q key to quit viewing the file.

% less ece4750-tutl.txt
You can use the 1s command to list the filenames of the files you have created.
% ls

We can provide command line options to the 1s command to modify the command’s behavior. For
example, we can use the -1 (i.e., a dash followed by the number one) command line option to list
one file per line, and we can we can use the -1 (i.e., a dash followed by the letter I) command line
option to provide a longer listing with more information about each file.

% 1ls -1
% 1s -1

You should see the newly created ece4750-tutl.txt file along with some additional directories or
folders. We will discuss directories in the next section. Use the following commands to create a few
more files using the echo command and command output redirection, and then list the files again.

% echo "Application" > ece4750-tutl-layerl.txt
% echo "Algorithm" > eced4750-tutl-layer2.txt
h1ls -1

To-Do On Your Own: Create a new file named ece4750-tut1-layer3. txt which contains the third
layer in the computing systems stack (i.e., programming language). Use cat and less to verify
the file contents.

3.4. Create, Change, and List Directories

Obviously, having all files in a single location would be hard to manage effectively. We can use
directories (also called folders) to logically organize our files, just like one can use physical folders to
organize physical pieces of paper. The mechanism for organizing files and directories is called the
file system. When you first login to an ecelinux machine, you will be in your home directory. This is
your own private space on the server that you can use to work on the lab assignments and store your
files. You can use the pwd command to print the directory in which you are currently working, which
is known as the current working directory.

% pwd
/home/<netid>

You should see output similar to what is shown above, but instead of <netid> it should show your
actual NetID. The pwd command shows a directory path. A directory path is a list of nested directory
names; it describes a “path” to get to a specific file or directory. So the above path indicates that there
is a toplevel directory named home that contains a directory named <netid>. This is the directory
path to your home directory. As an aside, notice that Linux uses a forward slash (/) to separate
directories, while Windows uses a back slash (\) for the same purpose.

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

We can use the mkdir command to make new directories. The following command will make a new
directory named ece4750 within your home directory.

% mkdir ece4750

We can use the cd command to change our current working directory. The following command will
change the current working directory to be the newly created ece4750 directory, before displaying
the current working directory with the pwd command.

% cd eced750
% pwd
/home/<netid>/eced750

Use the mkdir, cd, and pwd commands to make another directory.

% mkdir tutl

% cd tutl

% pwd
/home/<netid>/ece4750/tutl

We sometimes say that tut1 is a subdirectory or a child directory of the ece4750 directory. We might
also say that the ece4750 directory is the parent directory of the tut1 directory.

There are some important shortcuts that we can use with the cd command to simplify navigating
the file system. The special directory named . (i.e., one dot) always refers to the current working
directory. The special directory named .. (i.e., two dots) always refers to the parent of the current
working directory. The special directory named ~ (i.e., a tilde character) always refers to your home
directory. The special directory named / (e.g., single forward slash) always refers to the highest-
level root directory. The following commands illustrate how to navigate up and down the directory
hierarchy we have just created.

% pwd
/home/<netid>/eced4750/tutl
% cd .

% pwd
/home/<netid>/ece4750/tutl
% cd ..

% pwd
/home/<netid>/ece4750

% cd ..

% pwd

/home/<netid>

% cd eced750/tutl

% pwd
/home/<netid>/ece4750/tutl
% cd

% pwd

/home/<netid>

% cd /

% pwd

/

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% cd ~/ece4T750
% pwd
/home/<netid>/eced750

Notice how we can use the cd command to change the working directory to another arbitrary direc-
tory by simply using a directory path (e.g., ece4750/tut1). These are called relative paths because the
path is relative to your current working directory. You can also use an absolute path which always
starts with the root directory to concretely specify a directory irrespective of the current working di-
rectory. A relative path is analogous to directions to reach a destination from your current location
(e.g., How do I get to the coffee shop from my current location?), while an absolute path is analogous
to directions to reach a destination from a centralized location (e.g., How do I get to the coffee shop
from the center of town?).

