
ECE 4750 Computer Architecture

Section 11: Integrating Processors and Memories

http://www.csl.cornell.edu/courses/ece4750
School of Electrical and Computer Engineering

Cornell University

revision: 2024-11-07-19-07

List of Problems

1 Evaluating a Dot Product Microbenchmark 2

1.A Analyzing the Average Memory Access Latency . 3

1.B TinyRV1 Single-Issue Scalar Processor . 4

1.C TinyRV1 Dual-Issue Superscalar Processor . 5

1.D Two-Way Set Associative Cache . 6

ECE 4750 Computer Architecture Section 11: Integrating Processors and Memories

Problem 1. Evaluating a Dot Product Microbenchmark

In this problem, we will explore a dot product microbenchmark executing on a single-issue scalar
processor and a dual-issue superscalar processor integrated with either a direct-mapped or set-
associative data cache. Here is the C code for the microbenchmark:

int dot(int* a, int* b, int n)
{

int result = 0;
for (int i = 0; i < n; i++)

result += a[i] * b[i];
return result;

}

And here is the corresponding assembly:

addi x10, 0, 0

loop:
lw x5, 0(x11)
lw x6, 0(x12)
addi x11, x11, 4
addi x12, x12, 4
mul x7, x5, x6
addi x13, 1, -1
add x10, x10, x7
bne x13, x0, loop

jr x1

Make sure you understand the connection between the C program and assembly before continuing.

For this problem, you should assume a fully bypassed processor that implements the TinyRV1
instruction set. You should assume there an instruction cache with a single-cycle hit latency and a
100% hit rate. You should assume a 256B data cache with 16B cache lines, parallel-read/pipelined-
write, a write-back/write-allocate write policy, and a miss penalty of two cycles. Assume the data
cache is initially empty.

Assume that we call the dot function with two arrays each with 64 elements (i.e., n is 64). Assume
the base address of array a is 0x1000 and the base address of array b is 0x2000.

2

ECE 4750 Computer Architecture Section 11: Integrating Processors and Memories

Part 1.A Analyzing the Average Memory Access Latency

Assume we are using a direct-mapped cache. Fill in the following table for data memory accesses
corresponding to the load instructions. Use h or m to indicate a cache hit or miss. Use the set
columns to indicate the state of the tag array at the beginning of each transaction.

rd/wr address tag idx h/m Set 0 Set 1 Set 2 Set 3

Now use your table to estimate the average memory access latency for data memory accesses in
this microbenchmark.

3

ECE 4750 Computer Architecture Section 11: Integrating Processors and Memories

Part 1.B TinyRV1 Single-Issue Scalar Processor

Consider the cannonical five-stage fully bypassed TinyRV1 single-issue scalar processor integrated
with a direct-mapped cache. Draw a pipeline diagram that illustrates the execution of this loop.
Show as many iterations as you need to find the steady state execution. Only put the instruc-
tion name (i.e., lw, addi, etc) not the full assembly instruction in the pipeline diagram. Add ar-
rows to your pipeline diagram to indicate all microarchitectural RAW dependencies and any
microarchitectural control dependencies (other than those that simply result in fetching the next
instruction).

How long in cycles will it take to execute the vector-vector add example assuming n is 64? What
is the CPI?

4

ECE 4750 Computer Architecture Section 11: Integrating Processors and Memories

Part 1.C TinyRV1 Dual-Issue Superscalar Processor

Consider the cannonical five-stage fully bypassed TinyRV1 dual-issue superscalar processor with
indivdual A and B pipes integrated with a direct-mapped cache. Recall that MUL/BNE instruc-
tions must use the A pipe, LW/SW instructions must use the B pipe, and ADD/ADDI/JAL/JR
instructions can use either pipe. Draw a pipeline diagram that illustrates the execution of this
loop. Show as many iterations as you need to find the steady state execution. Only put the in-
struction name (i.e., lw, addi, etc) not the full assembly instruction in the pipeline diagram. Add
arrows to your pipeline diagram to indicate all microarchitectural RAW dependencies and any
microarchitectural control dependencies (other than those that simply result in fetching the next
instruction).

How long in cycles will it take to execute the vector-vector add example assuming n is 64? What
is the CPI? What is the speedup compared to a single-issue processor?

5

ECE 4750 Computer Architecture Section 11: Integrating Processors and Memories

Part 1.D Two-Way Set Associative Cache

Start by filling in the following table with your results so far. Then consider replacing the direct-
mapped data cache with a two-way set-associative cache. Use your results from the previous
parts to quickly estimate the new CPI when using a set-associative cache and fill those results
into this table. Justify your answers. Discuss some of the trade-offs between these four different
configurations.

Processor µArch Cache µArch CPI

Single-Issue Direct-Mapped

Single-Issue Two-Way Set Assoc

Dual-Issue Superscalar Direct-Mapped

Dual-Issue Superscalar Two-Way Set Assoc

6