% pwd

/home/<netid>/ece4750

% cd /home/<netid>/eced750/tutl
% pwd
/home/<netid>/eced4750/tutl

% cd

% pwd

/home/<netid>

This example illustrates one more useful shortcut. The cd command with no command line argu-
ments always changes the current working directory to your home directory. We can use the 1s
command to list files as well as directories. Use the following commands to create a new file and
directory in the ece4750/tut1 subdirectory, and then list the file and directory.

% cd ~/eced750/tutl

% echo "Computer Architecture" > eced4750-tutl.txt
% mkdir dirA

% 1ls -1

You should see both the dirA subdirectory and the newly created ece4750-tut1.txt file listed. Feel
free to use the cat command to verify the file contents of the newly created file. We can use the tree
command to recursively list the contents of a directory. The following commands create a few more
directories before displaying the directory hierarchy.

% cd ~/eced750/tut1l
% mkdir -p dirB/dirB_1
% mkdir -p dirB/dirB_2
% mkdir -p dirC/dirC_1
% cd ~/eced750/tut1l

% tree

+-- dirA

+-- dirB

| |-- dirB_1
| ‘—- dirB_2
[-- dirC

| ‘-- dirC_1

10

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

‘-- eced750-tutl.txt

Note that we are using the -p command line option with the mkdir command to make multiple
nested directories in a single step.

To-Do On Your Own: Experiment with creating additional directories and files within the
ece4750/tutl subdirectory. Try creating deeper hierarchies with three or even four levels of
nesting using the -p option to the mkdir command. Experiment with using the . and .. special
directories. Use the tree command to display your newly created directory hierarchy.

3.5. Copy, Move, and Remove Files and Directories

We can use the cp command to copy files. The first argument is the name of the file you want to copy,
and the second argument is the new name to give to the copy. The following commands will make
two copies of the files we created in the previous section.

% cd ~/ece4750/tutl

% cp eced750-tutl.txt ece4750-tutl-a.txt
% cp eced750-tutl.txt ece4750-tutl-b.txt
% 1s -1

We can also copy one or more files into a subdirectory by using multiple source files and a final
destination directory as the arguments to the cp command.

% cd ~/ece4750/tutl

% cp eced750-tutl.txt dirA

% cp eced4750-tutl-a.txt eced4750-tutl-b.txt dirA
% tree

We can use the -r command line option to enable the cp command to recursively copy an entire
directory.

% cd ~/eced750/tutl
% tree

% cp -r dirA dirD
% tree

If we want to move a file or directory, we can use the mv command. As with the cp command, the
first argument is the name of the file you want to move and the second argument is the new name of
the file.

% cd ~/eced4750/tutl
% mv eced750-tutl.txt eced750-tutl-c.txt
% 1s -1

Again, similar to the cp command, we can also move one or more files into a subdirectory by using
multiple source files and a final destination directory as the arguments to the mv command.

% cd ~/eced750/tutl
% tree

11

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% mv ece4750-tutl-a.txt dirB
% mv eced750-tutl-b.txt eced750-tutl-c.txt dirB
% tree

We do not need to use the -r command line option to move an entire directory at once.

% cd ~/eced750/tutl
% tree

% mv dirD dirE

% tree

The following example illustrates how we can use the special . directory to move files from a subdi-
rectory into the current working directory.

% cd ~/eced750/tutl

% tree

% mv dirE/eced4750-tutl.txt .
% tree

We can use the rm command to remove files. The following command removes a file from within the
ece4750/tut1 subdirectory.

% cd ~/ece4750/tutl

% 1s -1
% rm eced750-tutl.txt
% 1s -1

To clean up, we might want to remove the files we created in your home directory earlier in this
tutorial.

% cd

% rm eced750-tutl.txt

% rm eced750-tutl-layerl.txt
% rm eced750-tutl-layer2.txt
% rm ece4750-tutl-layer3.txt

We can use the -r command line option with the rm command to remove entire directories, but please
be careful because it is relatively easy to permanently delete many files at once. See Section 6.3 for
a useful command that you might want to use instead of the rm command to avoid accidentally
deleting important work.

% cd ~/eced4750/tutl

% 1s -1
% rm -r dirA dirB dirC dirE
% 1s -1

To-Do On Your Own: Creating additional directories and files within the ece4750/tut1 subdirec-
tory, and then use the cp, mv, and rm commands to copy, move, and remove the newly created
directories and files. Use the 1s and tree commands to display your file and directory organiza-
tion.

12

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

3.6. Using wget to Download Files

We can use the wget command to download files from the internet. For now, this is a useful way to
retrieve a text file that we can use in the following examples.

% cd “/eced4750/tutl
% wget http://www.csl.cornell.edu/courses/ece4750/overview.txt
% cat overview.txt

3.7. Using grep to Search Files

We can use the grep command to search and display lines of a file that contain a particular pattern.
The grep command can be useful for quickly searching the contents of the source files in your lab
assignment. The command takes the pattern and the files to search as command line arguments. The
following command searches for the word “memories” in the overview. txt file downloaded in the
previous section.

% cd ~/eced750/tutl
% grep "memories" overview.txt

You should see just the three lines within the overview. txt file that contain the word “memories”.
We can use the --1line-number and --color command line options with the grep command to dis-
play the line number of each match and to highlight the matched word.

% cd ~/eced750/tutl
% grep --line-number --color "memories" overview.txt

We can use the -r command line option to recursively search all files within a given directory hier-
archy. In the following example, we create a subdirectory, copy the overview.txt file, and illustrate
how we can use the grep command to recursively search for the word “memories”.

% cd ~/ece4750/tutl

% mkdir dirA

% cp overview.txt dirA

% grep -r --line-number --color "memories"

Notice how we specify a directory as a command line argument (in this case the special . direc-
tory) to search the current working directory. You should see the three lines from both copies of the
overview.txt file. The grep command also shows which file contains the match.

As another example, we will search two special files named /proc/cpuinfo and proc/meminfo.
These files are present on every modern Linux system, and they contain information about the
processor and memory hardware in that system. The following command first uses the less com-
mand so you can browse the file, and then uses the grep command to search for processor in the
/proc/cpuinfo file. Recall that with the less command, we use the up/down keys to scroll the file
one line at a time, the space bar to scroll down one page at a time, and the q key to quit viewing the
file.

% cd ~/eced750/tutl
% less /proc/cpuinfo
% grep "processor" /proc/cpuinfo

13

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

It should be pretty clear that you are using a multicore processor! You can also search to find out
which company makes the processors and what clock frequency they are running at:

% cd ~/eced750/tutl
% grep "vendor_id" /proc/cpuinfo
% grep "cpu MHz" /proc/cpuinfo

We can find out how much DRAM is in the system by searching for MemTotal in the /proc/meminfo
file.

% cd ~/eced750/tutl
% grep "MemTotal" /proc/meminfo

To-Do On Your Own: Try using grep to search for the words “processor” and “network” in the
overview.txt file.

3.8. Using find to Find Files

We can use the find command to recursively search a directory hierarchy for files or directories that
match a specified criteria. While the grep command is useful for searching file contents, the find
command is useful for quickly searching the file and directory names in your lab assignments. The
find command is very powerful, so we will just show a very simple example. First, we create a few
new files and directories.

% cd ~/eced750/tuti

% mkdir -p dirB/dirB_1

% mkdir -p dirB/dirB_2

% mkdir -p dirC/dirC_1

% echo "test" > dirA/file0.txt

% echo "test" > dirA/filel.txt

% echo "test" > dirB/dirB_1/file0.txt
% echo "test" > dirB/dirB_1/filel.txt
% echo "test" > dirB/dirB_2/file0.txt
% tree

We will now use the find command to find all files named "file0.txt". The find command takes
one command line argument to specify where we should search and a series of command line options
to describe what files and directories we are trying to find. We can also use command line options
to describe what action we would like to take when we find the desired files and directories. In
this example, we use the --name command line option to specify that we are searching for files with
a specific name. We can also use more complicated patterns to search for all files with a specific
filename prefix or extension.

% cd ~/eced750/tutl
% find . -name "fileO.txt"

14

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

Notice that we are using the special . directory to tell the find command to search the current
working directory and all subdirectories. The find command always searches recursively.

To-Do On Your Own: Create additional files named "file2.txt" in some of the subdirectories we
have already created. Use the "find" command to search for files named "file2.txt".

3.9. Using tar to Archive Files

We can use the tar command to “pack” files and directories into a simple compressed archive, and
also to “unpack” these files and directories from the archive. This kind of archive is sometimes
called a tarball. Most open-source software is distributed in this compressed form. It makes it easy
to distribute code among collaborators and it is also useful to create backups of files. We can use
the following command to create an archive of our tutorial directory and then remove the tutorial
directory.

% cd ~/eced750

% tar -czvf tutl.tgz tutl
% rm -r tutl

% 1s -1

Several command line options listed together as a single option (-czvf), where c¢ specifies we want
to create an archive, z specifies we should use “gzip” compression, v specifies verbose mode, and £
specifies we will provide filenames to archive. The first command line argument is the name of the
archive to create, and the second command line argument is the directory to archive. We can now
extract the contents of the archive to recreate the tutorial directory. We also remove the archive.

% cd ~/eced750

% tar -xzvf tutl.tgz
% rm tutl.tgz

% tree tutil

Note that we use the x command line option with the tar command to specify that we intend to
extract the archive.

To-Do On Your Own: Create an example directory within the ece4750/tut1 subdirectory. Copy
the overview.txt file and rename it to add example files to your new directory. Use the tar
command to create and extract an archive of just this one new directory.

3.10. Using top to View Running Processes

You can use the top command to view what commands are currently running on the Linux system
in realtime. This can be useful to see if there are many commands running which are causing the
system to be sluggish. When finished you can use the q character to quit.

% top

The first line of the top display shows the number of users currently logged into the system, and the
load average. The load average indicates how “overloaded” the system was over the last one, five, and

15

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

15 minutes. If the load average is greater than the number of processors in the system, it means your
system will probably be sluggish. You can always try logging into a different server in the cluster.

3.11. Environment Variables

In the previous sections, we have been using the Bash shell to run various commands, but the Bash
shell is actually a full-featured programming language. One aspect of the shell that is similar in
spirit to popular programming languages, is the ability to write and read environment variables. The
following commands illustrate how to write an environment variable named ece4750_tut1_layerl,
and how to read this environment variable using the echo command.

% eced750_tutl_layerl="application"
% echo ${ece4750_tutl_layeri}

Keep in mind that the names of environment variables can only contain letters, numbers, and under-
scores. Notice how we use the ${} syntax to read an environment variable. There are a few built-in
environment variables that might be useful:

% echo ${HOSTNAME}
% echo ${HOME}
% echo ${PWD}

We often use the HOME environment variable in directory paths like this:
% cd ${HOME}/ece4750

The PWD environment variable always holds the current working directory. We can use environment
variables as options to commands other than echo. A common example is to use an environment
variable to “remember” a specific directory location, which we can quickly return to with the cd
command like this:

% cd ${HOME}/ece4750/tutl
% TUT1=${PWD}

% cd

% pwd

/home/<netid>

% cd ${TUT1}

% pwd
/home/<netid>/eced750/tutl

To-Do On Your Own: Create a new environment variable named ece4750_tutl1_layer2 and write
it with the second layer in the computer systems stack (i.e., algorithm). Use the echo com-
mand to display this environment variable. Experiment with creating a new subdirectory within
ece4750/tut1 and then using an environment variable to “remember” that location.

3.12. Command Output Redirection

We have already seen using the echo command and command output redirection to create simple
text files. Here is another example:

16

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% cd ${HOME}/ece4750/tutl
% echo "Application" > computing-stack.txt
% cat computing-stack.txt

The > operator tells the Bash shell to take the output from the command on the left and overwrite the
file named on the right. We can use any command on the left. For example, we can save the output
from the pwd command or the man command to a file for future reference.

% cd ${HOME}/eced750/tutl
% pwd > cmd-output.txt

% cat cmd-output.txt

% man pwd > cmd-output.txt
% cat cmd-output.txt

We can also use the >> operator which tells the Bash shell to take the output from the command on
the left and append the file named on the right. We can use this to create multiline text files:

% cd ${HOME}/ece4750/tutl

% echo "Algorithm" > computing-stack.txt
% echo "Programming Language" >> computing-stack.txt
% echo "Operating System" >> computing-stack.txt

% cat computing-stack.txt

* To-Do On Your Own: Add the remaining levels of the computing stack (i.e., gate-level, circuits,
devices, technology) to the computing-stack.txt text file. Use the cat command to verify that
the file contents.

3.13. Command Chaining

We can use the && operator to specify two commands that we want to chaining together. The second
command will only execute if the first command succeeds. Below is an example.

% cd ${HOME}/ece4750/tutl && cat computing-stack.txt

* To-Do On Your Own: Create a single-line command that combines creating a new directory with
the mkdir command and then immediately changes into the directory using the cd command.

3.14. Command Pipelining

The Bash shell allows you to run multiple commands simultaneously, with the output of one com-
mand becoming the input to the next command. We can use this to assemble “pipelines”; we “pipe”
the output of one command to another command for further actions using the | operator.

The following example uses the grep command to search the special proc/cpuinfo file for lines
containing the word “processor” and then pipes the result to the wc command. The wc command
counts the number of characters, words, or lines of its input. We use the -1 command line option
with the wec command to count the number of lines.

17

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% grep processor /proc/cpuinfo | wc -1

This is a great example of the Linux philosophy of providing many simple commands that can be
combined to create more powerful functionality. Essentially the pipeline we have created is a com-
mand that tells us the number of processors in our system.

As another example, we will pipe the output of the 1ast command to the grep command. The last
command lists the names of all of the users that have logged into the system since the system was
rebooted. We can use grep to search for your NetID and thus quickly see how when you previously
have logged into this system.

% last | grep <netid>

We can create even longer pipelines. The following pipeline will report the number of times you
have logged into the system since it was rebooted.

% last | grep <metid> | wc -1

To-Do On Your Own: Use the cat command with the overview. txt file and pipe the output to the
grep command to search for the word “memories”. While this is not as fast as using grep directly
on the file, it does illustrate how many commands (e.g., grep) can take their input specified as a
command line argument or through a pipe.

3.15. Aliases, Wildcards, Command History, and Tab Completion

In this section, we describe some miscellaneous features of the Bash shell which can potentially be
quite useful in increasing your productivity.

Aliases are a way to create short names for command sequences to make it easier to quickly execute
those command sequences in the future. For example, assume that you frequently want to change to
a specific directory. We can create an alias to make this process take just two keystrokes.

% alias ct="cd ${HOME}/ece4750/tutl"
% ct
% pwd
/home/academic/<netid>/eced750/tutl

If you always want this alias to be available whenever you login to the system, you can save it in
your .bashrc file. The .bashrc is a special Bash script that is run on every invocation of a Bash shell.

% echo "alias ct=\"cd ${HOME}/ece4750/tuti\"" >> ${HOME}/.bashrc

The reason we have to use a back slash (\) in front of the double quotes is to make sure the echo
command sees this command line argument as one complete string.

Wildcards make it easy to manipulate many files and directories at once. Whenever we specify a file
or directory on the command line, we can often use a wildcard instead. In a wildcard, the asterisk
(*) will match any sequence of characters. The following example illustrates how to list all files that
end in the suffix . txt and then copies all files that match the wildcard from one directory to another.

% cd ${HOME}/ece4750/tutl

18

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% 1s *.txt
% cp dirA/file*.txt dirB
% tree

The Bash shell keeps a history of everything you do at the command line. You can display the
history with the history command. To rerun a previous command, you can use the ! operator and
the corresponding command number shown with the history command.

% history

You can pipe the output of the history command to the grep command to see how you might have
done something in the past.

% history | grep wc

If you press the up arrow key at the command line, the Bash shell will show you the previous com-
mand you used. Continuing to press the up/down keys will enable you to step through your history.
It is very useful to press the up arrow key once to rerun your last command.

The Bash shell supports tab completion. When you press the tab key twice after entering the be-
ginning of a filename or directory name, Bash will try to automatically complete the filename or
directory name. If there is more than one match, Bash will show you all of these matches so you can
continue narrowing your search.

4. Linux Text Editors

You will need to use a text editor to edit source files in Linux. There are two kinds of text editors:
graphical and non-graphical. The non-graphical text editors work by opening files through the com-
mand line and then using the keyboard to navigate files, execute commands, etc. The graphical text
editors work by providing a GUI so that the user can use a mouse to interact with the editor.

4.1. Nano

Nano is a very simple non-graphical text editor installed on the ecelinux machines. The editor is
easy to learn and use. You can start Nano by typing the command nano in the terminal and optionally
specifying the filename you want to view and edit.

% cd ${HOME}
% nano ~/eced4750/tutl/overview.txt

Use the arrow keys to move the cursor position. Notice that the editor specifies most of the useful
commands at the bottom of the terminal screen. The symbol ~ indicates the CONTROL key. To type
any text you want, just move the cursor to the required position and use the keyboard. To save your
changes press CONTROL+0 and press the <ENTER> key after specifying the filename you want to save
to. You can exit by pressing CONTROL+X.

* To-Do On Your Own: Use Nano to make some changes to the overview.txt text file and then save
your edits to your home directory. View the new file using the cat command from the command
line and then delete the file using the rm command.

19

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

4.2. Emacs and Vim

While the nano editor is easy to learn, students that anticipate using Linux in the future beyond
this course might want to use a more powerful editor such as emacs or vim. Both also have GUI
equivalents. By default emacs will start the GUI, while using the -nw command line option will
enable non-graphical mode. vim is purely non-graphical, but gvim is the graphical equivalent. It is
beyond the scope of this tutorial to teach you the usage of these editors, but most advanced Linux
users use one of these more powerful text editors for development.

4.3. MobaTextEditor

If you are using MobaXterm, you can simply right click on a file in the integrated MobaXterm file
browser and choose “Open with Default Text Editor” to open the file with the embedded Moba-
TextEditor. Unlike the other text editors mentioned in this section, the MobaTextEditor actually runs
locally on your Windows workstation. MobaXterm ensures that any changes you make to a file
through the MobaTextEditor are automatically uploaded to the ecelinux servers. You might need to
experiment to determine the most productive setup.

5. The Two-Window Linux Workflow

Some students use a one-window workflow. They use various commands at the command line and
whenever they want to edit a file they launch a text editor, edit and save the file, exit the text editor,
and then return to working at the command line. This can be a tedious process and involve many
keystrokes and /or mouse clicks to simply edit a file and see the corresponding effect.

We strongly encourage students to use a fwo-window workflow regardless of how they are accessing the
ECE computing resources and which text editor they are using. A two-window workflow involves
always having two windows side-by-side. The window on the left will be a terminal at the command
line, while the window on the right will be a text editor. The student should be able to switch back-
and-forth between the two windows using the keyboard although this is not strictly necessary. By
using two windows, the student can work at the command line, quickly switch to edit/save a file,
and then quickly switch back to see the corresponding effect.

Figure 1 illustrates an example two-window workflow on the workstations in the ECE Linux Com-
puting Lab in 314 Phillips Hall. A terminal is on the left and a text editor is on the right. Notice
that the generous 27” monitors in 314 Phillips Hall enable using a side-by-side split within a text
editor such that a terminal and two files are all visible at the same time. You can use the ALT-TAB
keyboard combination to quickly switch back-and-forth between the two windows. Figure 2 illus-
trates an example two-window workflow on the workstations in the CIT Windows Computing Lab
in 318 Phillips Hall. MobaXterm is on the left and a text editor is on the right. Again, you can use the
ALT-TAB keyboard combination to quickly switch back-and-forth between the two windows. Both
RHEL? and Windows have nice features where if you drag a window off the left or right side of the
screen it will automatically make the window fill just the left or right half of the screen. The key is to
be able to be able to see the command line and your text editor at the same time, and to also be able
to quickly switch back-and-forward between the command line and your text editor.

6. Course-Specific Linux Commands

In this section, we describe various aspects of the development environment that are specific to the
severs used in the course.

20

ECE 4750 Computer Architecture, Fall 2024

& Applcstions ~ _Places ~ i~

Tutorial 1: Linux Development Environment

Wed1003 O 4 O ~

= ~lecea7SOMUEL

c-ph314-10;

File Edit View Seach Teminal Tabs Help File Edt Sesch View Document Project Buld Tools Help

&

*+: 1a__gtk_widget_urmep: assertion 'GTK_IS ¥
3452) : GEk-CRITICAL **: 1A_gtk widget_unmsp: assertion *GTK_IS WIDGET (wid
ailed
452) : Gtk-CRITICAL **: IA_otk widgst_unrealize: assartion 'GTK_ISWIDGET
“aited
otk _widget_unrealize: assertion 'GTK_IS_WIDGET

Gtk-CRITICAL **
led

e Lab sssignments

ome/cbS35/eced7SO/ utlfcomputing-stack txt

gorith
Erogramang Language
Programang Language

nd e

Thraughous
g sumple parallel

en-ec-ph314-18: ~eced 750Rue1 =)) X we- B A
symbels | Documents | Fles computing stack xt
)
& % 2 This courss aire to provide a strong foundat
5 Inderstnd rodern e
Fite 3 nsighes and prin
s st i Y
homecbs3siecea7sonut & computing systens
8 e first hal
)
o v
55 103 g B
Ty 12 fogye rotiing, s Tlor contrl and”
By 1 econd hatl of the
13 hrisuas, and 311
o (0 emtoutputs i i e
St computingatackoe 16 ruliicore sysion. Topice ancludo supersealar sxceution, out s
L 7 e
2 overven 1a g
B oy o e ey v»“m o treretetitr,
« 2
22 pist, carrant, nd Fumrs spsticarion remviremente o
S
ot 2
e 2 s signiticane project <a deconpaaed oo fiv
2 Sstar, it S den g it
. 2 |oviame s corptata micors svetem camsbte of mum
“ 2 applications ax the register sranater Level
E

i
T Gemy 125)
-,) avarviewses = | 1/4
Mobaxter ==
Terminal Sessions View Xserver Tooks Gomes Settngs Macros Help Fle Edt Search View Document Project Bulld Tools Help
("] 3 iy B = AR A v 4
Seson Severs Toos Games Sessens Vew Soit MuExec Tumelng Settngs ek Xsever Bt)
- o e ° Symbols | Documents | Files overviewsxt 3¢
e 01: ~fec Q N
tE2Re
* R 2 This course aims to provide a strong foundation for students to
i 3 understand modern computer system architecture and to apply these
Filter a 4 insights and principles to future computer designs. The course is
N 5 structured around the three primary building blocks of general-purpose
thome/cb335/ece4750RutL 6 computing systems: processors, memories, and networks.
2 05137 cad-output.t 5 7
computing & The first half of the course focuses on the fundamentals of each building
dira 9 block. Topics include instruction set architecture; single-cycle
. 10 processors; hardwired vs. microcoded FSM processors; pipelined
e 11 rocessors; direct-mapped vs. associative caches; pipelined caches;
erview. txt > dirc 12 network topology, routing, and flow control; and integrating processors,
13 memories, and networks. The second half of the course delves into more
cmd-output.tt. 14 advanced techniques and will enable students to understand how these
cmd-output . txt computing-stack.txt 15 three building blocks can be integrated to build a modern shared-memory
computing-stac 16 multicore system. Topics include superscalar execution, out-of-order
dira overviewtit 17 execution, register renaming, memory disambiguation, branch prediction,
18 and speculative execution; miltithreaded, VLIW, and SIMD processors;
19 non-blocking cache memories; memory protection, translation, a
20 virtualization; and memory synchronization, consistency, and coherence.
21 Students will learn how to evaluate design decisions in the context of
22 past, current, and future application requirements and technology
23 constraints.
24
25 significant project is decomposed into five lab assignments. Throughout
2 the semester, students will graduslly design, implenent, test,
27 evaluate a complete multicore system capable of running simple parallel
28 applications at the register-transfer level
2
30
geany &
[]
UNREGISTERED VERSION ine: 1/50 colio_seli0__INS__SP__mode:LF _encoding: UTF-8__filetype: None _scope: unknown
=
- - 937 AM
LK WOTDEHAMDC e

2c 0o o0omul%

Figure 2: Recommended Two-Window Workflow for Windows

21

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

6.1. Course Setup Script

Once you are logged into an ecelinux machine, as explained in Section 2, you will need to setup the
working environment with the following command in order to work on the course lab assignments.

% source setup-ece4750.sh

The source command executes the commands in the given file. Running the command will display
some information about what the setup script is doing. Since we always need to source the setup
script, we can add this to our .bashrc file as follows.

% echo "source setup-ece4750.sh -q" >> ${HOME}/.bashrc

The extra -q command line option prevents the script from displaying its output every time we login
to an ecelinux machine. With these modifications to our .bashrc, we know that the environment
will be correctly setup every time we login.

If for any reason running the setup script prevents you from using tools for another course, you will
need to run the setup script manually every time you want to work on a course lab assignment.

6.2. Using quota to Check Your Space Usage

Students are allocated 10GB of storage on the servers. You can use the following command to show
much space you are using;:

% quota

The blocks column is how much data you are using, and the quota column is your quota. If you
have exceed the 10GB quota, you can browse your home directory and list the size of files and the
contents of directories with the du command:

% cd ${HOME}
% du -sh *

By recursively changing directories and examining the sizes of files and directories you can figure
out what you need to delete. We can pipe the output of du to the sort and head commands to find
the top 20 largest files and directories like this:

% cd ${HOME}
% du -xak . | sort -nr | head --lines=20

Or just use the following to generate a human readable summary of the size of files/directories in the
current working directory. Note that it can take 20-30 seconds for this command to finish, so please
be patient.

6.3. Using trash to Safely Remove Files

We have installed a simple program called trash which moves files you wish to delete into a special
subdirectory of your home directory located at ${HOME}/tmp/trash. The following commands create
a file and then deletes it using trash.

% cd ${HOME}
% echo "This file will be deleted." > testing.txt

22

ECE 4750 Computer Architecture, Fall 2024 Tutorial 1: Linux Development Environment

% trash testing.txt

% echo "This file will also be deleted." > testing.txt
% trash testing.txt

% 1ls ${HOME}/tmp/trash

If you look in ${HOME}/tmp/trash you will see subdirectories organized by date. Look in the subdi-
rectory with today’s date and you should two files corresponding to the two files you deleted. We
highly recommend always using the trash command instead of rm since this avoids accidentally
deleting your work.

7. Conclusion

This tutorial hopefully helped you become familiar with Linux and how to use it for working on the
labs. You have gained some experience working at the command line and also working with either
a graphical or non-graphical text editor. We have introduced the two-window Linux workflow and
some Linux commands specific to the course. There are many more resources online for learning
Linux, and keep in mind that learning to work productively using the Linux operating system can
pay dividends in many other contexts besides this course.

Acknowledgments

This tutorial was developed for the ECE 4750 Computer Architecture and ECE 5745 Complex Digital
ASIC Design courses at Cornell University by Shreesha Srinath, Christopher Torng, and Christopher
Batten.

23

